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Abstract—Consider the k-unicast network coding prob-
lem over an acyclic wireline network: Given a rate vector
k-tuple, determine whether the network of interest can
support k unicast flows with those rates. It is well known
that the one-unicast problem is easy and that it is solved by
the celebrated max-flow min-cut theorem. The hardness of
k-unicast problems with small k has been an open problem.
We show that the two-unicast problem is as hard as any k-
unicast problem for k ≥ 3. Our result suggests that the
difficulty of a network coding instance is related more
to the magnitude of the rates in the rate tuple than to
the number of unicast sessions. As a consequence of our
result and other well-known results, we show that linear
coding is insufficient to achieve capacity, and non-Shannon
inequalities are necessary for characterizing capacity, even
for two-unicast networks.

I. INTRODUCTION

Wireline networks are a simple class of general
stochastic networks. These networks have links between
nodes that are unidirectional, orthogonal and noise-free,
and hence, are a simplification of real-world channels,
with aspects such as broadcast, superposition, interfer-
ence, noise absent. Understanding the capacity regions
of directed wireline networks is the first step towards
understanding the capacity of general networks.

The seminal work of Ahlswede-Cai-Li-Yeung [1] in-
troduced the problem of communicating a common mes-
sage from one source to many destinations and showed
that coding operations in the network are necessary to
achieve capacity. Furthermore, they characterized the
capacity of the network by the cutset bound.

However, the problem of characterizing the capacity
region of a multiple-unicast network with multiple mes-
sages - each demanded by a single destination - has
been shown to be a difficult problem on many accounts.
(A more general traffic pattern where some messages
are required to be decoded at multiple destinations can
be converted to an equivalent multiple-unicast network
using the construction in [2].) [3] showed that a simple
class of network coding schemes - linear network coding
- while sufficient to achieve capacity for the multicast
problem, cannot achieve capacity for a general k-unicast
network when k ≥ 10. [4] showed that for k ≥ 6, outer

bounds obtained by Shannon-type information inequal-
ities don’t suffice to characterize the capacity region
of k-unicast networks in general and so-called non-
Shannon information inequalities are necessary. Indeed,
[5] showed that solving the general network coding
problem requires knowledge of the closure of the entire
entropic cone Γ̄∗n.

The counterexample networks in the above series of
works all have either many different sources or many dif-
ferent destinations. A natural question to ask is whether
the difficulty of the problem stems from this. A candidate
for the simplest unsolved problem is the two-unicast
problem - the problem of communication between two
sources and two destinations, with each source having
a message for its own destination. The only complete
characterization result in the literature dealing with the
two-unicast network capacity is [6] which characterizes
the necessary and sufficient condition for achieving
(1, 1) in a two-unicast network with all links having
integer capacities.

The contrast of this success with the (1, 1) rate pair
in two-unicast networks against the intractability of the
general k-unicast problem [3]–[5], is not entirely sur-
prising since many different problems enjoy a simplicity
with 2 users that is not shared by the corresponding
problems with 3 or more users. For instance, in two-
unicast undirected networks, the cutset bound is tight
while this is not the case for three-unicast undirected
networks [7]. The capacity of two-user interference chan-
nels is known to within one bit [8] but no such result is
known for three-user interference channels. Although the
two-unicast problem for general integer rates (R1, R2)
remains open, it is often believed that the two-unicast
problem enjoys a similar simplicity as other two-user
information theoretic problems.

There are many existing results that aim to character-
ize the general achievable rate region for the two-unicast
problem (not limited to the (1,1) case in [6]) and/or the
k-unicast problem with small k. For example, [9], [10],
[11] study capacity of two-unicast, three-unicast and k-
unicast networks respectively, from a source-destination
cut-based analysis. The authors of [12] present an edge-
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reduction lemma using which they compute an achiev-
able region for two-unicast networks. In a subsequent
work [13], they show that the Generalized Network Shar-
ing bound defined in [14] gives necessary and sufficient
conditions for achievability of the (N, 1) rate pair in a
special class of two-unicast networks (networks with Z-
connectivity and satisfying certain richness conditions).
Unfortunately, none of the above results is able to fully
characterize the capacity region for general two-unicast
networks even for the second simplest instance of the
rate pair (1, 2), let alone the capacity region for three-
unicast or k-unicast networks (for small k). Such a
relatively frustrating progress prompts us to re-examine
the problem at hand and investigate whether the lack of
new findings is actually due to the inherent hardness of
the two-unicast problem.

In this paper, we show that solving the two-unicast
problem for general rate pairs is as hard as solving the
k-unicast problem for any k ≥ 3. Thus, the two-unicast
problem is the “hardest network coding problem”. We
show that given any multiple-unicast rate tuple, there is
a rate tuple with suitable higher rates but fewer sources
that is more difficult to ascertain achievability of. In
particular, we show that solving the very well studied
but notoriously hard k-unicast problem with unit-rate
(eg. [3], [4]) is no harder than solving the two-unicast
problem with rates (k− 1, k). Furthermore, by coupling
our results with those of [3], [4], we can construct a
two-unicast network for which linear codes are insuf-
ficient to achieve capacity, and a two-unicast network
for which non-Shannon inequalities can provide tighter
outer bounds than Shannon-type inequalities alone.

The rest of the paper is organized as follows. In
Sec. II, we set up preliminaries and notation. We state
and prove our main result in Sec. III. We discuss im-
plications for two-unicast networks in IV. We conclude
with some possible extensions in Sec. V.

II. PRELIMINARIES

Definition: A k-unicast network is a directed acylic
graph with k sources s1, s2, . . . , sk and corresponding
k destinations d1, d2, . . . , dk, and an assignment of non-
negative integer capacity Ce to each edge e. The sources
have no incoming edges and the destinations have no
outgoing edges. The set of edges entering into and
leaving node v will be denoted by In(v) and Out(v)
respectively.

We say that the non-negative integer rate tuple
(R1, R2, . . . , Rn) is zero-error achievable (or simply
achievable in the rest of this paper) for a k-unicast
network if there exists a positive integer N (called block
length), a finite alphabet A and encoding functions:

• For e ∈ Out(si), fe : ANRi 7→ ANCe , 1 ≤ i ≤ k,

(a)

Bf

s01,2 s0k

d0kd01,2

s03

d03

s1 s2 sk

R1 R2 Rk

R1 R2 Rk

d1 d2 dk

s3

d3

R3

R3

(b)

Bm

s01 s0k

d0kd01

s02

d02

s1 s2 sk

R1 R2 Rk

R1 R2 Rk

r1

r2

rk

d1 d2 dk

Fig. 1. A pictorial proof for the Fusion and Monotonicity prop-
erties of � . The label in red denotes edge capacity. In (a),
(R1 + R2, R3, . . . , Rk) is achievable in the network block Bf

iff (R1, R2, . . . , Rk) is achievable in the extended network. In
(b), (R1, R2, . . . , Rk) is achievable in the network block Bm iff
(R1+r1, R2+r2, . . . , Rk+rk) is achievable in the extended network.

• For e ∈ Out(v), v 6= si, 1 ≤ i ≤ k, fe :
Πe′∈In(v)ANCe′ 7→ ANCe ,

and decoding functions fti : Πe′∈In(ti)ANCe′ 7→
ANRi , 1 ≤ i ≤ k, so that ∀(m1,m2, . . . ,mk) ∈
Πn
j=1ANRj , we have gti(m1,m2, . . . ,mk) =

mi, ∀i, 1 ≤ i ≤ k where gti : Πk
j=1ANRj 7→ ANRi are

functions induced inductively by the fe’s and fti ’s. If A
is any finite field and all functions are linear operations
on vector spaces over the finite field, then we say the
rate tuple is achievable by vector linear coding.

Definition: For integer rate tuples R =
(R1, R2, . . . , Rk),R′ = (R′1, R

′
2, . . . , R

′
n), we say

R � R′ if any algorithm that can determine whether R′

is achievable (or achievable by vector linear coding) in
any given network can be used to determine whether R
is achievable (respectively achievable by vector linear
coding) in any given network.

The following properties may be observed very easily
(see Fig. 1):
• If π is any permutation on {1, 2, . . . , k}, then

(R1, R2, . . . , Rk) � (Rπ(1), Rπ(2), . . . , Rπ(k)).
• Fusion:

(R1 +R2, R3, . . . , Rk) � (R1, R2, R3, . . . , Rk).
• Monotonicity: If Ri, ri ≥ 0 for each i, then

(R1, , . . . , Rk) � (R1 + r1, . . . , Rk + rk).

Note that using properties listed above, we can never
obtain R � R′ where the number of non-zero entries in
R′ is strictly less than that in R, i.e. these properties
still suggest that determining the capacity of a two-
unicast network can be strictly easier than determining
that of a k-unicast network with k > 2. Our main result,
Theorem 1, shows that this is not the case.
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III. MAIN RESULT

Our main result is the following:
Theorem 1: For k ≥ 2,m ≥ 1, let
R1, R2, . . . , Rk, Rk+1, . . . , Rk+m, r1, r2, . . . , rm ≥ 0

be non-negative integers such that
∑k
i=1Ri =

∑m
j=1 rj .

Then,

(R1, R2, . . . , Rk, Rk+1, Rk+2, . . . , Rk+m) �

(

k∑
i=1

Ri, Rk+1 + r1, Rk+2 + r2, . . . , Rk+m + rm) (1)

Proof:
Let us split the number

∑k
i=1Ri =

∑m
j=1 rj into a

‘coarsest common partition’ formed by c1, c2, . . . , cl as
shown in Fig. 2. Set c0 = 0. Recursively define ch as
the minimum of

min
s:
∑s

i′=1
Ri′>

∑h−1
u=1 cu

s∑
i′=1

Ri′ −
h−1∑
u=1

cu (2)

and

min
t:
∑t

j′=1
rj′>

∑h−1
u=1 cu

t∑
j′=1

rj′ −
h−1∑
u=1

cu. (3)

Define l by
∑l
u=1 cu =

∑k
i=1Ri. l satisfies

max{k,m} ≤ l ≤ k + m − 1. We will alternately
denote ch by c(i,j) where i and j are the arg min’s in
(2) and (3) respectively. We will use I to denote the
indices (i, j) that correspond to c(i,j) = ch for some h.
In the rest of this proof, we will have i, i0 denote an
index belonging to {1, 2, . . . , k}, j, j0 denote an index
belonging to {1, 2, . . . ,m} and (i, j) or (i0, j0) denote
an index belonging to I. Note that∑

j

c(i,j) = Ri,
∑
i

c(i,j) = rj . (4)

R1 R2 R3 R4

r1 r2 r3 r4 r5

c1 c2
c3 c4

c5 c6
c7

c(1,1)

c(1,2)

c(2,2)

c(2,3)

c(3,4)

c(4,4)

c(4,5)

Fig. 2. Splitting of the number
∑k

i=1 Ri =
∑m

j=1 rj to obtain
(ch : h = 1, 2, . . . , l)

Given a (k+m)-unicast network block B with source-
destination pairs (s′h, d

′
h), h = 1, 2, . . . , k+m, we extend

it into an (m+ 1)-unicast network N as follows:
• Create sources s, s1, s2, . . . , sm and their

corresponding destinations d, d1, d2, . . . , dm.
Create nodes v1, v2, . . . , vm. Create nodes

x(i,j), y(i,j), z(i,j), w(i,j), w
1
(i,j), w

2
(i,j), w

3
(i,j) for

each (i, j) ∈ I.
• For j = 1, 2, . . . ,m, create edges of capacity Rk+j

from sj to vj , vj to s′k+j , and d′k+j to dj . (see
Fig. 3)

• For each (i, j) ∈ I, create edges of capacity c(i,j)
from s to x(i,j), x(i,j) to s′i, sj to y(i,j), d′i to z(i,j),
as shown in Fig. 3. and the butterfly edges as shown
in Fig. 4.

B

s0k+1s01 s02 s0k

d01 d02 d0k

s0k+m

d0k+m
d0k+1

s0k+2

d0k+2

s

x(1,1)

s1 s2 sm

x(1,2) x(2,2)

y(1,1) y(1,2) y(2,2) y(k,m)

x(k,m)

z(1,1) z(1,2) z(2,2) z(k,m)

d1 d2 dm

v1 v2 vm

c(1,1)

c(1,1)

c(1,1)

c(1,1)

c(1,2) c(2,2) c(k,m)

c(1,2) c(2,2)

c(1,2)
c(2,2) c(k,m)

c(1,2) c(k,m)c(2,2)

c(k,m)X(1,1)

Y(1,1)

Z(1,1) Z(1,2)

Y(1,2)

X(1,2) X(2,2)

Y(2,2)

Z(2,2) Z(k,m)

Y(k,m)

X(k,m)

V̂1 V̂2 V̂m

VmV2
V1

Rk+1 Rk+2 Rk+m

Rk+1 Rk+2
Rk+m

M M1 M2 Mm

Rk+1 Rk+2 Rk+m

Fig. 3. The (m+ 1)-unicast network N constructed around a given
(k+m)-unicast network block B. The label in red is the edge capacity
and the label in blue is the random variable that flows through that
edge. (Network N shown only partially; completed by Fig. 4)

x(i,j)

y(i,j)z(i,j)

w(i,j)

dj d

w1
(i,j)

w2
(i,j) w3

(i,j)

c(i,j)

c(i,j) c(i,j)

c(i,j)

c(i,j)

c(i,j)

c(i,j)

c(i,j) c(i,j)

X(i,j)

Y(i,j)

Z(i,j)

Y(i,j)

Ŷ(i,j) X̂(i,j)

W(i,j)

W(i,j) W(i,j)

Fig. 4. Butterfly network component in the extended (m+1)-unicast
network N for each (i, j) ∈ I. Each edge in this component has
capacity c(i,j). The label in red is the edge capacity and the label in
blue is the random variable that flows through that edge.
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We will prove that (R1, R2, . . . , Rk+m) is achiev-
able (or achievable by vector linear coding) in
the (k + m)-unicast network B if and only if
(
∑k
i=1Ri, Rk+1, . . . , Rk+m) is achievable (respectively

achievable by vector linear coding) in the (m+1)-unicast
extended network N .

Suppose (R1, R2, . . . , Rk+m) is achievable in the (k+
m)-unicast network block B. Then, we can come up with
a ‘butterfly’ coding scheme which proves the achiev-
ability of the rate tuple (

∑k
i=1Ri, Rk+1 + r1, Rk+2 +

r2, . . . , Rk+m + rm) in the (m+ 1)-unicast network N .
This can be done simply by making X(i,j) = Z(i,j) and
performing butterfly coding W(i,j) = X(i,j) +Y(i,j) over
each butterfly network component.

Now suppose that the rate tuple (
∑k
i=1Ri, Rk+1 +

r1, Rk+2 + r2, . . . , Rk+m + rm) is achievable in the
network N . We will use a lemma whose proof is
straightforward and omitted due to lack of space.

Lemma 1: Suppose A,B,C,D are random vari-
ables with B,C,D mutually independent and satisfying
H(A|B,D) = 0. Then,

a) H(A|B,C) = 0 =⇒ H(A|B) = 0.
b) H(B|A,C) = 0 =⇒ H(B|A) = 0.

Now, define random variables as shown in Fig. 3, i.e.
let M denote the input message at source s and for each
j = 1, 2, . . . ,m, let Mj denote the input message at
source sj . Furthermore, let the random variables Vj , V̂j
for j = 1, 2, . . . ,m, and X(i,j), Y(i,j), Z(i,j), X̂(i,j),

Ŷ(i,j) for (i, j) ∈ I be as shown in Fig. 3 and Fig. 4.
We will measure entropy with logarithms to the base
|A|N , where A is the alphabet and N is the block
length. M,M1,M2, . . . ,Mm are mutually independent.
H(M) =

∑k
i=1Ri, and for each j, H(Mj) = Rk+j +

rj . Let us denote A ↔ B if H(A|B) = H(B|A) = 0.
By observing the tight outgoing rate constraints and
encoding at sources s, s1, s2, . . . , sk, and the tight in-
coming rate constraints and decodability at destinations
d, d1, d2, . . . , dk, we can easily conclude
M ↔ ∪(i,j){X(i,j)} ↔ ∪(i,j){X̂(i,j)}, (5)

∀j : Mj ↔ ∪i{Y(i,j)} ∪ {Vj} ↔ ∪i{Ŷ(i,j)} ∪ {V̂j},
(6)

∀(i, j) : H(X(i,j)) = H(X̂(i,j)) = c(i,j), (7)

∀(i, j) : H(Y(i,j)) = H(Ŷ(i,j)) = c(i,j), (8)

∀j : H(Vj) = H(V̂j) = Rk+j . (9)

The random variables in the collection
∪(i,j)

(
{X(i,j)} ∪ {Y(i,j)}

)
∪ (∪j{Vj}) (10)

are mutually independent. In particular, (7), (9) (10)
imply that the messages received by the sources of the
network block s′h for h = 1, 2, . . . , k+m, are mutually
independent and the symbol received by s′h has entropy
Rh.

Now, fix any (i, j) ∈ I.

H(W(i,j)|X(i,j))−H(W(i,j)|Mj , X(i,j))

=I(W(i,j);Mj |X(i,j)) (11)
=I(X(i,j),W(i,j);Mj)− I(X(i,j);Mj) (12)
(a)
= I(X(i,j),W(i,j);Mj)− 0 (13)
(b)

≥I(Ŷ(i,j);Mj) (14)
(c)
=c(i,j), (15)

where (a) holds because X(i,j) is a function of M

and M is independent of Mj , (b) holds because Ŷ(i,j)
is a function of (X(i,j),W(i,j)), and (c) follows from
(6), (8), (9). Combining the inequality chain (11)-(15)
with the edge capacity constraint H(W(i,j)|X(i,j)) ≤
H(W(i,j)) ≤ c(i,j), we obtain

H(W(i,j)) = c(i,j), (16)
H(W(i,j)|X(i,j)) = c(i,j), (17)

H(W(i,j)|X(i,j),Mj) = 0. (18)

By a similar argument, we can show

H(W(i,j)|Y(i,j)) = c(i,j), (19)
H(W(i,j)|Y(i,j),M) = 0 (20)

From (6), we may rewrite (18) as

H(W(i,j)|Xi,j , Vj ,∪i0{Y(i0,j)}) = 0. (21)

From (5), we may rewrite (20) as

H(W(i,j)|Yi,j ,∪i0,j0{X(i0,j0)}) = 0. (22)

Using Lemma 1.a) with A = W(i,j), B =
{X(i,j), Y(i,j)}, C = {Vj} ∪i0 {Y(i0,j)} \ {Y(i,j)}, D =
∪i0,j0{X(i0,j0)} \ {X(i,j)}, and using (10), (21), (22),
we obtain

H(W(i,j)|Yi,j , X(i,j)) = 0. (23)

Now, by the chain rule for entropy,

H(Y(i,j)) +H(W(i,j)|Y(i,j)) +H(X(i,j)|W(i,j), Y(i,j))

= H(X(i,j), Y(i,j)) +H(W(i,j)|X(i,j), Y(i,j)) (24)

Using (10), (19), (7), (8), (23) in (24), we get

H(X(i,j)|Wi,j , Y(i,j)) = 0. (25)

From the encoding constraint at node w(i,j), we have
H(W(i,j)|Yi,j , Z(i,j)) = 0, and using (25) gives us

H(X(i,j)|Yi,j , Z(i,j)) = 0. (26)

From the encoding constraint for network block B, we
have that

H(Z(i,j)| ∪j0 {Vj0} ∪(i0,j0) {Xi0,j0}) = 0. (27)
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Using Lemma 1.b) with A = Z(i,j), B = X(i,j), C =
Y(i,j), D = ∪j0{Vj0} ∪(i0,j0) {Xi0,j0} \ {X(i,j)} and
using (10), (26), (27), we obtain

H(X(i,j)|Z(i,j)) = 0. (28)

From (10), (7), we have that for any i = 1, 2, . . . , k,
H(∪j{X(i,j)}) = Ri and (28) implies H(∪j{X(i,j)}|∪j
{Z(i,j)}) = 0. This shows that in the block B, the
destination d′i can decode source s′i’s message for i =
1, 2, . . . , k.

Similar arguments can show that H(Vj |V̂j) = 0
(details omitted due to lack of space). Thus, destination
d′k+j can decode s′k+j’s message within block B for
j = 1, 2, . . . ,m. The case of the rate tuples assumed
to be achievable by a vector linear coding scheme is
identical. This completes the proof.

IV. IMPLICATIONS FOR TWO-UNICAST NETWORKS

The main motivation for Theorem 1 is the following
implication:

(R1, R2, . . . , Rk) �

(
k−1∑
i=1

Ri,

k∑
i=1

Ri

)
, (29)

i.e. the general two-unicast problem is as hard as the
general multiple-unicast problem. Using the monotonic-
ity property of �, this suggests that the difficulty of
determining achievability of a rate tuple for the k-unicast
problem is related more to the magnitude of the rates in
the tuple rather than the size of k. Moreover, we have

(1, 1, 1, . . . , 1︸ ︷︷ ︸
k times

) � (k − 1, k), (30)

i.e. solving the k-unicast problem with unit-rate (which
is known to be a hard problem for large k [3], [4]) is no
harder than solving the two-unicast problem with rates
(k − 1, k). Furthermore, the construction in our paper
along with the network constructions in [3], [4], [2] can
be used to show the following. Details are omitted due
to lack of space.

Theorem 2: There exists a two-unicast network in
which a non-linear code can achieve the rate pair (9, 10)
but no linear code can.

Theorem 3: There exists a two-unicast network in
which non-Shannon information inequalities can rule out
achievability of the rate pair (5, 6), but the tighest outer
bound obtainable using only Shannon-type information
inequalities cannot.

V. DISCUSSION

The result in this paper only proves a reduction for
the notion of zero-error integer rate exact achievability.
It is an interesting question whether the construction

proposed in the proof of Theorem 1 can also show the
reduction for the notions of
• zero-error asymptotic achievability (closure of the

set of zero-error achievable fractional rate tuples);
it is known that there may be rate tuples that
are not exactly achievable but only asymptotically
achievable [15],

• vanishing error asymptotic achievability in the
Shannon sense (closure of the set of fractional rate
tuples which allow vanishing error probability).
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