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Abstract— Hypercontractivity has had many successful
applications in mathematics, physics, and theoretical com-
puter science. In this work we use recently established
properties of the hypercontractivity ribbon of a pair of
random variables to study a recent conjecture regarding
the mutual information between binary functions of the
individual marginal sequences of a sequence of pairs of
random variables drawn from a doubly symmetric binary
source.

I. INTRODUCTION

Let (X,Y ) be a pair of {0, 1}-valued random vari-
ables such that X and Y are uniformly distributed and
Pr (X = 0, Y = 1) = Pr (X = 1, Y = 0) = 1

2α. This
joint distribution is sometimes referred to as the doubly
symmetric binary source, DSBS(α).

Define for x ∈ [0, 1] the binary entropy function
h(x) := x log2

1
x +(1−x) log2

1
1−x , with the convention

that 0 log2 0 = 0.
The following isoperimetric information inequality

was conjectured by Kumar and Courtade in [1]. They
also provided some evidence for its validity.

Conjecture 1: (Kumar-Courtade [1]) If {(Xi, Yi)}ni=1

are drawn i.i.d. from DSBS(α), and b : {0, 1}n →
{0, 1} is any Boolean function, then I(b(Xn);Y n) ≤
I(X1;Y1) = 1− h(α).

Using perturbation based arguments it can be shown
that Conjecture 1 is equivalent to Conjecture 2 below.

Conjecture 2: If {(Xi, Yi)}ni=1 are drawn i.i.d. from
DSBS(α), and the Markov chain W−Xn−Y n−Z holds
with W binary-valued, then I(W ;Z) ≤ I(X1;Y1) =
1− h(α).

In this document we study a weaker form of the above
conjecture, as stated below.

Conjecture 3: If {(Xi, Yi)}ni=1 are drawn i.i.d. from
DSBS(α), and b, b′ : {0, 1}n → {0, 1} are any Boolean
functions, then I(b(Xn); b′(Y n)) ≤ I(X1;Y1) = 1 −
h(α).

Remark: In the statement of Conjecture 3, if one addi-
tionally assumes b = b′, then the statement is known to

be true [2].

Since n is arbitrary in the statement of the conjecture,
it is not in a form that is amenable to brute-force nu-
merical verification. In this paper we present a stronger
conjecture (Conjecture 4) relating to an arbitrary pair of
binary random variables that would imply Conjecture 3.

Conjecture 4 relates the chordal slope of the hyper-
contractivity ribbon of a pair of binary random vari-
ables (X,Y ) at infinity, denoted s∗(X;Y ), to their
mutual information, I(X;Y ). This motivates the study
of s∗(X;Y ) for binary pairs of random variables (X,Y ).
We provide some results about this quantity, including a
certain form of duality.

A. A remark on Conjecture 3

A natural question to ask is whether Conjectures 1
and 3 are more general, i.e. if {(Xi, Yi)}∞i=1 are gener-
ated i.i.d. from an arbitrary binary-valued pair source
µX,Y (x, y) and if b, b′ : {0, 1}n 7→ {0, 1}, then do
we have I(b(Xn); b′(Y n)) ≤ I(X1;Y1)?. This can be
shown to be false. For example, consider (X,Y ) to have
the joint distribution of a successive pair of random
variables from a stationary ergodic Markov chain with
state space {0, 1} with transition probabilities P (Y =
1|X = 0) = α, P (Y = 0|X = 1) = β (see Fig. 1).
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Fig. 1. A simple two-state Markov chain

Then, (X,Y ) have joint distribution given by the ma-

trix

[
β(1−α)
α+β

αβ
α+β

αβ
α+β

α(1−β)
α+β

]
. For (X1, Y1), (X2, Y2) drawn

i.i.d. from this joint distribution with α = 0.01, β =



0.04, we can compute I(X1;Y1) = 0.6088 . . . < I(X1⊕
X2;Y1⊕Y2) = 0.70 . . . . Thus, Conjectures 1 and 3 seem
somewhat special, for DSBS sources only.

II. PRELIMINARIES

Definition 1: For a pair of random variables (X,Y ) ∼
µX,Y (x, y) on X × Y, where X and Y are finite sets,
we define the hypercontractivity ribbon

R(X;Y ) ⊆ {(p, q) : 1 ≤ q ≤ p}

as follows: for 1 ≤ q ≤ p, we have (p, q) ∈ R(X;Y ) if

||E[g(Y )|X]||p ≤ ||g(Y )||q ∀g : Y 7→ R. (1)
For a given p ≥ 1, define s(p)(X,Y ) as

s(p)(X;Y ) := inf{r : (p, pr) ∈ R(X;Y )}.

It is easy to see that s(p)(X;Y ) is decreasing in p.
Let

s∗(X;Y ) := lim
p→∞

s(p)(X;Y ).

In this paper we study s∗(X;Y ) for pairs of binary
random variables, in our attempts to establish Conjecture
4. Below, we provide some known results regarding the
quantity s∗(X;Y ). These results apply to general pairs
of finite random variables.

A. Alternate characterizations of s∗(X;Y )

Let (X,Y ) ∼ pX,Y (x, y) be finite valued random
variables such that pX(x) > 0 and pY (y) > 0 for every
x ∈ X , y ∈ Y .

In [3] it was shown that

s∗(X;Y ) := sup
rX 6≡pX

D(rY ‖pY )

D(rX‖pX)
,

where the supremum is taken over rX running over the
set of distributions on X (hence is absolutely continuous
with respect to pX due to our positivity assumption of
pX(x)) and rY is the marginal distribution induced on
Y by rX,Y (x, y) = rX(x)pY |X(y|x). They also showed
that s∗(X;Y ) satisfies the following two properties:
(T) Tensorization: If {(Xi, Yi)}ni=1 are drawn i.i.d., then

s∗(Xn;Y n) = s∗(X1;Y1).
(D) Data Processing Inequality: If W −X−Y −Z is a

Markov chain, then we have s∗(X;Y ) ≥ s∗(W ;Z).

For (X,Y ) ∼ DSBS(α), s∗(X;Y ) = (1− 2α)2. This
result dates back to Bonami [4] and Beckner [5], and is
also independently derived in [3].

Recently it was shown [6] that

s∗(X;Y ) = sup
U :U−X−Y,I(U ;X)>0

I(U ;Y )

I(U ;X)
.

Given a joint distribution p(x, y), consider the condi-
tional distribution pY |X(y|x) as defining a channel, C,

from X to Y . Fix this transition probability and consider
the following function as we vary the input distribution:

tCλ(q(x)) := Hq(Y )− λHq(X).

Let K(tCλ)q0(x) denote the lower convex envelope of
the function tCλ(q(x)) evaluated at the input distribution
q0(x).

Theorem 1 ( [6]): For (X,Y ) ∼ p(x, y), we have

s∗(X;Y ) := inf{λ : K(tCλ)p(x) = tCλ(p(x))}. (2)
By Theorem 1, we know that the point(
p(x), tCs∗p(X;Y )(p(x))

)
lies on the lower convex

envelope of the curve q(x) 7→ tCs∗p(X;Y )(q(x)), where
s∗p(X;Y ) is s∗(X;Y ) evaluated at p(x)p(y|x).

B. Lower bound on s∗(X;Y )

s∗(X;Y ) is bounded from below by ρm(X;Y )2 de-
fined as follows:

Definition 2: For jointly distributed random variables
(X,Y ), define their Hirschfeld-Gebelein-Rényi maximal
correlation ρm(X;Y ) := supEf(X)g(Y ) where the
supremum is over f : X 7→ R, g : Y 7→ R such that
Ef(X) = Eg(Y ) = 0 and Ef(X)2,Eg(Y )2 ≤ 1.

For (X,Y ) ∼ DSBS(ε), the inequality s∗(X;Y ) ≥
ρm(X;Y )2 holds with equality. It is easy to show that
ρm(X;Y ) = |1− 2ε| and s∗(X;Y ) = (1− 2ε)2 [3].

C. Main Conjecture

We will make progress towards Conjecture 3 by
stating our main conjecture.

Conjecture 4: For any binary-valued random variable
pair (W,Z), we have

h

(
1−

√
s∗(W ;Z)

2

)
+ I(W ;Z) ≤ 1, (3)

with equality if and only if (W,Z) ∼ DSBS(α) for some
0 ≤ α ≤ 1, or if W and Z are independent.

Note that Conjecture 4 implies Conjecture 3. Indeed,
when (Xn, Y n) ∼ ∏

i p(xi, yi) where p(x, y) corre-
sponds to DSBS(α) then

I(b(Xn); b′(Y n))

≤ 1− h
(

1−
√
s∗(b(Xn); b′(Y n))

2

)
(4)

≤ 1− h
(

1−
√
s∗(Xn;Y n)

2

)
(5)

≤ 1− h
(

1−
√
s∗(X;Y )

2

)
(6)

= 1− h
(

1−
√

(1− 2α)2

2

)
(7)

= 1− h(α),



where (4) is from Conjecture 4, (5) follows from data
processing property (using b(Xn) → Xn → Y n →
b′(Y n) is Markov), (6) follows from tensorization prop-
erty of s∗, and (7) uses the result that s∗(X;Y ) =
(1− 2α)2 when (X,Y ) ∼ DSBS(α).

One advantage of Conjecture 4 over Conjecture 3 is
that Conjecture 4 can be subject to numerical verifi-
cation (because of the cardinality of two on W and
Z). Extensive numerical simulations seems to validate
Conjecture 4. Indeed, it may be possible to obtain a
computer assisted proof. However, our focus is to get
an analytical proof.

Remark: It can be shown that ρm too satisfies the
tensorization and data processing inequality properties
[7]. Thus, if

h

(
1− ρm(W ;Z)

2

)
+ I(W ;Z) ≤ 1, (8)

held whenever W,Z are binary, this would have implied
Conjecture 3. However, (8) fails for some distributions
pW,Z with W,Z binary-valued.

Remark: It can be shown in a similar way that if

h

(
1−

√
s∗(W ;Z)

2

)
+ I(W ;Z) ≤ 1, (9)

held whenever W is binary and Z is finite-valued, then
it would have implied Conjecture 2. However, (9) fails
for some distributions pW,Z when W is binary-valued
and Z is ternary-valued.

III. PROPERTIES OF s∗

One of the difficulties for proving Conjecture 4 ana-
lytically is that we do not have any explicit expression
for s∗, except in certain special cases. This motivates
studying s∗ for pairs of binary valued random variables.
Further Conjecture 4 provides some insights on s∗ for
binary valued random variables. Thus, we might ask
if there are simple characterization of s∗ (and more
generally the hypercontractivity ribbon) particularly for
binary valued random variables.

A. A Duality property of s∗(W ;Z)

Theorem 2: Given a pair of binary-valued random
variables (W,Z) ∼ p(w, z) (notation in Fig. 3) with their
joint distribution satisfying 0 < c, d < 1, let r∗W 6= pW
be a maximizer of

s∗p(W ;Z) = sup
rW 6≡pW

D(rZ‖pZ)

D(rW ‖pW )
.

Let r∗WZ := r∗W pZ|W . Then pW is a maximizer of

s∗r(W ;Z) = sup
qW 6≡r∗W

D(qZ‖r∗Z)

D(qW ‖r∗W )
(10)

and s∗p(W ;Z) = s∗r(W ;Z). Further the line-segment
connecting the curve at r∗W and pW is on the lower
convex envelope of the curve: p(W = 1) 7→ H(Z) −
λH(W ).

Proof: We claim that the lower convex envelope of
p(W = 1) 7→ H(Z) − λH(W ) consists of an initial
convex part, then (possibly) a line segment and then a
final convex part. The line segment part exists if the
whole curve is not convex. This is depicted in Fig. 2.
To see this we use Lemma 1 to prove that the curve
Pr(W = 1) 7→ H(Z) − λH(W ) has at most two
inflexion points, and the second derivative is positive
when Pr(W = 1) = s ∈ {0, 1}. Further we also note
that the first derivative is −∞ at s = 0 and +∞ at s = 1.

Therefore given a λ where the Pr(W = 1) 7→
H(Z) − λH(W ) is not completely convex, we obtain
that λ = s∗(W ;Z) for two values of Pr(W = 1)
corresponding to the points where the tangent (of the
lower concave envelope) meets the curve. Here we have
used Theorem 1 and an observation that the left and
right end points of the line segment continuously move
towards each other. The last observation is not hard to
justify given the continuity of the curve in both s and λ.

When λ = s∗(W ;Z) we know that one of the points
where the tangent meet the curve is given by Pr(W =
1) = s. Let the other point be Pr(W = 1) = r. Then λ
is characterized by these two sets of equations

(c̄− d) log2

(
cw + d̄w̄

c̄w + dw̄

)
− λ log2

w̄

w

= (c̄− d) log2

(
cu+ d̄ū

c̄u+ dū

)
− λ log2

ū

u
1

w − u

(
H(c̄w + dw̄) − λH(w) − (H(c̄u+ dū) − λH(u))

)
= (c̄− d) log2

(
cu+ d̄ū

c̄u+ dū

)
− λ log2

ū

u
.

This is equivalent to

c̄ log2

(
c̄s̄+ ds

c̄r̄ + dr

)
+ (1− c̄) log2

(
cs̄+ d̄s

cr̄ + d̄r

)
= λ log

s̄

r̄
,

(11)

d log2

(
c̄s̄+ ds

c̄r̄ + dr

)
+ (1− d) log2

(
cs̄+ d̄s

cr̄ + d̄r

)
= λ log

s

r

. (12)

Multiplying the first equality above by s̄, second by
s, and taking their sum yields

D(c̄s̄+ ds‖c̄r̄ + dr) = λD(s̄||r̄). (13)

Similarly multiplying (11) by r̄, (12) by r, and taking
their sum yields

D(c̄r̄ + dr‖c̄s̄+ ds) = λD(r̄||s̄). (14)



Fig. 2. The typical behaviour of the curve p(W = 1) 7→ H(Z) −
λH(W ) and its lower convex envelope.

Since λ corresponds to both s∗p(W ;Z) and s∗r(W ;Z)
where rWZ := rW pZ|W , it is clear that rW is r∗W as
defined in the Theorem. The duality is now obvious
using equations (13) and (14).

Lemma 1: The second derivative of the function
p(W = 1) 7→ H(Z) − λH(W ) has at most two zeros
in the interval [0, 1]. The second derivative has at most
one zero if c = 0 or d = 0. Further, the first derivative
of this function is negative at p(W = 1) = 0 and it is
positive at p(W = 1) = 1.

Proof: Using the notation of Fig. 3, we can write
H(Z) − λH(W ) as a function of s = p(W = 1). Let
us call this function f(s). Then the first derivative is

λ log
s

1− s − (1− d− c) log
s(1− d) + (1− s)c
sd+ (1− s)(1− c)

If c and d are in (0, 1) the first derivative is −∞ at
p(W = 1) = 0 and it is +∞ at p(W = 1) = 1. When c
or d is in {0, 1} we can use continuity to conclude that
the first derivative is negative at p(W = 1) = 0 and it
is positive at p(W = 1) = 1.

The second derivative of f is equal to

λ

s(1− s) −
(1− c− d)2

(s(1− d) + (1− s)c)(sd+ (1− s)(1− c))
This can be written as A(s)

B(s) where A(s) is a second
degree polynomial. Hence it can have at most two zeros.
If c = 0, the second derivative will become of the form
A(s)
sB(s) where A(s) is a first degree polynomial. Therefore
it can have at most one zero. A similar statement holds
when d = 0.

B. Convexity of s∗(W ;Z) in p(z|w)

Let us fix the input p(w) and vary the channel p(z|w).
We claim that s∗(W ;Z) is convex in p(z|w) for a
fixed p(w). In this sense s∗(Z;W ) resembles the mutual
information I(Z;W ).

Remark: Since 1 − h((1 − √x)/2) is an increasing
convex function, we get that 1−h((1−

√
s∗(Z;W ))/2)

is a convex function in the channel p(z|w). Thus,
we have two convex functions, namely 1 − h((1 −√

s∗(Z;W ))/2), and I(Z;W ). Conjecture 3 claims that
one of these convex function is always above the other.

Proof: We use s∗(p(w), p(z|w)) instead of s∗(Z;W ) to
emphasize the underlying pmfs.

Take p0(z|w), p1(z|w) and p2(z|w) such that

p1(z|w) = βp0(z|w) + (1− β)p2(z|w).

For i = 0, 1, 2 define

pi(z) =
∑
w

p(w)pi(z|w),

Observe that

p1(z) = βp0(z) + (1− β)p2(z).

Let r(w) 6≡ p(w) be any other probability distribution
and for i = 0, 1, 2 define ri(z) =

∑
w r(w)pi(z|w).

Observe that

r1(z) = βr0(z) + (1− β)r2(z).

Now we have

D(r1(z)‖p1(z))

D(r(w)‖p(w))

=
D(βr0(z) + (1− β)r2(z)‖βp0(z) + (1− β)p2(z))

D(r(w)‖p(w))

≤ βD(r0(z)‖p0(z)) + (1− β)D(r2(z)‖p2(z))

D(r(w)‖p(w))

= β · D(r0(z)‖p0(z))

D(r(w)‖p(w))
+ (1− β) · D(r2(z)‖p2(z))

D(r(w)‖p(w))

≤ βs∗(p(w), p0(z|w)) + (1− β)s∗(p(w), p2(z|w)).

Taking supremum over r(w) 6≡ p(w) completes the
proof.

IV. ANALYTICAL PROOF OF CONJECTURE 4 IN
SPECIAL CASES

Let us specify the joint distribution of (W,Z) in the
following way (see Fig. 3):
• W,Z take values in {0, 1}
• s := Pr (W = 1)
• c := Pr (Z = 1|W = 0)
• d := Pr (Z = 1|W = 1)
• t := Pr (Z = 1) = (1− s)c+ s(1− d)

1 1

00

s

1 � s

c

d
t = s(1 � d) + (1 � s)c

1 � t = sd + (1 � s)(1 � c)

1 � d

1 � c

W Z

Fig. 3. Joint distribution of binary valued W,Z



Since we will deal only with binary-valued random
variables in the rest of the paper, we abuse nota-
tion to write s∗(W ;Z) = s∗(s, c, d), ρm(W ;Z) =
ρm(s, c, d), I(W ;Z) = I(s, c, d).

Under this notation Conjecture 4 that for all 0 ≤
s, c, d ≤ 1 the following inequality holds:

h

(
1−

√
s∗(s, c, d)

2

)
+ I(s, c, d) ≤ 1. (15)

Given r ∈ [0, 1], define r̄ := 1 − r and D(u‖v) :=
u log2

u
v + ū log2

ū
v̄ . It suffices to restrict to the case

where W,Z are not independent. This implies 0 < s <
1, c + d 6= 1. We will assume these conditions hold in
the rest of the paper.

Values of s∗ for some special distributions are as
follows:
• If pZ|W (z|w) is a binary symmetric channel, i.e. if
c = d, and s 6= 1

2 , then

s∗(s, c, c) = (1− 2c)2h
′(sc̄+ c̄s)

h′(s)
(16)

where h′(w) := d
dwh(w) = log2

1−w
w .

Proof: The curve s = p(W = 1) 7→ H(Z) −
λH(W ) is symmetric around s = 1

2 i.e. it has the
same value at s and 1−s. The lower tangent to any
such curve is always horizontal. Therefore, using
Theorem 2, the maximizer of s∗(s, c, d) occurs at
r = 1−s. Substituting this value of r into Theorem
2 gives the desired result.

• If pZ|W (z|w) is a Z-channel, that is, if c = 0, then

s∗(s, 0, d) =
log2(1− sd̄)

log2(1− s) . (17)

Proof: Using Lemma 1 for the case of c = 0, we
can conclude that the curve s = p(W = 1) 7→
H(Z)− λH(W ) consists of an initial convex part
and then (possibly) a line segment that connects to
the end point of (0, 0). Using Theorem 1, a simple
calculation yields

s∗(s, c, d) = sup
0≤r≤1,r 6=s

D(r̄c+ rd̄‖s̄c+ sd̄)

D(r‖s) .

We now prove Conjecture 4 for some special cases.
Theorem 3: Conjecture 4 (equiavlently (15)) holds

when c = d.

Proof: For the case of c = d, we do have an exact
formula for s∗(s, c, c), but we will only use the lower
bound s∗(s, c, c) ≥ ρ2

m(s, c, c) = (1−2c)2 s(1−s)
t(1−t) , where

t = sc̄+ s̄c. That is, it suffices to show that

h

1− |1− 2c|
√

s(1−s)
t(1−t)

2

+ h(t)− h(c) ≤ 1. (18)

By the standard transformation γ := 1 − 2c, σ :=
1 − 2s, τ := 1 − 2t, and observing that τ = γσ, this
reduces to showing

h

1− |γ|
√

1−σ2

1−γ2σ2

2

+ h

(
1− γσ

2

)
− h

(
1− γ

2

)
≤ 1,

(19)

for −1 < σ < 1,−1 ≤ γ ≤ 1.
Defining Λ(u) := (1+u) loge(1+u)+(1−u) loge(1−

u), we need to show

Λ(γ) ≤ Λ(γσ) + Λ

(
|γ|
√

1− σ2

1− γ2σ2

)
.

Since

(1− γ2) = (1− (γσ)2)

1−
(
|γ|
√

1− σ2

1− γ2σ2

)2
 ,

we only need to show that if Φ(v) :=
Λ(
√

1− exp(−v)), then for any v1, v2 ≥ 0,
Φ(v1 + v2) ≤ Φ(v1) + Φ(v2). This follows by
verifying that Φ is non-decreasing and concave.

Indeed the above result can also be obtained using the
result stated below which generalizes the triples (s, c, d)
for which the conjecture holds.

Theorem 4: Conjecture 4 holds for any triple (s, c, d)
satisfying√

1− s∗(s, c, d) + 2
√
tt̄ ≤ 1 + 2s̄

√
cc̄+ 2s

√
dd̄. (20)

Condition in (20) holds as long as (s, c, d) satisfies√
s̄cc̄+ sdd̄√

tt̄
+ 2
√
tt̄ ≤ 1 + 2s̄

√
cc̄+ 2s

√
dd̄. (21)

Remark: Equation (21) holds when c = d as it reduces
to showing

√
cc̄√
tt̄

+ 2
√
tt̄ ≤ 1 + 2

√
cc̄,

which is true since
√
cc̄ ≤

√
tt̄ ≤ 1

2 . Recall that when
c = d we have t = s(1− c) + (1− s)c.

Theorem 4 can be viewed as a special instance of the
following strategy to solve Conjecture 4 which we state
below. Theorem uses a majorization argument whose
proof employs the following Lemma.

Lemma 2 (Lemma 1 in [8]): Let x0, ..., xN and
y0, ..., yN be non-decreasing sequence of real numbers.
Let ξ0, ..., ξN be a sequence of real numbers such that
for each k in the range 0 ≤ k ≤ N,

N∑
j=k

ξjxj ≥
N∑
j=k

ξjyj



with equality when k = 0. Then for any convex function
Λ,

N∑
j=0

ξjΛ(xj) ≥
N∑
j=0

ξjΛ(yj).

Remark: In [8] the above Lemma is stated for concave
functions and the final inequality is reversed but the
equivalence of the two statements is immediate.

Theorem 5: Suppose there is a bijection g : [0, 1] 7→
[0, 1

2 ] with g−1 : [0, 1
2 ] → [0, 1] denoting the inverse of

g. Extend the inverse function to g−1
e : [0, 1] 7→ [0, 1]

according to g−1
e (x) := g−1(min{x, 1 − x}). If the

following conditions hold:

1) g(x) is increasing in x,
2) h(g(x)) is convex in x,

3) 1 + s̄g−1
e (c) + sg−1

e (d̄) ≥ g−1
e

(
1−
√

s∗(s,c,d)

2

)
+

g−1
e (t),

then, Conjecture 4 is true for the chosen s, c, d.

Proof: The proof is a application of Lemma 2 to Λ(x) =
h(g(x)). The details are presented below.

Let x1 = g−1
e (c), x2 = g−1

e (d̄), x3 = 1 and let y1 =
g−1
e (t), y2 = 1+ s̄g−1

e (c)+sg−1
e (d̄)−g−1

e (t). Further let
x̃1, x̃2 be a rearrangement of x1, x2 in increasing order;
and let ỹ1, ỹ3 be a rearrangement of y1, y2 in increasing
order. Set ỹ2 = ỹ1. Allocate a weight s̄ to x2 and a
weight s to x1. Let ξ1, ξ2 denote the rearrangement of
the weights s and s̄ so that ξ1x̃1 + ξ2x̃2 = s̄x1 + sx2.

Observe that the following holds:

ξ1x̃1 + ξ2x̃2 + x3 = ξ1ỹ1 + ξ2ỹ2 + ỹ3 By construction
x3 ≥ ỹ3 Since x3 = 1

ξ2x̃2 + x3 ≥ ξ2ỹ2 + ỹ3.

The last step follows since ỹ1 = ỹ2 ≥ ξ1x̃1 +ξ2x̃2 ≥ x̃1.
Further ξ1 ≥ 0 yields ξ1x̃1 ≤ ξ1ỹ1 and hence the desired
inequality.

Observing that h(g(g−1
e (y))) = h(y) and that h(g(x))

is increasing in x, yields a proof of Conjecture 4 when
the conditions on g(x) stated in Theorem 5 hold.

We now prove Theorem 4.

Proof (Theorem 4) :

Consider the function g(·) : [0, 1] 7→ [0, 1
2 ] defined by

g(x) :=
1−
√

1− x2

2
.

This function satisfies the conditions of Theorem 5. A
simple calculation shows that for this choice of g(x) we
obtain g−1

e (y) = 2
√
y(1− y). Further it is immediate

that g(x) is increasing in x for x ∈ [0, 1].

To verify convexity of h(g(x)) observe that

1

log2 e

d2

dx2
h(g(x))

= loge

(
1− g(x)

g(x)

)
g′′(x)− g′(x)2

g(x)(1− g(x))

= loge

(
1 +
√

1− x2

1−
√

1− x2

)
1

2
√

1− x2
− 1

1− x2
.

Hence to show h(g(x)) is convex in x, it suffices to
show that loge

1+a
1−a ≥ 2a, a ∈ [0, 1) which clearly holds

by the Taylor series expansion of the left hand side which
yields

∑
k≥1

2a2k−1

2k−1 .
For this choice of g(x) and the corresponding g−1

e (x)
mentioned above, condition 3) in Theorem 5 is equiva-
lent to the condition√

1− s∗(s, c, d) + 2
√
tt̄ ≤ 1 + 2s̄

√
cc̄+ 2s

√
dd̄.

Thus from Theorem 5 we have,

h

(
1−

√
s∗(s, c, d)

2

)
+ I(s, c, d) ≤ 1.

This proves the first part or validity of Conjecture 4 when
(20) holds.

Lower bounding s∗(s, c, d) by ρ2
m(s, c, d) yields (21).

To this end, it is a simple exercie to note that

1− ρ2
m =

s̄cc̄+ sdd̄

tt̄
.

HISTORICAL REMARKS

Conjecture 4 was originally formulated by Kamath
and Anantharam in an attempt to establish Conjecture
3. It was then communicated to Gohari and Nair when
all of them were collaborating to obtain the results in
[6]. Bogdanov and Nair were independently working on
Conjecture 3 and at that point had obtained a proof for
the special setting b = b′ [2]. The results in Sections III
and IV are a result of the joint collaboration among the
authors as a natural followup of their collaboration in [6].
There are a couple of other results along these lines that
were obtained with Bogdanov that are not mentioned in
this writeup but did help tune the intuition of the authors.
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