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Abstract—A new outer bound on the capacity region
of a general noisy network with multiple messages is es-
tablished. The bound considers an ordered partition of the
nodes in the network, and has an intuitive interpretation as
the directed information between inputs and outputs across
these subsets of the partition. The standard cutset bound
is recovered as a special case when the partition consists of
two subsets. The new bound extends several existing bounds
to the general network that were obtained for special classes
of networks. Examples include the generalized network
sharing (GNS) bound for graphical networks by Kamath,
Tse, and Anantharam, the GNS bound for Gaussian
networks by Kamath, Kannan, and Viswanath, and the
generalized cutset bound for deterministic networks by
Shomorony and Avestimehr. It is demonstrated by a few
simple examples that the improvement over the cutset
bound can be significant.

I. INTRODUCTION

Characterizing the capacity region of a general noisy
network in a computable form is the holy grail of net-
work information theory. This has come to be recognized
as a very hard problem and characterizing the capacity
region of even simple multiuser networks such as the
broadcast channel has been an open problem for several
decades. However, one may attempt to approximately
characterize the capacity region by presenting an inner
bound (achieved by a coding scheme) and an outer bound
(proved by information inequalities) that are close to
each other.

So far, the cutset bound [1] has been the only general
outer bound available for this problem that makes no as-
sumptions on the underlying network model. The cutset
bound considers an arbitrary bipartition of the network
into two subsets of nodes and bounds the amount of
information flow across from one subset to the other. The
form of the bound is simple and intuitively easy to under-
stand. Despite its simplicity, the cutset bound is exactly
tight or approximately tight in numerous cases, ranging
from the max-flow min-cut theorem [2], two-unicast in
undirected graphs [3], and the network coding theorem
for multicast [4] and two-level multicast [5] to multicast
in linear deterministic and Gaussian networks [6], [7],
multiple unicast in random wireless networks [8], [9]
and bidirected Gaussian networks [10], broadcast in

Gaussian networks [11], [12] and unicast in polylinking
systems [13].

In this work, we provide an improvement over the
cutset bound for a general memoryless network with
multiple messages (flows). We obtain a bound that is
at least as tight as the cutset bound but improves on it
in general when there is more than one message in the
network. We consider an ordered partition of the nodes
in the network into multiple subsets (instead of just two
as in the cutset bound). We derive from such a partition
a new bound that has a simple form (in the spirit of
the cutset bound), and provide an intuitive interpretation
of the bound as the directed information between inputs
and outputs across these subsets of the partition. The
standard cutset bound is indeed a special case when
the partition has two subsets. Numerous existing bounds
in the literature derived for special classes of networks
can be seen to be implied by this new bound. These
include the generalized network sharing (GNS) bound
for graphical networks [14], the GNS bound for Gaussian
networks [15], and the generalized cutset bound for
deterministic networks [16]. Our bound may be viewed
as an extension of the GNS bound to general noisy
networks. At the same time, our bound is inspired from
the generalized cutset bound [16] and can be rewritten
in a form that is compatible with it. Our proof of the
new bound relies crucially on a peeling-off lemma that
brings about the single-letter characterization, a style of
argument that was used, for example, in [17].

Throughout the paper, we mostly follow the notation
in [18]. In particular, a random variable is denoted by an
uppercase letter (e.g., X,Y, Z). An unspecified constant
is denoted by ∅. We use Xn

i to denote a sequence
(Xi, . . . , Xn) for 0 ≤ i ≤ n (otherwise, Xn

i = ∅). We
always drop the subscript i = 1. The distinction between
Xn

i = (Xi, . . . , Xn) and Xn
v = (Xv1, . . . , Xvn) will be

always clear from the context. For a pair of integers
i ≤ j, [i : j] = {i, i + 1, . . . , j}. We will let εn denote
any generic sequence that satisfies εn → 0 as n→∞.

The rest of the paper is organized as follows. Sec. II
reviews the notion of directed information. Sec. III
formally defines the network communication problem
and establishes the new bound on the capacity region.



Sec. IV applies this bound to Gaussian networks. Sec. V
presents a few examples to illustrate the strength of the
new bound over the cutset and other existing bounds.

II. REVIEW OF DIRECTED INFORMATION

Directed information was introduced by Massey [19]
to study the capacity of channels with feedback. The
directed information from a sequence An to another
(synchronized) sequence Bn is defined as

I(A1, A2, . . . , An → B1, B2, . . . , Bn)

:=

n∑
i=1

I(Bi;A
i|Bi−1) (1)

=

n∑
i=1

I(Bn
i ;Ai|Ai−1, Bi−1). (2)

We will refer to (1) and (2) as Form 1 and Form 2 of the
directed information. Similarly, the directed information
from the sequence An to the sequence Bn causally
conditioned on a third sequence Cn is defined as

I(A1, . . . , An → B1, . . . , Bn ‖C1, . . . , Cn)

:= I ((C1, A1), . . . , (Cn, An)→ B1, . . . , Bn)

− I(C1, . . . , Cn → B1, . . . , Bn)

=

n∑
i=1

I(Bi;A
i|Bi−1, Ci) (3)

The following simple fact about causally conditional
directed information, which is proved in Appendix A,
will become quite useful in our subsequent discussion.

Lemma 1.

I(A1, . . . , An → B1, . . . , Bn ‖C1, . . . , Cn)

≤
n∑

i=1

I(Bn
i , C

n
i+1;Ai|Ai−1, Bi−1, Ci). (4)

We will refer to (3) and (4) as Form 1 and Form 2 of
the causally conditioned directed information. Note that
Form 2 of the causally conditioned directed information
is not an equivalent quantity but an upper bound. The
above definitions are summarized in Table I.

Directed information can be interpreted as the amount
of information one sequence causally provides about
another [20]. Based on this interpretation, we can in-
tuitively understand the conservation law for directed
information [21], which states that the total mutual
information between two sequences is the sum of the
causal information transfer from one side to the other
and back:

I(A1, A2, . . . , An;B1, B2, . . . , Bn)

= I(A1, A2, . . . , An → B1, B2, . . . , Bn)

+ I(∅, B1, . . . , Bn−1 → A1, A2, . . . , An), (5)

where ∅ refers to an unspecified constant.

III. PROBLEM STATEMENT AND THE MAIN RESULT

Consider a noisy network communication system with
N nodes indexed by 1, . . . , N . One wishes to provide
K information flows over the network, where each flow
f ∈ [1 : K] is embodied by reliable communica-
tion of message Mf from source node sf ∈ [1 :
N ] to a set of destination nodes Df ⊆ [1 : N ].
This system can be modeled as a multimessage dis-
crete memoryless network (DMN) N = (X1 × · · · ×
Xn, p(y1, . . . , yN |x1, . . . , xN ), Y1×· · ·×Yn) that con-
sists of N sender–receiver alphabet pairs (Xv,Yv), v ∈
[1 : N ], and a collection of probability mass functions
(pmfs) p(y1, . . . , yN |x1, . . . , xN ). The network is as-
sumed to be memoryless. A (2nR1 , . . . , 2nRK , n) code
for the DMN consists of
• K message sets [1 : 2dnR1e], . . . , [1 : 2dnRKe],
• encoders xvi : Πf∈Fv [1 : 2dnRfe] × Yi−1

v → Xvi,
i ∈ [1 : n], for each node v ∈ [1 : N ], where
Fv := {f : v = sf}, and

• decoders m̂fd : Πg∈Fd
[1 : 2dnRge] × Yn

d → [1 :
2dnRfe] for each flow f ∈ [1 : K] and each of its
destinations d ∈ Df .

Assume that (M1, . . . ,MK) is uniformly distributed
over [1 : 2dnR1e] × · · · × [1 : 2dnRKe]. The average
probability of error is defined as

P (n)
e = P{M̂fd 6= Mf for some f ∈ [1 : K], d ∈ Df}.

A rate tuple (R1, . . . , RK) is said to be achievable if
there exists a sequence of (2nR1 , . . . , 2nRK , n) codes
such that limn→∞ P

(n)
e = 0. The capacity region C (N )

of the DMN is the closure of the set of achievable rates.
We now introduce the notion of cut that will be crucial

in the subsequent discussion.

Definition 1. For any ordered (L + 1)-partition P =
(V0,V1, . . . ,VL) of [1 : N ], namely, ∪Lj=0Vj = [1 : N ]
and Vj ∩Vk = ∅ for j 6= k, we say that flow f is cut by
the ordered partition P if sf ∈ Vj and Df ∩ Vk 6= ∅ for
some k < j (see Fig. 1). Let

Cut(P) := {f : flow f is cut by P}.

V4

s1

d1

V3

s3

d′2 d′4

V2

s2

d3

V1

s4 s5

d′1 d4

V0

d2

d5

Fig. 1. A network with 5 flows, where Df = {df , d′f} for f = 1, 2, 4
and Df = {df} for f = 3, 5. Flows 1, 2, 3, 5 are cut by the partition
(V0,V1,V2,V3,V4) but flow 4 is not. Furthermore, fusing V1 and
V2 will also cut the very same flows, and hence will lead to a tighter
bound.



I (A1, A2, . . . , An → B1, B2, . . . , Bn)
=

n∑
i=1

I
(
Bi;A

i|Bi−1
)

(Form 1)

A1 A2 A3 A4 A5 A6

B1 B2 B3 B4 B5 B6

I (A1, A2, . . . , An → B1, B2, . . . , Bn)
=

n∑
i=1

I
(
Bn

i ;Ai|Ai−1, Bi−1
)

(Form 2)

A1 A2 A3 A4 A5 A6

B1 B2 B3 B4 B5 B6

I (A1, . . . , An → B1, . . . , Bn‖C1, . . . , Cn)
=

n∑
i=1

I
(
Bi;A

i|Bi−1, Ci
)

(Form 1)

A1 A2 A3 A4 A5 A6

B1 B2 B3 B4 B5 B6

C1 C2 C3 C4 C5 C6

I (A1, . . . , An → B1, . . . , Bn ‖C1, . . . , Cn)
≤

n∑
i=1

I
(
Bn

i , C
n
i+1;Ai|Ai−1, Bi−1, Ci

)
(Form 2)

A1 A2 A3 A4 A5 A6

B1 B2 B3 B4 B5 B6

C1 C2 C3 C4 C5 C6

TABLE I
TWO FORMS FOR DIRECTED INFORMATION AND CAUSALLY CONDITIONAL DIRECTED INFORMATION.

If L = 1, we have an ordered bipartition (V0,V1),
and our notion of flow being cut by the partition is
identical to the standard notion of cut (V,Vc) = (V1,V0)
considered in the cutset bound.

We are ready to state our main result.

Theorem 1. If the rate tuple (R1, . . . , RK) ∈ C (N ),
then there must exist a pmf p(x1, . . . , xN ) such that∑
f∈Cut(P)

Rf

≤ I(∅, Ỹ0, Ỹ1, . . . , ỸL−1 → X̃0, X̃1, X̃2, . . . , X̃L)

for any L ≥ 1 and any ordered (L + 1)-partition P =
(V0,V1, . . . ,VL). Here, Ỹj := (Yv : v ∈ Vj) and X̃j :=
(Xv : v ∈ Vj).

A few remarks are in order.

Remark 1. Let L > 1. Consider an ordered partition
P = (V0,V1, · · · ,VL) and another ordered partition
P ′ = (V ′0,V ′1, · · · ,V ′L−1) defined by fusing two neigh-

boring sets of P as

V ′j =


Vj 0 ≤ j < k − 1,

Vk−1 ∪ Vk j = k − 1,

Vj+1 k ≤ j ≤ L− 1

for some k ∈ [1 : L]. Then,

I(∅, Ỹ0, Ỹ1, . . . , ỸL−1 → X̃0, X̃1, X̃2, . . . , X̃L)

− I(∅, Ỹ ′0 , Ỹ ′1 , . . . , Ỹ ′L−2 → X̃ ′0, X̃
′
1, . . . , X̃

′
L−1)

= I(X̃k; Ỹk−1|X̃k−1
0 , Ỹ k−2

0 ) ≥ 0.

Thus, if cut(P) = cut(P ′), then P ′ yields a tighter
bound than P does (see Fig. 1). This implies that if
there are K information flows in the network, it suffices
to consider ordered partitions of at most K + 1 subsets
(i.e., L ≤ K). In particular, if all the information sources
are located on the same node or all the destinations are
located on the same node (either of which happens if
there is only one information flow), then it suffices to
consider only bipartitions (L = 1) and the new bound
reduces to the cutset bound without any improvement.



Remark 2. For deterministic networks, the inequalities
in the new bound have the same form as those for the
bound by Shomorony and Avestimehr [16]. Our theorem
extends Theorem 1 therein, whose proof technique is
limited to deterministic networks, to general noisy net-
works (their notation Ωj is equivalent to ∪Lk=jVk in our
notation). However, our notion of cut is more general
than theirs, and hence our bound is a strict improvement
over [16] even within the class of deterministic networks;
see Sec. V-A.

Before we provide a proof of Theorem 1, we briefly
discuss various alternate forms of the bound.

For L = 1, we have an ordered bipartition P =
(V0,V1), and flow f is cut by this partition (i.e., f ∈
cut(P)) iff sf ∈ V1 and Df ∩ V0 6= ∅. Thus, the
corresponding inequality in Theorem 1 simplifies as∑

f∈Cut(P)

Rf ≤ I(∅, Ỹ0 → X̃0, X̃1) = I(X̃1; Ỹ0|X̃0),

which is the standard cutset bound [1], [18, Sec. 18.4].
For L = 2, we have an ordered tripartition P =

(V0,V1,V2) and the corresponding inequality in Theo-
rem 1 simplifies as∑

f∈Cut(P)

Rf

≤ I(∅, Ỹ0, Ỹ1 → X̃0, X̃1, X̃2)

= I(Ỹ0, Ỹ1 → X̃1, X̃2|X̃0) (6)

= I(X̃1; Ỹ0|X̃0) + I(X̃2; Ỹ0, Ỹ1|X̃0, X̃1) (7)

= I(X̃1, X̃2; Ỹ0|X̃0) + I(X̃2; Ỹ1|X̃0, X̃1, Ỹ0) (8)

= I(X̃2
0 ; Ỹ 2

0 )− I(X̃0, X̃1, X̃2 → Ỹ0, Ỹ1, Ỹ2), (9)

where (7), (8), and (9) are Form 1 of the directed
information (1), Form 2 of the directed information (2),
and the conservation law (5), respectively. The identity
(7) splits the directed information with one input subset
at a time, so that none of the mutual information terms
is conditioned on output variables. The identity (8) splits
the directed information with one output subset at a time,
including all input variables on either the left side or
under the conditioning.

For L > 2, we can similarly write these forms of the
inequality as in (6)–(9).

Proof of Theorem 1: For each j ∈ [1 : L],
let M̃j = (Mf : sf ∈ Vj ∩ Cut(P)) and let M̃0

denote all the messages that are not cut by P , i.e.,
M̃0 = (Mf : f /∈ Cut(P)). Note that M̃0 may contain
messages from source nodes in any subset Vj , and hence
X̃j,i is a function of (M̃0, M̃j , Ỹ

i−1
j ) for j ∈ [0 : L]. Let

M = (M1, . . . ,MK) = (M̃0, . . . , M̃L).
For L = 1, this is simply the cutset bound. We present

the proof here for L = 2 and relegate the proof for
general L to Appendix B.

By Fano’s inequality, we have∑
f∈Cut(P),sf∈V1

n(Rf − εn) ≤ I(M̃1; Ỹ n
0 |M̃0),

∑
f∈Cut(P),sf∈V2

n(Rf − εn) ≤ I(M̃2; Ỹ n
0 , Ỹ

n
1 |M̃0, M̃1),

where εn → 0 as n → ∞. Summing these inequalities,
we have ∑

f∈Cut(P)

n(Rf − εn)

(a)

≤ I(∅, Ỹ n
0 , Ỹ

n
1 → M̃0, M̃1, M̃2)

(b)

≤
n∑

i=1

I(∅, Ỹ0i, Ỹ1i → X̃0i, X̃1i, X̃2i),

where (a) follows from Form 1 of the directed informa-
tion and (b) follows by the peeling-off lemma (Lemma
2) stated below. Using a standard time-sharing random
variable completes the proof.

Lemma 2 (Peeling-off lemma). For i ∈ [1 : n],

I(∅, Ỹ i
0 , Ỹ

i
1 → M̃0, M̃1, M̃2)

≤ I(∅, Ỹ i−1
0 , Ỹ i−1

1 → M̃0, M̃1, M̃2)

+ I(∅, Ỹ0i, Ỹ1i → X̃0i, X̃1i, X̃2i).

Proof of Lemma 2: Consider

I(∅, Ỹ i
0 , Ỹ

i
1 → M̃0, M̃1, M̃2)

− I(∅, Ỹ i−1
0 , Ỹ i−1

1 → M̃0, M̃1, M̃2)

= I(∅, Ỹ0i, Ỹ1i → M̃0, M̃1, M̃2 ‖ ∅, Ỹ i−1
0 , Ỹ i−1

1 )

(a)

≤ I(M̃1, M̃2, Ỹ
i−1
1 ; Ỹ0i|M̃0, Ỹ

i−1
0 )

+ I(M̃2; Ỹ1i|Ỹ0i, M̃0, M̃1, Ỹ
i−1
0 , Ỹ i−1

1 )

(b)
= I(M̃1, M̃2, Ỹ

i−1
1 ; Ỹ0i|M̃0, Ỹ

i−1
0 , X̃0i)

+ I(M̃2; Ỹ1i|Ỹ0i, M̃0, M̃1, Ỹ
i−1
0 , Ỹ i−1

1 , X̃0i, X̃1i)

≤ I(M, Ỹ i−1
1 , Ỹ i−1

0 ; Ỹ0i|X̃0i)

+ I(M, Ỹ i−1
0 , Ỹ i−1

1 ; Ỹ1i|Ỹ0i, X̃0i, X̃1i)

≤ I(M, Ỹ i−1
1 , Ỹ i−1

0 , X̃1i, X̃2i; Ỹ0i|X̃0i)

+ I(M, Ỹ i−1
0 , Ỹ i−1

1 , X̃2i; Ỹ1i|Ỹ0i, X̃0i, X̃1i)

(c)
= I(X̃1i, X̃2i; Ỹ0i|X̃0i) + I(X̃2i; Ỹ1i|Ỹ0i, X̃0i, X̃1i)

= I(∅, Ỹ0i, Ỹ1i → X̃0i, X̃1i, X̃2i),

where (a) follows by Lemma 1, (b) follows since X̃0i

is a function of (M̃0, Ỹ
i−1
0 ) and X̃1i is a function of

(M̃0, M̃1, Ỹ
i−1
1 ), and (c) follows from Markov con-

ditions guaranteed by the memoryless property of the
network.



IV. GAUSSIAN NETWORKS

Consider a Gaussian network [18, Ch. 19] with chan-
nel gain matrix G, power constraint P at each node,
and i.i.d. N(0, 1) noise components. The output of the
network is

Y N = GXN + ZN .

Theorem 1 can be easily adapted to this setting.

Corollary 1. If (R1, . . . , RK) ∈ C (N ), then there must
exist a jointly Gaussian (X1, . . . , XN ) with E(X2

v ) ≤ P ,
v ∈ [1 : N ], such that∑

f∈Cut(P)

Rf

≤ I(∅, Ỹ0, . . . , ỸL−1 → X̃0, . . . , X̃L) (10)

=
1

2
log2

(L−1∏
j=0

|Cov(Ỹj |X̃j
0 , Ỹ

j−1
0 )|

)
for any L > 1 and any ordered (L + 1)-partition
P = (V0, . . . ,VL). Here Cov(Ỹj |X̃j

0 , Ỹ
j−1
0 ) denotes the

conditional covariance matrix of the jointly Gaussian
Ỹj = (Yv : v ∈ Vj) given (X̃j

0 , Ỹ
j−1
0 ) and | · | denotes

its determinant.

Proof: It suffices to show that Gaussian input dis-
tributions maximize the RHS of (10). This can be seen
by using Form 2 of the directed information and the
maximal differential entropy lemma [18, Ch. 2.2, Eq.
(2.7)].
Remark 3. Corollary 1 implies the generalized network
sharing (GNS) bound for Gaussian networks [15]. This
implication can be proved by the network concatenation
idea in [16], which is used to show that the GNS bound
for graphical networks follows from the generalized
cutset bound for deterministic networks. Furthermore,
Corollary 1 strictly improves the GNS bound for Gaus-
sian networks; see Sec. V-B.

V. EXAMPLES

A. Binary Symmetric Network
Consider the example network in Fig. 2. The network

model is:

Y2 = X1 ⊕ Z2,

Y3 = X1 ⊕X2 ⊕ Z3,

where Z2 and Z3 are independent Bern(ε) noise com-
ponents. The source-destination pairs are given by s1 =
1, d1 = 2, s2 = 2, d2 = 3, s3 = 1, d3 = 3. The cutset
bound for this network is given by

R1 ≤ 1−H(ε),

R2 +R3 ≤ 1−H(ε),

R1 +R3 ≤ 1− 2H(ε) +H(2ε(1− ε)).

In comparison, Theorem 1 yields a tighter bound on the
sum-rate:

R1 ≤ 1−H(ε),

R2 +R3 ≤ 1−H(ε),

R1 +R2 +R3 ≤ 1− 2H(ε) +H(2ε(1− ε)).

When ε = 0, this is a deterministic network and the
generalized cutset bound in [16] leads to the following
outer bound on the capacity region:

R1 +R2 ≤ 1, R1 +R3 ≤ 1, R2 +R3 ≤ 1.

It can be readily checked that our bound improves this
bound with a new stronger inequality

R1 +R2 +R3 ≤ 1.

BSC(✏)

BSC(✏)

X1

X2

Y3

Y2

�X1 � X2

X1

1 = s1 = s3 2 = s2 = d1

3 = d2 = d3

Fig. 2. A binary symmetric network.

B. Gaussian Examples

1) A three-node network: Consider the example net-
work in Fig. 3 with power constraint P on each node.
The network model is

Y2 = X1 + Z2,

Y3 = X1 +X2 + Z3,

where Z2 and Z3 are independent N(0, 1) noise com-
ponents. The source-destination pairs are given by s1 =
1, d1 = 2, s2 = 2, d2 = 3. The cutset bound as well as
the GNS bound [15] for this network is

Rf ≤
1

2
log2(1 + P ), f = 1, 2.

In comparison, our new bound in Corollary 1 with the
ordered partition P = ({3}, {2}, {1}) yields

R1 +R2 ≤
1

2
log2

(
Var(Y3) Var(Y2|X2, Y3)

)
≤ 1

2
log2

(
(1 + E(X1 +X2)2) (1 + 1)

)
≤ 1

2
log2(1 + 4P ) +

1

2
.

Thus the upper bound of 2 on the sum degrees of
freedom (DoF) provided by the cutset and GNS bounds
is loose, and the actual sum DoF is 1, which is easily
achievable by time division.



X1

X2

Y3

Y2

�X1 + X2

X1

�

�

Z2

Z3

1 = s1 2 = s2 = d1

3 = d2

Fig. 3. A 3-node Gaussian network.

2) An N -node network: Consider an extension of the
above network to a network with N nodes and N − 1
source–destination pairs sf = f and df = f + 1, f ∈
[1 : N − 1]. The network model is

Yv =

v−1∑
w=1

Xw + Zv, v ∈ [2 : N ],

where Z2, . . . , ZN are independent N(0, 1) noise com-
ponents. The cutset bound for this network (over all
possible bipartition cuts) is

Rf ≤
1

2
log2(1 + P ), f ∈ [1 : N − 1].

Thus, the cutset bound on the sum-capacity is

Csum := max

N−1∑
f=1

Rf ≤
N − 1

2
log2(1 + P ).

In comparison, our bound with the natural ordered
partition P = ({N}, {N − 1}, . . . , {1}) implies that

Csum ≤
1

2
log2

(
Var(YN ) · · ·Var(Y2|XN−1

2 , Y N
3 )
)
.

One can verify that Var(YN ) ≤ 1 + (N − 1)2P and for
j = 1, 2, . . . , N − 2,

Var(YN−j |XN
N−j , Y

N
N−j+1)

= 1 +
Var(

∑N−j−1
v=1 Xv|XN

N−j)

jVar(
∑N−j−1

v=1 Xv|XN
N−j) + 1

≤ 1 +
1

j
.

Hence, our new bound yields

Csum ≤
1

2
log2

(
1 + (N − 1)2P

)
+

1

2

N−1∑
j=1

log2

(
1 +

1

j

)

≤ 1

2
log2

(
1 + (N − 1)2P

)
+

log2 e

2

N−1∑
j=1

1

j
.

In summary, the cutset bound implies Csum = O(N)
while the new bound implies Csum = O(logN). Fur-
thermore, a simple time-division scheme (with power
control) yields a lower bound on the sum-capacity as

Csum ≥
1

2
log2(1 + (N − 1)P ).

Therefore, the new bound captures the correct scaling
behavior of sum-capacity in this Gaussian network.
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APPENDIX A
PROOF OF LEMMA 1

Consider

I(A1, . . . , An → B1, . . . , Bn ‖C1, . . . , Cn)

=

n∑
j=1

I(Bj ;A
j |Bj−1Cj)

=

n∑
j=1

j∑
i=1

I(Bj ;Ai|Ai−1, Bj−1, Cj)

=

n∑
i=1

n∑
j=i

I(Bj ;Ai|Ai−1, Bj−1, Cj)

≤
n∑

i=1

n∑
j=i

I(Bj , Cj+1;Ai|Ai−1, Bj−1, Cj)

=

n∑
i=1

I(Bn
i , C

n
i+1;Ai|Ai−1, Bi−1, Ci).

APPENDIX B
PROOF OF THEOREM 1 FOR GENERAL L

By Fano’s inequality, we have for j ∈ [1 : L],∑
f∈Cut(P),sf∈Vj

n(Rf − εn)

≤ I(M̃j ; Ỹ
n
0 , Ỹ

n
1 , . . . , Ỹ

n
j−1|M̃0, . . . , M̃j−1).

By summing these inequalities for j ∈ [1 : L],∑
f∈Cut(P)

n(Rf − εn)

≤ I(∅, Ỹ n
0 , Ỹ

n
1 , . . . , Ỹ

n
L−1 → M̃0, M̃1, M̃2, . . . , M̃L).

Finally, the following lemma will complete the proof.

Lemma 3 (Peeling-off lemma). For i ∈ [1 : n], the
inequality in (11) on top of the next page holds.

Proof of Lemma 3: Consider the series of inequal-
ities (12) on top of the next page, where where (a)
follows by Lemma 1, (b) follows since X̃ki is a func-
tion of (M̃0, M̃k, Ỹ

i−1
k ), and (c) follows from Markov

conditions guaranteed by the memoryless property of the
network.



I(∅, Ỹ i
0 , Ỹ

i
1 , . . . , Ỹ

i
L−1 → M̃0, M̃1, M̃2, . . . , M̃L)

≤ I(∅, Ỹ i−1
0 , Ỹ i−1

1 , . . . , Ỹ i−1
L−1 → M̃0, M̃1, M̃2, . . . , M̃L)

+ I(∅, Ỹ0i, Ỹ1i, . . . , ỸL−1,i → X̃0i, X̃1i, X̃2i . . . , X̃Li) (11)

I(∅, Ỹ i
0 , Ỹ

i
1 , . . . , Ỹ

i
L−1 → M̃0, M̃1, . . . , M̃L)− I(∅, Ỹ i−1

0 , Ỹ i−1
1 , . . . , Ỹ i−1

L−1 → M̃0, M̃1, . . . , M̃L)

= I(∅, Ỹ0i, . . . , ỸL−1,i → M̃0, . . . , M̃L ‖ ∅, Ỹ i−1
0 , . . . , Ỹ i−1

L−1)

(a)

≤
L∑

j=1

I
(
(M̃k)Lk=j , (Ỹ

i−1
k )L−1k=j ; Ỹj−1,i

∣∣ (Ỹki)j−2k=0, (M̃k)j−1k=0, (Ỹ
i−1
k )j−1k=0

)
(b)
=

L∑
j=1

I
(
(M̃k)Lk=j , (Ỹ

i−1
k )L−1k=j ; Ỹj−1,i

∣∣ (Ỹki)j−2k=0, (M̃k)j−1k=0, (Ỹ
i−1
k )j−1k=0, (X̃ki)

j−1
k=0

)
≤

L∑
j=1

I
(
M, (Ỹ i−1

k )L−1k=0 ; Ỹj−1,i
∣∣ (Ỹki)j−2k=0, (X̃ki)

j−1
k=0

)
≤

L∑
j=1

I
(
M, (Ỹ i−1

k )L−1k=0 , (X̃ki)
L
k=j ; Ỹj−1,i

∣∣ (Ỹki)j−2k=0, (X̃ki)
j−1
k=0

)
(c)
=

L∑
j=1

I
(
(X̃ki)

L
k=j ; Ỹj−1,i

∣∣ (Ỹki)j−2k=0, (X̃ki)
j−1
k=0

)
= I(∅, Ỹ0i, Ỹ1i, . . . , ỸL−1,i → X̃0i, X̃1i, . . . , X̃Li). (12)
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