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Abstract

We investigate the two unicast flow problem over layered linear deterministic networks with arbitrary

number of nodes. When the minimum cut value between each source-destination pair is constrained to

be 1, it is obvious that the triangular rate region {(R1, R2) : R1, R2 ≥ 0, R1+R2 ≤ 1} can be achieved,

and that one cannot achieve beyond the square rate region {(R1, R2) : R1, R2 ≥ 0, R1 ≤ 1, R2 ≤ 1}.

Analogous to the work by Wang and Shroff for wired networks [1], we provide the necessary and

sufficient conditions for the capacity region to be the triangular region and the necessary and sufficient

conditions for it to be the square region. Moreover, we completely characterize the capacity region

and conclude that there are exactly three more possible capacity regions of this class of networks, in

contrast to the result in wired networks where only the triangular and square rate regions are possible.

Our achievability scheme is based on linear coding over an extension field with at most four nodes

performing special linear coding operations, namely interference neutralization and zero forcing, while

all other nodes perform random linear coding.

I. INTRODUCTION

Characterizing the fundamental limit of delivering information from multiple sources to mul-

tiple destinations over networks is the holy grail in network information theory. The ultimate

goal is to characterize the capacity region of multi-source-multi-destination information flows

over arbitrary networks. Exploring wired network models yields fruitful understanding in this

problem, and the capacity of single unicast [2] and multicast [3] are fully characterized. In

June 1, 2011 DRAFT

ar
X

iv
:1

10
5.

63
26

v1
  [

cs
.I

T
] 

 3
1 

M
ay

 2
01

1



2

wired networks, however, all links are orthogonal to one another, and such a model cannot

fully capture the broadcast and superposition nature of wireless networks. In [4], a deterministic

approach is proposed as a bridge for using results in wired networks to help understand wireless

network information flow. The proposed linear deterministic network model turns out to be very

useful for studying wireless networks as it preserves the broadcast and superposition aspects.

Capacity of several traffic patterns are characterized completely in linear deterministic networks

and approximately in Gaussian networks, including single unicast and multicast [4].

In the above mentioned problems where good understanding has been established, there is only

one user’s information flow in the network and no interference from other users. However, as for

how multiple information flows interact as they interfere with one another, very little is known.

To the best of our knowledge, even for the two unicast problem, there is no capacity results

for general wired networks, let alone the general multi-source-multi-destination information flow

problem. Instead of attempting directly to characterize the capacity region for the general two

unicast problem, in [1] Wang and Shroff study the solvability of two-unicast wired networks,

or equivalently, the achievability of the (1, 1) rate pair, for two unicast flows over arbitrary

wired networks with integer link capacities, to make progress in this problem. They provide the

necessary and sufficient condition for achieving the (1, 1) rate pair. They show that a simple

sum rate outer bound called the Network Sharing Bound [5] turns out to be tight for the (1, 1)

point, i.e. if the integer-valued bound is strictly greater than 1, then (1, 1) can be achieved. The

result in [1] can also be understood as characterizing the capacity region for the class of wired

networks where the minimum cut value between each source-destination pair is constrained to

be 1. This is because that rate pairs outside the square rate region S := {(R1, R2) : R1, R2 ≥

0, R1 ≤ 1, R2 ≤ 1} cannot be achieved, while those in the triangular rate region T := {(R1, R2) :

R1, R2 ≥ 0, R1 +R2 ≤ 1} can always be achieved by time-sharing and routing. The result in [1]

implies that once one can achieve beyond the triangular region T, one can achieve the square

region S. Hence, there are only two possible capacity regions for this class of networks, the

triangular region T and the square region S. See Fig. 1 for an illustration of these rate regions.

In this paper, we take an initial step towards understanding the two unicast flow problem over

linear deterministic networks [4] with arbitrary number of nodes. Our main result is an analog

of [1] over linear deterministic networks. We assume that all channel strengths are zero or unity,

that the network is layered and that each source can reach its own destination, and hence the
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(a) Network Sharing Bound = 1

S

R1

R2
(1, 1)

(b) Network Sharing Bound ≥ 2

Fig. 1. Capacity Regions for Wired Networks [1]

minimum cut value between each source-destination pair is constrained to be 1. Similar to wired

networks, rate pairs outside the square rate region S cannot be achieved, and rate pairs inside

the triangular rate region T can be achieved by time-sharing between two users’ single unicast

flows. For this class of networks, we completely characterize the capacity region. We show that

the capacity region of such a network must be one of the five regions depicted in Fig. 2, and

provide the necessary and sufficient conditions for the capacity region to be each of them.

Regarding when one can achieve beyond the trivially achievable T, we provide a novel sum

rate outer bound on two unicast flows over linear deterministic networks, analogous to the

Network Sharing Bound. This outer bound is intimately related to the Generalized Network

Sharing outer bound [6] for wired networks. We show that if this bound does not constrain the

sum rate to be upper bounded by 1, then indeed one can achieve beyond the triangular rate region

T, and hence establish the necessary and sufficient condition for the capacity region being T.

In contrast however, to achievability of the (1, 1) point in [1], we find that we cannot always

achieve (1, 1). Instead, we show that once one can achieve beyond T, one can achieve either one

of the two trapezoid rate regions: T12 := {(R1, R2) : R1, R2 ≥ 0, R2 ≤ 1, 2R1 + R2 ≤ 2} and

T21 := {(R1, R2) : R1, R2 ≥ 0, R1 ≤ 1, R1 + 2R2 ≤ 2}, and there are networks whose capacity

regions are T12 or T21.

Regarding when one can achieve the full square S, we investigate the achievability of the

(1, 1) point, and find the necessary and sufficient conditions for it. For single source unicast

and multicast problems, random linear coding over a large finite field at all nodes suffices to
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Fig. 2. Capacity Regions for Linear Deterministic Network

achieve capacity in wired as well as linear deterministic networks [3], [4]. This is no longer

the case for the two-unicast problem since each destination is interested only in the message

of its own source. Indeed, we can identify two nodes, one for each destination, that must be

able to decode the messages of their respective destinations. We call these two nodes critical

nodes and their receptions are required to be completely free of interference from the other

user. For this purpose, at certain nodes interference from the other user has to be cancelled

“over-the-air”, which is called interference neutralization in the literature [7] [8]. Other than

the nodes performing interference neutralization, all other nodes may perform random linear

coding. The parents of each critical node are the natural candidates to perform interference

neutralization, although they are not the only ones. We introduce a systematic approach to

capture the effect on the rest of the network caused by interference neutralization, and provide
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the graph-theoretic necessary and sufficient conditions for (1, 1)-achievability. Moreover, we

show that if (1, 1) cannot be achieved, then the capacity region is contained in the pentagon

region P := {(R1, R2) : R1, R2 ≥ 0, R1, R2 ≤ 1, R1 +R2 ≤ 3/2}. Moreover, there are networks

whose capacity regions are P.

Continuing further, we characterize the necessary and sufficient conditions for the capacity

region to be T12, T21, and P respectively. The outer bounds on 2R1 + R2, R1 + 2R2 for the

trapezoids T12,T21 respectively and that on R1 + R2 for the pentagon P are inspired from the

interference channel outer bounds [9]. The scheme we propose is linear over the extension field

F2r for r sufficiently large. Note that unlike single multicast where a random (vector) linear

scheme over the base field F2 suffices to achieve the capacity [4], in the two-unicast problem

not only does the linear scheme operate on a larger field but also some nodes need to perform

special linear coding (in contrast to random linear coding), including interference neutralization

(canceling interference over the air) and zero forcing (canceling interference within a node).

Later we will show by an example that both operating on a larger field and special coding at

certain nodes are necessary for achieving capacity. It turns out that, fortunately, the number of

nodes which are required to take special coding operation is bounded above by 4 and can be

found explicitly. More specifically, they are usually parents of the two critical nodes and hence

lie in two layers at most. Other than these special nodes, others can perform random linear

coding (RLC) over the extension field.

Related Works

In the literature, the study of two unicast information flows over wireless networks using the

deterministic approach begins with the investigation of the two-user interference channel [10]

[9] [11] and its variants, including interference channels with cooperation [12] [13] [14] [15]

and two-hop interference networks [7] [8]. Focusing on small networks (four nodes in total),

researchers are able to characterize the capacity region exactly in the linear deterministic case

[9] [14] [15] and to within a bounded gap in the Gaussian case [11] [14] [15], but the extension

to larger networks seems non-trivial [7]. The present work takes a step in that direction.

Another approach is directly looking at the Gaussian model but focusing on a cruder metric,

degrees of freedom, instead of bounded gap to capacity. In [8], a systematic approach for

interference neutralization called “aligned interference neutralization” is proposed for the 2x2x2
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interference network, and it is shown that full degrees of freedom (one for each user) can be

achieved almost surely. Later, in a recent independent work [16] such a scheme is employed and

the authors characterize the degrees-of-freedom region of two unicast Gaussian networks almost

surely. Interestingly, it is shown that [16] there are five possible degrees-of-freedom regions

almost surely and they are the same as the five regions reported in this paper. The connection

between the two results is yet to be understood and explored. These degrees-of-freedom results,

however, rely heavily either on the assumption that there is infinite channel diversity, or on the

rationality/irrationality of the channel gains for the scheme to work.

The rest of the paper is organized as follows. In Section II, we formulate the problem and give

several useful definitions. In Section III, we state our main results, and in Section IV we furnish

examples that motivate linear scheme based on field extension and illustrate several important

elements in achievability and outer bounds. Then we devote to details of achievability proof

as well as outer bounds in Section V and VI, respectively. Finally, we conclude the paper by

discussing possible extensions to more general linear deterministic networks in Section VII.

II. PROBLEM FORMULATION

A two-source-two-destination layered network is a directed, acyclic, layered graph G = (V , E),

i.e. where the collection of nodes V can be partitioned into L+ 2 layers (L ≥ 0):

V =
L+1⋃
k=0

Lk, Lk ∩ Lj 6= ∅, ∀k 6= j,

such that for any edge (u, v) ∈ E , ∃ k, 0 ≤ k ≤ L s.t. u ∈ Lk, v ∈ Lk+1. The first layer

L0 = {s1, s2} consists of the two source nodes, and the last layer LL+1 = {d1, d2} consists of

the two destination nodes. Without loss of generality we assume each node in the network can

be reached by at least one of the source nodes and can reach at least one of the destination

nodes.

For each node v ∈ V \{s1, s2}, we define nodes that can reach v as its predecessors. Let P(v)

denote the set of predecessors that can reach v in one step. We will call the nodes in P(v) as

the parents of v. Let Xu, Yu ∈ F2 denote the transmission and reception of node u respectively.

The reception of a node is the binary XOR of the transmission of its parents: Yv =
⊕

u∈P(v)Xu.

For example, in Fig. 3(a), the reception at node u4 will be given by Yu4 = Xu1 ⊕Xu2 .
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(b) An Asymmetric Network

Fig. 3. Examples

The channel model we have used is a special case of the linear deterministic network from [4].

The simplification is that if there is a link from one node to another, then the channel strength

is unity. We note that the essential nature of the linear deterministic network, namely broadcast

and superposition, is preserved. As an example, in the network in Fig. 3(a), the transmission of

u2 is broadcasted to u3 and u4, and hence the two edges (u2, u3) and (u2, u4) carry the same

signal. The reception of u4, as mentioned above, is the binary XOR of the transmission of u1

and u2.

III. MAIN RESULT

If, for each i = 1, 2, si can reach di, then it is trivial to see that the triangular rate region T

can be achieved, and that one cannot achieve beyond the square rate region S. However, it is

not clear under what conditions the triangular region or the square region is the capacity region.

Our main result gives a complete answer to this question (and beyond). To state the result, we

will need a few definitions.

A node is si-reachable if it can be reached by si. It is si-only-reachable if it can be reached

by si but not sj , j 6= i. It is s1s2-reachable if it can be reached by both s1 and s2.

For each node v ∈ V \ {s1, s2},

• let P(v) denote the set of parents of v that are reachable from at least one of s1, s2,

• let P si(v) ⊆ P(v) denote the set of parents of v reachable by source si, i = 1, 2,

• let K(v) := {u : P(u) = P(v)} denote the clones of v, the set of nodes that receive the

same signal as v,
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• let Ksi(v) := {u : P si(u) = P si(v)} , i = 1, 2, the set of nodes that have the same si-

reachable parents as v. We called these nodes the si-clones of v.

The following table illustrates these sets of nodes for the node u4 in the two example networks

in Fig. 3. For the network in (b), we assume for now that there is no edge from s1 to u2.

Fig. 3(a) Fig. 3(b)

P(u4) {u1, u2} {u1, u2}

Ps1(u4) {u1, u2} {u1}

Ps2(u4) {u2} {u2}

K(u4) {u4} {u4}

Ks1(u4) {u4} {u4, u6}

Ks2(u4) {u3, u4} {u4, u5}

For two sets of nodes U1 and U2, we say a collection of nodes T is a (U1;U2)-vertex-cut if in

the graph obtained from the deletion of T , there are no paths from any node in U1 \ T to any

node in U2 \ T . Note that this definition allows T to have nodes from U1 or U2.

We say a node v ∈ V is omniscient if it satisfies either of (A) or (B) below:

(A) K(v) is a (s1, s2; d1)-vertex-cut and Ks2(v) is a (s2; d2)-vertex-cut.

(B) K(v) is a (s1, s2; d2)-vertex-cut and Ks1(v) is a (s1; d1)-vertex-cut.

Theorem 3.1 (Characterization of T): Assume that si can reach di for i = 1, 2.

(a) If there exists an omniscient node in the network, then the capacity region is the triangular

region T.

(b) Conversely, if no node in the network is omniscient, then the capacity region is strictly larger

than T. Further, the capacity region contains at least one of the trapezoid regions T12 and T21.

In particular, (2/3, 2/3) is achievable and at least one of (1/2, 1) and (1, 1/2) is achievable.

It turns out that we are able to give the necessary and sufficient condition for the capacity

region to be either T12 or T21. Before describing the theorem, we need some extra definitions.

Definition 3.1 (Critical Nodes): For each i = 1, 2, we define the critical node v∗i as any node

with the smallest possible layer index such that K(v∗i ) is a (s1, s2; di)-vertex-cut.

• Existence: {di} is a (s1, s2; di)-vertex-cut.

• Uniqueness up to clones: if u,w are nodes in the same layer with K(u) and K(w) both

being (s1, s2; di)-vertex-cuts, then K(u) = K(w), i.e. u and w are clones.

We use Lk∗i to denote the layer where critical nodes v∗i lies, for i = 1, 2.
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For example in Fig. 3, v∗1 = u4, k
∗
1 = 2 and v∗2 = d2, k

∗
2 = 3 for both networks.

The critical nodes defined here are directly analogous to the edges performing the “reset”

operation in the add-up-and-reset construction of Wang and Shroff [1].

Below we describe one scenario where we get a result similar to the one in [1]. This lemma

strengthens part (b) of Theorem 3.1 in this special scenario.

Lemma 3.1: Suppose in a network s2 cannot reach d1, i.e. k∗1 = 0. Then, the capacity region

of this network is the triangle T or the square S depending on whether there is an omniscient

node in the network or not, i.e. depending on whether v∗2 is omniscient or not (using Lemma 3.3).

If k∗2 = 0, then (1, 1) can be achieved by all nodes performing random linear coding. If k∗2 > 0

and there is no omniscient node, then (1, 1) is achieved with high probability when all nodes

except nodes in P(v∗2) performing random linear coding over a sufficiently large field.

Next we define cut values and min-cut on the network.

Definition 3.2 (Cut Value and Min-Cut): Fix a set of nodes in layer k, U ⊆ Lk. Consider a

partition of V into (T , T c) with s1, s2 ∈ T and U ⊆ T c. Construct the transfer matrix G with

rows indexed by elements of T and columns indexed by elements of T c where the (u,w) entry

of G is 1 if there is a directed edge from u to w and 0 otherwise. The rank-mincut [4] from

{s1, s2} to U is defined as the minimum rank of the transfer matrix G over all such partitions

(T , T c), and is denoted by C (s1.s2;U).

The following two lemmas provide some important properties of critical nodes. Their proofs

are left in the appendix.

Lemma 3.2: For i = 1, 2, C (s1, s2;P(v∗i )) = 2 if k∗i ≥ 2.

Lemma 3.3: A network has an omniscient node if and only if one of the critical nodes v∗1 or

v∗2 is omniscient.

Once we define the cut value, we can define primary min-cut nodes for any set of nodes U

with C (s1, s2;U) = 1, due to the following lemma. What these primary min-cut nodes receive

determines what U receive.

Lemma 3.4 (Primary Min-Cut): By Ul, 0 ≤ l < k, denote the set of nodes in layer Ll that

can reach some node in U . Let l∗ be the minimum index such that C(s1, s2;Ul∗) = 1. Then,

Ul∗ ⊆ K(u) for any u ∈ Ul∗ , i.e. nodes in Ul∗ are all clones of each other.

We then define any of the nodes in K(u) as the primary min-cut node of U , denoted by

Pmc (U). It is unique up to clones.

June 1, 2011 DRAFT
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Comment: Note that the reception of any node in U is a function of the reception of Pmc (U).

For example, in Fig. 3(b) when there is an edge from s1 to u2, Pmc(u5) = u2; when there is

no edge from s1 to u2, Pmc(u5) = s2. We also see that the critical node v∗i = Pmc(di), i = 1, 2.

Next, we define induced graph G12(w) for a node w ∈ P s2(v∗1) as follows. The purpose of

these induced graph is two-fold: 1) to capture the effect on the rest of the network caused by

interference neutralization for (1, 1)-achievability, and 2) to capture the Markov relations that

are useful in the derivation of outer bounds.

Definition 3.3 (Induced Graph G12): If C (s1, s2;P s2(v∗1)) = 2 then G12(w) := G. If C (s1, s2;P s2(v∗1)) =

1, then we define G12(w) as the graph obtained by modifying only the parents of nodes in Lk∗1
as follows. For u ∈ Lk∗1 ,

PG12(w)(u) =

P(u) if w /∈ P(u)

P(u)∆P s2(v∗1) if w ∈ P(u),

where ∆ denotes symmetric set difference: A∆B := (A \ B) ∪ (B \ A). We then drop nodes

in G12(w) that cannot be reached by either of the two sources. In the rest of this paper, a graph

theoretic object with a graph (say, G12) in its subscript, like PG12(w)(u) above, denote the graph

theoretic object in the induced graph G12. Define R(w) as the set of nodes in P s2(v∗1) that can

reach one of the two destinations in G12(w).

Similarly we can define G21(w) with indices 1 and 2 swapped in the above definition.

s1

s2

d1

d2

u1

u2 u3

u4

(a) Zigzag Network

s1

s2

d1

d2

u1

u2

u3

u4

u5

u6

(b) An Asymmetric Network

Fig. 4. Induced Graph G12 for Example Networks in Fig. 3.

For example, induced graphs for the networks in Fig. 3 are depicted in Fig. 4. For G12 in

(a), s2 can no longer reach d2, as u4 is omniscient in the original network G. In (b), node u6

becomes omniscient in G12 while there is no omniscient node in the original network G.
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We will use G12(w) when k∗1 ≤ k∗2 and G21(w) when k∗2 ≤ k∗1 . We will only use these graphs

in relation to whether or not there is an omniscient node in G12(w). Lemma 3.5 below allows

us to drop the w and refer to any of the G12(w) as G12 and talk about whether or not there is an

omniscient node in G12.

Lemma 3.5: Suppose, in a network with no omniscient node, and with k∗1 ≤ k∗2, there exists

a node w0 ∈ P s2(v∗1) such that there is an omniscient node in G12(w0). Then for any node

w ∈ P s2(v∗1), there is an omniscient node in G12(w).

Theorem 3.2 (Characterization of T12 and T21): Consider a network G in which no node is

omniscient.

(a) If the network G satisfies the following conditions, then the capacity region is the trapezoid

region T12:

• T(12)
1 : 0 < k∗1 ≤ k∗2 .

• T(12)
2 : C (s1, s2;P s2 (v∗1)) = 1. Let w12 denote Pmc (P s2 (v∗1)).

• T(12)
3 : Let u21 := PmcG12 (v∗2). u21 is omniscient in G12.

• T(12)
4 : w12 = s2, i.e., P s2 (v∗1) cannot be reached by s1.

We call the conjunction of the above conditions T(12). Symmetrically, if G satisfies the above

condition with indices 1 and 2 (in the superscript) exchanged, then the capacity region is the

trapezoid region T21.

(b) Conversely, if neither condition T(12) nor T(21) is satisfied, then the two trapezoid regions

are strictly contained in the capacity region. Moreover, both (1/2, 1) and (1, 1/2) are achievable

and hence the pentagon P.

Remark: Based on Lemma 3.1, if k∗1 = 0, then the capacity region of this network is the triangle

T or the square S depending on whether there is an omniscient node in the network. This is

why in T(12)
1 we need to constrain k∗1 > 0.

Next we give the necessary and sufficient condition for the capacity region being the pentagon

region P := {(R1, R2) : R1, R2 ≥ 0, R1 ≤ 1, R2 ≤ 1, R1 +R2 ≤ 3/2}.

Theorem 3.3 (Characterization of P and S): Consider a network G in which no node is

omniscient and neither T(12) nor T(21) is satisfied.

(a) Denote the conjunction of the below conditions by P(12):

• P(12)
1 ≡ T(12)

1 , P(12)
2 ≡ T(12)

2 , P(12)
3 ≡ T(12)

3

• P(12)
4 : w12 6= s2 and Ks2 (w12) forms an (s2; d2)-vertex-cut in G.

June 1, 2011 DRAFT
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Similarly we define condition P(21) with indices 1 and 2 (in the superscript) exchanged. If the

network G satisfies condition P(12) or P(21), then the capacity region is P.

(b) Conversely, if neither condition P(12) nor P(21) is satisfied, then the pentagon region is strictly

contained in the capacity region. Moreover, (1, 1) is achievable and hence the square S.

We can easily see that T(12)
4 ∨P(12)

4 = {Ks2 (w12) forms an (s2; d2)-vertex-cut in G.} and hence

Q(12) := T(12) ∨ P(12) is the conjunction of the following:

• Q(12)
1 ≡ T(12)

1 , Q(12)
2 ≡ T(12)

2 , Q(12)
3 ≡ T(12)

3

• Q(12)
4 : Ks2 (w12) forms an (s2; d2)-vertex-cut in G.

Corollary 3.1 (Complete Characterization of Capacity): As a corollary of Theorem 3.1, 3.2

and 3.3, we completely characterize all possible capacity regions of two unicast flows over

the linear deterministic networks as formulated in Section II, as follows: (Short-hand notations:

O := {∃ an omniscient node}, T := T(12)∨T(21), P := P(12)∨P(21), and Q := Q(12)∨Q(21) = T∨P.

Also, in the context that no confusion will be caused, we use the same notation to denote the

set of networks that satisfy the condition.)

O ⇐⇒ T

T(12) \ O ⇐⇒ T12

T(21) \ O ⇐⇒ T21

P \ (T ∪ O) ⇐⇒ P

Q \ O ⇐⇒ S

Fig. 2 give an illustration of all these regions.

IV. MOTIVATING EXAMPLES

Before going into proofs of our main result, let us visit some examples to illustrate several

important elements in our scheme.

A. Why Random Linear Coding Fails

We first demonstrate, through a simple example, why random linear coding, while successful

in achieving the capacity of single multicast over wired and linear deterministic networks [3]

[4], cannot achieve capacity for multiple unicast. Also, by the example we will show that most
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of the nodes in the network can perform random linear coding and only up to four nodes are

needed to do special linear coding.

The example is depicted in Fig. 5(a). Random linear coding for achieving the (1, 1) point,

in the context of this example, means that each node sends out a symbol in a large field of

characteristic 2 and each intermediate node scales its reception by a randomly uniformly chosen

coefficient from the field, independent of others, and transmits it. How and why we lift the

symbols from the base field F2 to a larger field will be explained later. Random linear coding

achieves the capacity of single multicast with high probability.

However, for two unicast if we perform random linear coding, in the network in Fig. 5(a),

destinations d1 and d2 will receive linear combinations of the two symbols from sources, say

a from source 1 and b from source 2, and their coefficients are non-zero with high probability.

This is because both d1 and d2 can be reached by s1 and s2.

On the other hand, if nodes u4, u5, u6 choose their scaling coefficients more carefully, both

d1 and d2 are able to receive a clean copy of their desired symbols. This is due to the fact

that the reception of u4 (which is the same as that of u6) and the reception of u5 are linearly

independent with high probability under random linear coding at all other nodes in previous

layers, since C (s1, s2; u4, u5) = 2. The scaling coefficients chosen at u4 is such that the b-

component in the transmission is cancelled over-the-air. Because the reception of u4 and u5 are

linearly independent, the a-coefficient remains non-zero. Similarly, u6 can choose its scaling

coefficient so that d2 receives a non-zero scaled-copy of symbol b.

We observe that in this example only nodes u4 and u6 need to perform linear coding carefully.

It turns out that for arbitrary layered networks, at most 4 nodes need to perform special linear

coding.

B. Why Field Extension is Necessary

We give an example to illustrate the limitation if we do not use field extension and stick to

vector linear scheme in F2. The network is depicted in Fig. 5(a). Let the total number of channel

uses be T , and source si would like to deliver Bi bits to its own destination di, i = 1, 2. We

consider achieving beyond the triangular region T, and hence assume B1+B2 > T . Therefore, at

u2, at least B1+B2−T bits from each source get corrupted, while B1−(B1+B2−T ) = T −B2

bits from s1 and B2−(B1+B2−T ) = T −B1 are clean. u5’s reception is just a function of what
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s1

s2

d1

d2

u1

u2

u3

u4

u5

u6

(a) Network

a

b

a + b

ρa

0

a + b

ρ2a + b

a + ρb

ρa

ρ2b

(b) Linear Scheme over F4 achieving (1, 1)

Fig. 5. Examples

u2 receives, and hence it cannot obtain more information than what u2 possesses. In particular, u5

cannot obtain the two length-(B1+B2−T ) chunks of bits of user 1 and user 2 that get corrupted

at u2. If u5 does not transmit this corrupted chunk, u4 needs to supply the clean chunk for user

1 to d1 and u6 needs to supply the clean chunk for user 2 to d2, respectively. But the reception

of u4 and u6 is identical, and therefore both of them should be able to decode these two chunks.

As their reception has at most T bits, we have 2(B1 + B2 − T ) ≤ T =⇒ 2B1 + 2B2 ≤ 3T .

If u5 transmits this corrupted chunk, still u4 needs to have the clean chunk for user 2 and u6

needs to have the clean chunk for user 1. This is due to the property of F2. Hence we can again

conclude 2B1 + 2B2 ≤ 3T . Therefore, we see that this linear scheme over vector space of F2

cannot achieve beyond the pentagon P.

On the other hand, if instead we use a linear scheme over finite field F4, we are able to

achieve (1, 1). Recall that from the standard construction of extension field, the field F4 comprises

{0, 1, ρ, ρ2} with the following addition and multiplication and one-to-one correspondence with

(F2)
2:

+ 0 1 ρ ρ2

0 0 1 ρ ρ2

1 1 0 ρ2 ρ

ρ ρ ρ2 0 1

ρ2 ρ2 ρ 1 0

× 0 1 ρ ρ2

0 0 0 0 0

1 0 1 ρ ρ2

ρ 0 ρ ρ2 1

ρ2 0 ρ2 1 ρ

F2 × F2 F4

(0, 0) 0

(0, 1) 1

(1, 0) ρ

(1, 1) ρ2

Therefore, we can use two time slots to translate the following scalar coding scheme over F4
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(depicted in Fig. 5(b)) back to a nonlinear coding scheme over (F2)
2: a, b ∈ F4,

s1 s2 u1 u2 u3 u4 u5 u6 d1 d2

Transmits a b ρa a+ b 0 ρ2a+ b a+ b a+ ρb

Receives a a+ b b ρ2a+ b a+ b ρ2a+ b ρa ρ2b

Note that since the network is layered, one can without loss of generality assume that there is

no processing delay within a node.

From the above example we see the benefit of working in the extension field is that, at each

node there are more choices of scaling coefficients. In vector space (F2)
r, r ≥ 2, the encoding

matrix at each node has entries that are either 0 or 1, which limits the achievable rates of such

a scheme.

C. Example of Networks with Different Capacity Regions

We provide examples of networks for each of the five possible capacity regions and use them

to illustrate the important elements in our proposed scheme (including interference neutralization

and zero forcing).

1) Network with capacity region T

The example is depicted in Fig. 3(a). For achievability we know that T can be achieved

via time-sharing between rate pairs (1, 0) and (0, 1). For the outer bound, we notice that u4 is

omniscient, and the reception of the destination d1 is a function of the reception of u4. This

means u4 can decode the message of s1. The reception of each node in Ks2(u4) = {u4.u3} is some

function of the reception of node u4 and the transmission of s1. Since u4 can now recover the

transmission of s1, and since Ks2(u4) forms a (s2; d2)-vertex-cut, u4 can recover the reception of

d2, and thus, also the message of s2. Therefore, the sum rate cannot be greater than the maximum

entropy of the reception of u4, which is 1.

2) Network with capacity region T12

The example is depicted in Fig. 3(b) (without the dashed edge). We shall use this example

to illustrate (1/2, 1)-achievability. For achieving the rate pair (1/2, 1), we use the following

scheme:
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s1 s2 u1 u2 u3 u4 u5 u6 d1 d2

Time 1 Transmits a b1 a b1 b1 a+ b1 b1 0

Time 1 Receives a b1 b1 a+ b1 b1 a+ b1 a+ b1 b1

Time 2 Transmits a b2 a 0 b2 a 0 b2 − b1
Time 2 Receives a b2 b2 a 0 a+ b2 a b2 − b1

Note that in the first time slot, all nodes transmit what they receive except for u6. This is because

the reception of u6 contains a and hence it transmits 0 instead so that d2 receives b1. In the second

time slot, u2 has to keep silent so that u4, the critical node for d1, is able to decode a. u5 hence

receives 0, and b2 needs to be provided by u6. Still, it is necessary for u6 to transmit a linear

combination that does not contain a. Therefore, it makes use of the two linear combinations it

receives over the two time slots, a + b1 and a + b2, to zero-force interference a and sends out

b2 − b1.

To see that the capacity region is T12, we shall verify that the network satisfies T(12). Obviously

T(12)
1 , T(12)

2 , and T(12)
4 hold, as P s2(v∗1) = {u2}. Induced graph G12 is G with edges (u2, u4) and

(u2, u5) deleted. It can be seen that u6 becomes omniscient in G12. Therefore T(12)
3 also holds.

3) Network with capacity region P

The example is the one depicted in Fig. 3(b) with an additional (dashed) edge (s1, u2). To see

that the capacity region is P, we shall verify that both (1/2, 1) and (1, 1/2) are achievable and

the network satisfies P(12). To achieve (1/2, 1), we use a similar scheme as above except that in

the first time slot, u5 and u6 have to carry out interference neutralization to cancel a over the

air. To achieve (1, 1/2), we use the following scheme:

s1 s2 u1 u2 u3 u4 u5 u6 d1 d2

Time 1 Transmits a1 b a1 0 b a1 0 a1 + b

Time 1 Receives a1 a1 + b b a1 0 a1 + b a1 a1 + b

Time 2 Transmits a2 b 0 a2 − a1 b a2 − a1 0 b

Time 2 Receives a2 a2 + b b a2 − a1 a2 − a1 b a2 − a1 b

Note that in the first time slot, all nodes transmit what they receive except for u2. This is because

the reception of u6 contains b and hence it transmits 0 instead so that u4, the critical node for

d1, receives a1. In the second time slot, u2 makes use of the two linear combinations it receives

over the two time slots, a1 + b and a2 + b, to zero-force interference b and sends out a2 − a1.
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Meanwhile, u1 keeps silent so that u6 is able to decode b.

For the outer bound, obviously P(12)
1 , P(12)

2 , and P(12)
4 hold, as P s2(v∗1) = {u2} and w12 = u2.

Induced graph G12 is G with edges (u2, u4) and (u2, u5) deleted. It can be seen that u6 becomes

omniscient in G12. Therefore P(12)
3 also holds.

4) Network with capacity region S

The example is depicted in Fig. 5(a). Interference neutralization happens right at d1 and d2,

which is carried out by u4, u5, u6. As explained in the previous subsection, such interference

neutralization is not possible without coding in the extension field.

V. PROOF OF ACHIEVABILITY

In this section, we shall establish various achievability results beyond the trivially-achievable

triangular rate region T. We assume that in the network no nodes are omniscient and describe a

coding scheme that achieves (1, 1), (1, 1/2), or (1/2, 1). We will use a linear scheme over the

finite field F2r , for some r > 0. We map the r-length binary sequences in (F2)
r to symbols in

F2r such that the bitwise modulo-two addition in (F2)
r translates to the addition operation in F2r .

Such a mapping is always possible by the standard construction of the extension field F2r . Under

such a mapping, we are able to abstract r usages in the original network to a single channel use

in a network with the same topology, but with inputs and outputs in the extension field F2r . A

node is said to perform Random Linear Coding (RLC) over F2r if the coefficient(s) chosen by

the node in the linear transformation is chosen uniformly at random in F2r and independently

of the coefficients chosen by all its predecessors.

We will focus on schemes achieving rate pairs (1, 1) and (1/2, 1) respectively. To achieve

(1, 1), each source aims to convey a symbol in F2r to its own destination over one symbol-time

slot. The block length used by each node would be r. To achieve (1/2, 1), s1 aims to deliver one

symbol while s2 aims to deliver two symbols to their respective destinations. The block length

here would be 2r. Note that the functions transforming an incoming T -block of bits (T = r for

the (1, 1)-scheme and T = 2r for the (1/2, 1)-scheme and) to an outgoing T -block of bits is

not a linear transformation over the vector space (F2)
T and must necessarily be understood as

operations over the extension field F2r for our proofs to work.

A scalar linear coding scheme over F2r is specified by the following collection of linear
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coding coefficients: {αv ∈ F2r : v ∈ V \ {d1, d2}}. Define for each v ∈ V the global coefficients

βv,s1 , βv,s2 ∈ F2r as follows.

• Initialize: βs1,s1 := 1, βs1,s2 := 0, βs2,s1 := 0, βs2,s2 := 1.

• For v ∈ V \ {s1, s2}, we define

βv,s1 :=
∑

u∈P(v)

αuβu,s1 , βv,s2 :=
∑

u∈P(v)

αuβu,s2 .

If the messages of source s1 and s2 are a and b respectively, then the reception of node

v ∈ V \ {s1, s2} is given by βv,s1 · a+ βv,s2 · b.

Recall Lemma 3.2 and 3.3. These two lemmas explain why we define critical nodes. Lemma 3.2

shows that the rank-influence from the sources to destination di drops precisely at the critical

node v∗i and hence, the nodes in P(v∗i ) are natural candidates for special coding so as to cancel

interference and arrange user i’s symbol(s) to be received at v∗i even while other nodes may

perform random linear coding. Note that this kind of special coding is a linear operation over

the finite field F2r making use of the superposition feature of the channel. Lemma 3.3 shows

that the critical nodes suffice to capture the property of existence of an omniscient node in the

network.

The reception of destination di is just a function of that of the critical node v∗i . Hence we

define the cloud Ci, for i = 1, 2, to be the set of nodes that can be reached by some node in

K(v∗i ) and that can reach di. All nodes in the cloud receive functions of the reception of the

critical node. Our scheme will ensure that v∗i can decode what di aims to decode, i = 1, 2.

Below we provide several useful lemmas. Proofs of these lemmas can be found in Appendix A.

Lemma 5.1: If u is si-reachable, and all its predecessors do RLC with one symbol from each

source, then si’s symbol has a non-zero coefficient in the reception of u with high probability.

Lemma 5.2: Consider U ⊆ Lk with C(s1, s2;U) = 2. Suppose each source transmits one

symbol and all nodes in the network up to and including layer Lk−1 perform RLC.

(a) Then the nodes in U can collectively decode both of the transmitted symbols with high

probability.

(b) If a node v has U ⊆ P(v), then with all nodes except nodes in U performing arbitrary

linear coding, nodes in U can arrange their transmission so that v receives any desired linear

combination of the source symbols with high probability.
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(c) Let u ∈ U ⊆ P(v). If nodes in P(v) \ U stay silent and nodes in U \ {u} do RLC, then u is

able to arrange its transmission so that v receives any linear combination linearly independent

of the reception of u with high probability.

(d) As a corollary of (c), if the node u is s1s2-reachable, then u can adjust its transmission so

that v can decode either s1 or s2’s symbol with high probability.

Lemma 5.3: If U ⊆ Lk satisfies C(s1.s2;U) = 2, then for any u ∈ U , we can find some w ∈ U

such that C(s1.s2; u,w) = 2.

Next, we shall prove achievability in different cases. Formal proofs of lemmas and claims are

left in Appendix A. Without loss of generality, we assume that k∗1 ≤ k∗2 . If k∗1 = 0, based on

Lemma 3.1 we know that if there is no omniscient node, then (1, 1) is achievable. If k∗1 = 1, then

by the definition of critical node v∗1, both s1 and s2 are v∗1’s parents and hence it is omniscient.

Therefore we focus on 2 ≤ k∗1 ≤ k∗2 below. We shall distinguish into two cases: k∗1 = k∗2 and

k∗1 < k∗2 .

A. k∗1 = k∗2 = k∗

1) Special Patterns Implied by the Conditions: When the critical nodes are in the same layer,

it turns out that if the network G satisfies the conditions given in Theorem 3.2 or Theorem 3.3, it

has a special pattern. The fact is summarized in the following lemma. Let P1 := P (v∗1)\P (v∗2),

P2 := P (v∗2) \ P (v∗1), P12 := P (v∗1) ∩ P (v∗2).

Lemma 5.4: When k∗1 = k∗2 = k∗ and there is no omniscient node, we have the following

equivalence relations.

T(12) ⇐⇒
P1 is s1-only-reachable

C (s1, s2;P2) = 1, u21 := Pmc (P2) 6= si, i = 1, 2

P12 is s2-only-reachable

Ks1 (u21) forms (s1; d1) -vertex-cut.

P(12) \ T(21) ⇐⇒
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P1 is s1-only-reachable

C (s1, s2;P2) = 1, u21 := Pmc (P2) 6= si, i = 1, 2

C (s1, s2;P12) = 1,w12 := Pmc (P12) 6= si, i = 1, 2

Ks2 (w12) forms (s2; d2) -vertex-cut.

Ks1
G12 (u21) forms (s1; d1) -vertex-cut in G12.

and the equivalence relation for T(21) (P(21) \T(12)) is the one for T(12) (P(12) \T(21)) with indices

“1” and “2” exchanged.

Proof: Proof is detailed in the appendix.

One direct consequence of the above lemma is that, T(12) ∩ T(21) = P(12) ∩ P(21) = ∅.

2) Proof of Achievability: In this case, it is sufficient to show that v∗1, v
∗
2 can decode the

symbols desired by destinations d1, d2 respectively. This is because the network past layer Lk∗

has no interference to di from any node in K(v∗j ) for (i, j) = (1, 2) or (2, 1).

By definition, we can see that K(v∗1) ∪ K(v∗2) = Lk∗ . For suppose, there exists node u ∈

Lk∗ \ (K(v∗1) ∪ K(v∗2)) . As each node can reach at least one of the destinations, u can reach

either d1 or d2 thus violating the definition of a critical node. Now, suppose K(v∗1)∩K(v∗2) 6= ∅,

then K(v∗1) = K(v∗2) and so, both v∗1 and v∗2 are omniscient, violating the assumption. Hence

K(v∗1) and K(v∗2) form a partition of Lk∗ .

Since neither v∗1 nor v∗2 is omniscient, P s1(v∗1) 6= P s1(v∗2) and P s2(v∗2) 6= P s2(v∗1). It can be

stated equivalently as

P s1(v∗1) \ P s1(v∗2) 6= ∅ or P s1(v∗1) ( P s1(v∗2) and

P s2(v∗2) \ P s2(v∗1) 6= ∅ or P s2(v∗2) ( P s2(v∗1)

For notational convenience, let us define P s1
1 := P s1 (v∗1)\P s1 (v∗2) and P s2

2 := P s2 (v∗2)\P s2 (v∗1).

Below we first show that (1, 1) is achievable when the network G does not fall into any of the

above four patterns described in Lemma 5.4. Next we show that in the patterns corresponding

to P(12) \T(21) and P(21) \T(12), both (1, 1/2) and (1/2, 1) can be achieved. Finally we show that

in the pattern corresponding to T(12), (1/2, 1) can be achieved, and in the pattern corresponding

to T(21), (1, 1/2) can be achieved.

As a first step, we show the following claim.

Claim 5.1: (1, 1) is achievable if P s1
1 = ∅ or P s2

2 = ∅ or P12 = ∅, under the assumption that

there is no omniscient node.
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Proof: See appendix.

In the following we focus on the case where P s1
1 6= ∅, P s2

2 6= ∅, and P12 6= ∅. We then show

the following claim.

Claim 5.2: Consider the conditions

A1 ∀ u1 ∈ P s1
1 , u1 is s1-only-reachable.

A2 ∀ u2 ∈ P s2
2 , u2 is s1s2-reachable.

B1 ∀ u1 ∈ P s1
1 , u1 is s1s2-reachable.

B2 ∀ u2 ∈ P s2
2 , u2 is s2-only-reachable.

Let A = A1∧A2 and B = B1∧B2. Then the negation of A∨B implies that (1, 1) is achievable.

Remark: Note that A∨B is implied by the disjunction of T(12), T(21), P(12), and P(21). Therefore

this claim proves (1, 1)-achievability for some cases.

Proof: See appendix.

So far we have demonstrated (1, 1)-achievability when condition A∨B is not satisfied. Since

A and B are disjoint, we can separate into two different cases. Besides, discussion on one case

will lead to similar arguments for the other case by symmetry.

Case A: ∀ u1 ∈ P s1
1 , u1 is s1-only-reachable, and ∀ u2 ∈ P s2

2 , u2 is s1s2-reachable.

For this case, if P1 \ P s1
1 6= ∅, that is, there exists a node in P1 and it is s2-only-reachable,

then C (s1, s2;P1) = 2. We can achieve (1, 1), by first arranging the transmission of P(v∗2) so

that v∗2 can decode b and then arranging the transmission of P1 to form any linear combination

of a and b; in particular, the one that combined with the transmission from P12 forms a at v∗1. If

P2\P s2
2 6= ∅, that is, there exists a node in P2 and it is s1-only-reachable, then C (s1, s2;P2) = 2.

(1, 1) is then achievable by a similar argument as above.

We now narrow down to the case ∀ u1 ∈ P1, u1 is s1-only-reachable, and ∀ u2 ∈ P2, u2 is

s1s2-reachable. If C (s1, s2;P2) = 2, obviously (1, 1) is achievable, as v∗1 can always get a from

P1 (whose transmission does not affect v∗2) and one can arrange P2’s transmission (which does

not affect v∗1) to ensure v∗2 decode b. If C (s1, s2;P12) = 2, we can achieve (1, 1) by arranging

the transmission of P12 so that their aggregate is a. Hence v∗1 can decode a. Then nodes in P2

just scale their received linear combinations so that a gets neutralized at v∗2 and only b is left. If

C (s1, s2;P12) = 1, we identify w12 = Pmc (P12). If Ks2(w12) does not form a (s2; d2)-vertex-cut,

we can arrange its parents’ transmission so that w12 can decode a, and at the same time P2 can
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receive a linear combination with a non-zero b-coefficient. Hence nodes in P12 can send out a

scaled version of a to neutralize a at v∗2 if necessary, and v∗1 can always obtain a from P1.

So far we have shown that in Case A, if one of the following is violated, then (1, 1) is

achievable:

• P1 is s1-only-reachable

• P2 is s1s2-reachable, and C (s1, s2;P2) = 1

• C (s1, s2;P12) = 1, Ks2(w12) forms a (s2; d2)-vertex-cut

To complete the proof of (1, 1)-achievability, we need to show that if u21 := Pmc (P2) is

not ommiscient in G12, then (1, 1) can be achieved. We can simply arrange the transmission of

P12 so that their aggregate becomes 0 at v∗1. Effectively we are in G12 with this special linear

coding operation. Since in G12, d1 is s1-only-reachable and u21 is the new critical node of d2,

by Lemma 3.1 we know that (1, 1) can be achieved in G12. We then translate the linear coding

scheme in G12 back to a linear coding scheme in G.

The next thing to show for Case A: if a network is in P(12) \ T(21), then (1, 1/2) can be

achieved. To show it, we employ a two-time-slot coding scheme. We aim to deliver two symbols

a1 and a2 for user 1 and one symbol b for user 2 over two symbol time slots. Symbols are

drawn from the extension field F2r . In the first time slot, we do RLC with s1 transmitting a1

and s2 transmitting b, up to layer Lk∗−1. Pick one node w ∈ P12 and one node u ∈ P2. Keep

other nodes in P12 and P2 silent, while nodes in P1 do RLC. We turn off the transmission of w.

v∗1 can then decode a1. In the second time slot again we do RLC with s1 transmitting a2 and s2

transmitting b, up to layer Lk∗−1. We use the two linear combinations w receives over the two

time slots to zero-force (ZF) b and produce a linear combination of a1 and a2: (the superscripts

of β’s denote the time indices)

β(1)
w,s1
· a1 + β(1)

w,s2
· b; β(2)

w,s1
· a2 + β(2)

w,s2
· b

ZF
=⇒ β(2)

w,s1
· a2 +

β
(1)
w,s1

β
(1)
w,s2

· β(2)
w,s2
· a1. (1)

w then scales this ZF output and sends it out. Hence v∗1 can use a1 as side information to decode

a2.

As for user 2, in the first time slot v∗2 receives a linear equation from u: β(1)
u,s1 · a1 +β

(1)
u,s2 · b. In

the second time slot u receives β(2)
u,s1 ·a2 +β

(2)
u,s2 · b. u makes use of of the two linear combinations
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to zero-force b and generate a linear combination of a1 and a2:

β(1)
u,s1
· a1 + β(1)

u,s2
· b; β(2)

u,s1
· a2 + β(2)

u,s2
· b

ZF
=⇒ β(2)

u,s1
· a2 +

β
(1)
u,s1

β
(1)
u,s2

· β(2)
u,s2
· a1. (2)

As long as the two linear combinations in (1) and (2) are not aligned, u can scale (2) properly

to form a1 at v∗2 in the second time slot. Then with reception of the first time slot, v∗2 can decode

b.

The two linear combinations in (1) and (2) are aligned if and only if the determinant∣∣∣∣∣∣∣
β
(2)
w,s1

β
(1)
w,s1

β
(1)
w,s2

· β(2)
w,s2

β
(2)
u,s1

β
(1)
u,s1

β
(1)
u,s2

· β(2)
u,s2

∣∣∣∣∣∣∣ = 0 ⇐⇒

β(1)
u,s1
β(1)
w,s2

β(2)
w,s1

β(2)
u,s2

= β(1)
u,s2
β(1)
w,s1

β(2)
w,s2

β(2)
u,s1
,

which is of very low probability due to the same reason in Appendix B.

Therefore, we show that in Case A, if T(12) ∨ P(12) is violated, then (1, 1) can be achieved; if

T(12) is violated, then (1, 1/2) can be achieved. It remains to show that if there is no omniscient

node, then in Case A, (1/2, 1) is always achievable.

We aim to deliver one symbol a for user 1 and two symbols b1, b2 for user 2 over two time

slots. Pick nodes u1 ∈ P1, u2 ∈ P2,w2 ∈ P12. Both u2 and w2 zero-force user 1’s symbol a and

form a linear combination of b1, b2. These two linear equations are linearly independent with

high probability, as shown in Appendix B. w2 transmits in the first time slot, while u1 and u2

transmit in the second time slot. Therefore v∗1 can obtain a, v∗2 can solve b1 and b2, and (1/2, 1)

is achievable.

Case B: ∀ u2 ∈ P s2
2 , u2 is s2-only-reachable, and ∀ u1 ∈ P s1

1 , u1 is s1s2-reachable.

Similar to Case A, we show that in Case B, if T(21) ∨ P(21) is violated, then (1, 1) can be

achieved; if T(21) is violated, then (1/2, 1) can be achieved. Besides, if there is no omniscient

node, then in Case B, (1, 1/2) is always achievable.

B. k∗1 < k∗2

Since v∗1 is not omniscient, Ks2(v∗1) does not form a (s2; d2)-vertex-cut, which is equivalent to

∃ u2 ∈ Lk∗1 \ K(v∗1) so that P s2(u2) 6= ∅,P s2(u2) 6= P s2(v∗1).
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The following lemma makes sure that u2 can still receive a linear combination where user 2’s

symbol has a non-zero coefficient with high probability even if P s2(v∗1) do some special linear

coding.

Lemma 5.5: Consider all nodes doing RLC for each source sending one symbol up to Lk∗1−1
including Lk∗1−1, except P s2(v∗1). If P s2(u2) 6= P s2(v∗1), then it is possible with high probability

that P s2(v∗1) can arrange their transmission so that v∗1 receives a linear combination solely of

user 1’s symbol and u2 receives a linear combination of at least user 2’s symbol, that is, the

coefficient of user 2’s symbol is non-zero.

1) (1, 1)-Achievability: For the (1, 1)-achievability we need to prove the following claim

Claim 5.3: ¬Q(12) =⇒ (1, 1) is achievable.

Proof: Since Q(12)
1 is satisfied, in a network that does not satisfy Q(12), at least one of the

following holds:

• C (s1, s2;P s2(v∗1)) = 2

• C (s1, s2;P s2(v∗1)) = 1 and Ks1
G12 (u21) does not form an (s1; d1)-vertex-cut in G12

• C (s1, s2;P s2(v∗1)) = 1 and Ks1
G12 (u21) forms an (s1; d1)-vertex-cut in G12 and Ks2(w12) does

not form a (s2; d2)-vertex-cut in G

Case 1: C (s1, s2;P s2(v∗1)) = 2

In this case, the idea is to arrange the transmission of P s2(v∗1) so that their aggregate contains

user 1’s symbol a only. Mathematically, we aim to have∑
w∈Ps2 (v∗1)

αwβw,s1 6= 0,
∑

w∈Ps2 (v∗1)

αwβw,s2 = 0, (3)

This is doable since C (s1, s2;P s2(v∗1)) = 2. Other nodes in the same layer simply do RLC.

Therefore v∗1 is able to decode a. Nodes in C1 do RLC and d1 can decode a.

As for user 2, we look at v∗2. If v∗2 has no parents in the cloud C1, we only need to guarantee

that the parents of v∗2 can collectively decode b. If v∗2 has some parent(s) in the cloud C1, the

parent(s) will inject user 1’s symbol a to the reception of v∗1. As v∗2 is not omniscient, there

must exist u1 ∈ Lk∗2 ∩ C1 such that P(u1) 6= P s1(v∗2). If P(u1) ( P s1(v∗2), we can arrange the

nodes in P(u1) to make sure that u1 can decode user 1’s symbol, and then arrange the nodes

in P s1(v∗2) \ P(u1) to neutralize user 1’s symbol at v∗2, given that these s1-reachable nodes can

still receive a linear combination with non-zero a-coefficient under the special coding carried
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out by P s2(v∗1). Then since some node in P(v∗2) will receive a linear combination with non-zero

b-coefficient (eg., a successor of u2 in Lemma 5.5), one can always ensure v∗2 to decode b. If

P(u1) \ P s1(v∗2) 6= ∅, we can arrange the nodes in P(v∗2) to form a linear combination that only

contains b at v∗2 given that the reception of P(v∗2) can collectively decode b. Then use nodes in

P(u1) \ P s1(v∗2) to place user 1’s symbol at u1 if necessary.

In summary, we want to guarantee that under the special linear coding carried out by P s2(v∗1)

so that the neutralization criterion (3) is met, P(v∗2) can still collectively decode b and every

node in P s1(v∗2) receives a linear combination with non-zero a-coefficient. The latter is quite

obvious, as nodes affected by the special linear coding still receive linear combinations with

non-zero a-coefficients. As for the former, note that if every node up to layer k∗2 − 2 does RLC,

it holds with high probability since C (s1, s2;P(v∗2)) = 2. With the special linear coding carried

out by P s2(v∗1) described above, however, we cannot claim it with the existing random linear

network coding argument.

We shall use the following two lemmas to overcome the difficulty, by breaking the network

into two stages: one from the source layer to the layer Lk∗1 , and the other from layer Lk∗1 to layer

Lk∗2−1. The first lemma claims that, under the special operation at P s2(v∗1) so that neutralization

criterion (3) is satisfied, with high probability all nodes in layer Lk∗1 that can reach d2 (call

this set U) receive a non-zero linear combination of a and b, and the subspace spanned by their

reception has dimension two when all other nodes perform RLC. The second lemma claims that,

once U’s reception satisfies the above property, then P(v∗2) can collectively decode both a and

b with high probability, when all nodes between Lk∗1 and Lk∗2−1 perform RLC. The lemmas are

made concrete below.

Lemma 5.6 (Reception of U): Let us recall that U :=
{
u ∈ Lk∗1 : u can reach d1

}
. Consider

RLC with s1 transmitting a and s2 transmitting b. All nodes perform RLC up to layer Lk∗1−1.

In Lk∗1−1, nodes except P s2(v∗1) also perform RLC. Then under special coding operation of

P s2(v∗1) such that neutralization criterion (3) is satisfied, with high probability all nodes in U

receive a non-zero linear combination of a and b, and the subspace spanned by their reception

has dimension two. Further, if node u ∈ U is s1-reachable, then its reception has a non-zero

coefficient of s1’s symbol a with high probability.

Lemma 5.7 (Rank Conservation): Suppose U and V are the first and the last layers of a linear

deterministic network and each node u ∈ U possesses a linear combination of the symbols a, b
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given by λu · a+ µu · b. Suppose

• each node in U can reach some node in V ,

• C (U ;V) ≥ 2,

• for each u ∈ U , we have λu, µu not both 0,

• the |U| × 2 matrix with rows given by
[
λu µu

]
for each u ∈ U has full rank (i.e. rank 2).

If all nodes in the network perform RLC, then nodes in V can collectively decode both the

symbols a and b with high probability.

Case 2: C (s1, s2;P s2(v∗1)) = 1 and Ks1
G12 (u21) does not form an (s1; d1)-vertex-cut in G12

In this case, since C (s1, s2;P s2(v∗1)) = 1, effectively they receive only one linear equation

of a and b. Since P s2(v∗1) can be reached by s2, the coefficient of b in this linear equation is

non-zero in general. Hence we need to arrange their transmission so that
∑

w∈Ps2 (v∗1)
Xw = 0,

that is, ∑
w∈Ps2 (v∗1)

αwβw,s1 =
∑

w∈Ps2 (v∗1)

αwβw,s2 = 0, (4)

Since C (s1, s2;P(v∗1)) = 2, v∗1 must have some s1-only-reachable parents. Therefore v∗1 can

decode a.

With such special operation in P s2(v∗1), effectively we are in the induced graph G12. In other

words, any linear coding scheme in the induced graph G12 can be translated to a linear coding

scheme in G satisfying the neutralization criterion (4), in the sense that the reception of di

remains the same in both schemes, for i = 1, 2. In G12, note that d1 can only be reached by s1

but not s2. Hence by Lemma 3.1, as long as the critical node for destination d2 in G12, u21, is

not omniscient, (1, 1) is achievable. u21 is not omniscient in G12 by the assumption of this case.

Case 3: C (s1, s2;P s2(v∗1)) = 1 and Ks1
G12 (u21) forms an (s1; d1)-vertex-cut in G12 and Ks2(w12)

does not form an (s2; d2)-vertex-cut in G

In this case the idea is to enable w12 to decode user 1’s symbol a while keeping user 2’s flow

to v∗2, making use of the fact that Ks2(w12) does not form a (s2; d2)-vertex-cut in G. Effectively

we impose the neutralization criterion on w12 instead of v∗1, and carry out the special coding

operation at P s2(w12) instead of P s2(v∗1).

As for user 1, obviously w12 6= s2, and hence it can be reached by s1 due to the definition

of critical nodes. Since C (s1, s2;P(w12)) = 2, we can enable w12 to decode a by satisfying the
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following neutralization condition:∑
w∈P(w12)

αwβw,s1 = βP(w12),s1 ,
∑

w∈P(w12)

αwβw,s2 = 0. (5)

Once w12 decodes a, it simply sends out a scaled copy of a. With all other nodes performing

RLC up to layer Lk∗1−1 (including P s2(v∗1)), critical node v∗1 can decode a.

As for user 2, note that depending on the value of C (s1, s2;P s2(w12)) being 2 or 1, βP(w12),s1

is either non-zero or zero. If C (s1, s2;P s2(w12)) = 2, we use the two lemmas, Lemma 5.6

and 5.7, in the first case to show that the parents of v∗2 can recover both user’s symbols with

high probability under the special operation at P s2(w12). If C (s1, s2;P s2(w12)) = 1, we construct

another induced graph G ′12 to capture the constraints that such special coding lays on the reception

of other nodes in the same layer as w12, which is similar to G12 in the second case. In G ′12, the

critical node for user 2 may no longer be v∗2, as the min-cut value from the sources {s1, s2} to

the parents of v∗1 may drop to 1. Note that as in G12, destination d1 is now s1-only-reachable in

G ′12. Hence we only need the new critical node for destination d2 is not omniscient in G ′12.

The following lemma guarantees it in this case.

Lemma 5.8: In this case (Case 3) when C (s1, s2;P s2(w12)) = 1, for all possible G ′12, the

s1-clones of PmcG′12 (d2) do not form a (s1; d1)-vertex-cut.

Combining the above three cases, we complete the proof for the claim and the (1, 1)-achievability.

2) (1, 1/2)-Achievability: For the (1, 1/2)-achievability we need to prove the following claim

Claim 5.4: P(12) =⇒ (1, 1/2) is achievable.

Proof: Consider two cases, distinguishing whether v∗2 has parents from the cloud or not.

1) P(v∗2)∩C1 6= ∅: Under the condition that P(v∗2)∩C1 6= ∅, we know that in G12 the critical node

for d2 is still v∗2, as CG12 (s1, s2;PG12(v∗2)) = 2. This is because nodes in the cloud C1 become

s1-only-reachable in G12 while some nodes in PG12(v∗2) are s2-reachable in G12. P(12) implies

that the s1-clones of v∗2 in G12 becomes a (s1; d1)-vertex-cut. Therefore, some nodes in P(v∗2)

must be dropped in generating G12 (as they cannot be reached by either one of the sources), and

PG12(v∗2) 6= P(v∗2).

We aim to deliver two symbols a1, a2 for user 1 and one symbol b for user 2 over two symbol

time slots. Symbols are drawn from the extension field F2r . In the first time slot we do RLC with
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s1 transmitting a1 and s2 transmitting b, up to layer Lk∗1−1. Then we arrange the transmission of

P s2(v∗1) so that their aggregate becomes zero, as in Case 2. v∗1 can hence decode a1, and transmit

a scaled version of it. The rest of the nodes keep performing RLC. It is as if the communication

is over the induced graph G12, and effectively nodes in P(v∗2)\PG12(v∗2) will receive nothing. As

the s1-clones of v∗2 form a (s1; d1)-vertex-cut in G12, v∗2 will receive a linear equation of a1 and

b, and both symbols have non-zero coefficients. Therefore, d1 can decode a1 in the first time

slot.

In the second time slot, we do RLC with s1 transmitting a2 and s2 transmitting b, up to the

layer right before w12. For those nodes in K(w12) that can reach P s2(v∗1), instead of scaling their

reception and transmitting it, they replace their reception by a linear combination of a1 and a2.

This linear combination is obtained by zero-forcing b using the reception of the first and the

second time slot:

β(1)
w12,s1

· a1 + β(1)
w12,s2

· b; β(2)
w12,s1

· a2 + β(2)
w12,s2

· b

ZF
=⇒ β(2)

w12,s1
· a2 +

β
(1)
w12,s1

β
(1)
w12,s2

· β(2)
w12,s2

· a1.

The rest of the nodes perform RLC up to layer Lk∗1 . Since v∗1 already obtains a1 in the first time

slot and it receives a linear combination of a1, a2 with non-zero a2-coefficient in the second time

slot, it can decode a2. Onwards it transmits a scaled copy of a2, while other nodes perform RLC.

The nodes in P(v∗2) \ PG12(v∗2), unlike in the first time slot, will receive a linear combination

of a1, a2, which is a scaled version of that transmitted by w12. Hence, we can arrnage the

transmission of P(v∗2) \ PG12(v∗2) and P(v∗2) ∩ C1 so that v∗2 can decode a1. Therefore, using the

reception from the first time slot, v∗2 can decode b.

2) P(v∗2) ∩ C1 = ∅: We aim to deliver two symbols a1 and a2 for user 1 and one symbol b for

user 2 over two symbol time slots. Again the symbols are drawn from the extension field F2r . In

the first time slot, we do RLC with s1 transmitting a1 and s2 transmitting b, up to layer Lk∗1−1.

Then we arrange the transmission of P s2(v∗1) so that their aggregate becomes zero, as in Case

2. It is as if the communication is over the induced graph G12. Since u21 is the critical node for

the parents of v∗2 in G12, in the first time slot the they effectively receive only one equation

β(1)
u21,s1

· a1 + β(1)
u21,s2

· b,
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where β(1)
u21,s1 is non-zero with high probability since Ks1

G12 (u21) forms a (s1; d1)-vertex-cut in G12
and hence u21 must be reachable by s1. β

(1)
u21,s2 is non-zero with high probability since v∗1 is not

omniscient and hence s2 must be able to reach v∗2 in G12.

In the second time slot, we do RLC with s1 transmitting a2 and s2 transmitting b, up to the

layer right before w12. For those nodes in K(w12) that can reach P s2(v∗1), instead of scaling their

reception and transmitting it, they replace their reception by a linear combination of a1 and a2.

This linear combination is obtained by zero-forcing b using the reception of the first and the

second time slot:

β(1)
w12,s1

· a1 + β(1)
w12,s2

· b; β(2)
w12,s1

· a2 + β(2)
w12,s2

· b

ZF
=⇒ β(2)

w12,s1
· a2 +

β
(1)
w12,s1

β
(1)
w12,s2

· β(2)
w12,s2

· a1.

The rest of the nodes remain doing RLC, up to the layer right before v∗2. In the second time slot,

v∗2’s parents receive at least two linear equations in {a1, a2, b}. Pick two nodes u,w ∈ P(v∗2)

such that C (s1, s2; u,w) = 2. Let their reception be

βu,a1 · a1 + βu,a2 · a2 + βu,b · b,

βw,a1 · a1 + βw,a2 · a2 + βw,b · b,

respectively. We shall show that the following determinant∣∣∣∣∣∣∣∣∣
β
(1)
u21,s1 0 β

(1)
u21,s2

βu,a1 βu,a2 βu,b

βw,a1 βw,a2 βw,b

∣∣∣∣∣∣∣∣∣ (6)

= β(1)
u21,s2

∣∣∣∣∣∣βu,a1 βu,a2

βw,a1 βw,a2

∣∣∣∣∣∣+ β(1)
u21,s1

∣∣∣∣∣∣βu,a2 βu,b

βw,a2 βw,b

∣∣∣∣∣∣
is non-zero with high probability.

Note that in the second time slot, we choose the scaling coefficients α’s for all nodes up to

the layer right before v∗2 in the same way as RLC. The only difference from RLC is that at

the nodes in K(w12) that can reach P s2(v∗1), the term scaled and transmitted is replaced by the

zero-forced output β(2)
w12,s1 ·a2+

β
(1)
w12,s1

β
(1)
w12,s2

·β(2)
w12,s2 ·a1. Suppose we do RLC, then u and w will receive

β(2)
u,s1
· a2 + β(2)

u,s2
· b, and β(2)

w,s1
· a2 + β(2)

w,s2
· b
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respectively, where D(2) :=

∣∣∣∣∣∣β
(2)
u,s1 β

(2)
u,s2

β
(2)
w,s1 β

(2)
w,s2

∣∣∣∣∣∣ 6= 0 with high probability since C (s1, s2; u,w) = 2.

As pointed out above, from the connection of the scheme to RLC, we see∣∣∣∣∣∣βu,a1 βu,a2

βw,a1 βw,a2

∣∣∣∣∣∣ =
β
(1)
w12,s1

β
(1)
w12,s2

·D(2)
Z ,

∣∣∣∣∣∣βu,a2 βu,b

βw,a2 βw,b

∣∣∣∣∣∣ = D
(2)
R ,

where

D
(2)
Z :=

∣∣∣∣∣∣
β
(2)
u,s1

[
β
(2)
u,s2

]
Z

β
(2)
w,s1

[
β
(2)
w,s2

]
Z

∣∣∣∣∣∣ ,
and

D
(2)
R :=

∣∣∣∣∣∣
β
(2)
u,s1

[
β
(2)
u,s2

]
R

β
(2)
w,s1

[
β
(2)
w,s2

]
R

∣∣∣∣∣∣ .
Here

[
β
(2)
u,s2

]
R

denotes the coefficient of b that u receives under a virtual RLC with the same

coding operation as regular RLC except that nodes in K(w12) that can reach P s2(v∗1) (call this

set Z) are transmitting scaled copies of a (with the same scaling coefficient as in regular RLC)

instead of a linear combination of a, b.
[
β
(2)
u,s2

]
Z

denotes the coefficient of b that u receives

under a virtual RLC with the same coding operation as regular RLC except that the s2-reachable

predecessors of u in the same layer as w12 other than Z are transmitting scaled copies of the

a-components in their reception (with the same scaling coefficient). Note that if there is no s2-

reachable predecessor of u in Z , then
[
β
(2)
u,s2

]
Z

= 0. We have D(2)
Z +D

(2)
R = D(2). The determinant

in (6) equals to zero if and only if

β(1)
u21,s2

β(1)
w12,s1

D
(2)
Z + β(1)

u21,s1
β(1)
w12,s2

D
(2)
R = 0.

Suppose

∣∣∣∣∣∣β
(1)
w12,s1 β

(1)
w12,s2

β
(1)
u21,s1 β

(1)
u21,s2

∣∣∣∣∣∣ is a zero polynomial, then we are done since D(2) 6= 0 with high

probability.

Note that D(2)
Z and D

(2)
R cannot simultaneously be zero with high probability, as their sum

is non-zero with high probability. First assume that D(2)
Z 6= 0. The determinant in (6) equals to

zero if and only if

D
(2)
R

D
(2)
Z

=
β
(1)
u21,s2β

(1)
w12,s1

β
(1)
u21,s1β

(1)
w12,s2

.
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RHS and LHS are independent. We only need to consider the case

∣∣∣∣∣∣β
(1)
w12,s1 β

(1)
w12,s2

β
(1)
u21,s1 β

(1)
u21,s2

∣∣∣∣∣∣ is not a zero

polynomial. The probability distribution of RHS is “almost” uniform and there is no particular

value at which it has a non-vanishing probability (see Lemma B.1 in Appendix B). Hence the

above equality happens with vanishing probability.

Similar conclusion can be drawn in the case D(2)
R 6= 0.

3) (1/2, 1)-Achievability: For the (1/2, 1)-achievability, we argue that if there is no omniscient

node, then (1/2, 1) is achievable. We shall use nodes reachable from u2 in P(v∗2) to provide user

2’s symbols. Define the collection of these nodes by Sk∗2−1(u2). Consider the following two

cases.

1) P(v∗2) ∩ C1 6= ∅: If Q(12) is violated, (1, 1) can be achieved and so can (1/2, 1). Hence we

focus on the case in which Q(12) is satisfied. Under the condition that P(v∗2)∩ C1 6= ∅, from the

analysis of the previous case we know that some nodes in P(v∗2) must be dropped in generating

G12, and PG12(v∗2) 6= P(v∗2).

We aim to deliver one symbol a for user 1 and two symbols b1, b2 for user 2 over two time

slots. In the first time slot, all nodes up to layer k∗2 − 1 perform RLC with s1 transmitting a

scaled copy of a, and s2 transmitting a scaled copy of b1, except that nodes in P s2(v∗1) perform

special linear coding to make sure their aggregate transmission is zero. Hence effectively we are

in G12, and the nodes in P s1
G12(v

∗
2), which form a (s1; d1)-vertex-cut in G12 and therefore lie in

the cloud C1, can decode a. Since CG12 (s1, s2;PG12(v∗2)) = 2, we can arrange the transmission

of PG12(v∗2) so that v∗2 can decode b1 and so can d2. But d1 will receive nothing, as Ks1
G12(v

∗
2)

is a (s1; d1)-vertex-cut in G12. In the second time slot, all nodes up to layer k∗2 − 1 perform

RLC with s1 transmitting a scaled copy of a, and s2 transmitting a scaled copy of b2. This time

the nodes in P(v∗2) \ PG12(v∗2) will receive a non-triavial linear combination of a and b2 with a

non-zero a-coefficient. Then we let nodes in PG12(v∗2) transmit a scaled copy of a by choosing

their scaling coefficients uniformly and independently, while using nodes in P(v∗2) \ PG12(v∗2)

to neutralize the symbol a in the reception of v∗2 and obtain a clean copy of b2. Hence d1 can

decode a, and d2 can decode b2 in the second time slot.

2) P(v∗2) ∩ C1 = ∅: We aim to prove that (1/2, 1) is achievable in this case. User 1 has one

symbol a and user 2 has two symbols b1, b2 to be delivered over two time slots.
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In the first time slot, all nodes up to layer k∗2 − 1 perform RLC with s1 transmitting a scaled

copy of a, and s2 transmitting a scaled copy of b1. Note that because C (s1, s2;P(v∗2)) = 2,

we have that P(v∗2) can collectively decode both a and b1 due to Lemma 5.2(a). In the second

time slot, all nodes up to layer k∗1 − 2 perform RLC with s1 sending a and s2 sending b2. Due

to Lemma 5.2(a), we can arrange the transmission of P(v∗1) so that v∗1 receives only a in the

second time slot, since C (s1, s2;P(v∗1)) = 2. As ∅ ( P s2(u2) 6= P s2(v∗1), u2 receives a linear

combination with a non-zero coefficient of user 2’s symbol due to Lemma 5.5. Further, all nodes

perform RLC up to layer k∗2 − 1. As u2 has a path to P(v∗2), some node in P(v∗2) receives a

linear combination of the three symbols with a non-zero coefficient for b2. Thus, P(v∗2) can

collectively decode all three symbols a, b1, b2. Since this decoding is a linear operation, these

nodes can arrange their transmissions so as to form b1 and b2 at v∗2’s reception in first and second

time slots respectively. All nodes in layer k∗2 onwards perform RLC with no mixing across time

slots. Thus, d2 can recover both b1 and b2. As nodes in Lk∗2−1∩C1 perform RLC with no mixing

across time slots, destination d1 can recover both the symbols a and b1.

VI. PROOF OF OUTER BOUNDS

A. Outer Bound on R1 +R2: the Omniscient Bound

We show that if a node v is omniscient, then it can decode both user’s messages and hence,

the achievable sum rate is upper bounded by 1. This explains the motivation for the name.

Let v be omniscient and satisfy condition (A) in the definition of omniscient nodes: K(v) is a

(s1, s2; d1)-vertex-cut and Ks2(v) is a (s2; d2)-vertex-cut. Since K(v) is a (s1, s2; d1)-vertex-cut,

the reception of the destination d1 is a function of the reception of v. This means v can decode

the message of s1. The reception of each node in Ks2(v) is some function of the reception of

node v and the transmission of s1. Since v can now recover the transmission of s1, and since

Ks2(v) forms a (s2; d2)-vertex-cut, v can recover the reception of d2, and thus, also the message

of s2. We leave the formal proof of this outer bound in the appendix.

B. Outer Bounds on 2R1 +R2 and R1 + 2R2

We want to show that if the condition T(12) is satisfied, then 2R1 +R2 ≤ 2 for any achievable

(R1, R2). We first show the following claim.

Claim 6.1: If there exists random variables {Z1, Z21, Z22} in the network satisfying
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1) H (Z1) ≤ 1, H (Z21) ≤ 1, H (Z22) ≤ 1.

2) XN
s1
↔ ZN

1 ↔ Y N
d1

and XN
s2
↔ (ZN

21, Z
N
22)↔ Y N

d2

3) XN
s1
↔ (ZN

21, X
N
s2

)↔ Y N
d1

4) H
(
ZN

1 |XN
s1

)
≥ H

(
ZN

22

)
5) ZN

22 is a function of XN
s2

then 2R1 +R2 ≤ 2 for any achievable (R1, R2).

Proof is detailed in the appendix.

We shall use the above claim to complete the proof of the outer bound 2R1 + R2 ≤ 2. We

set Z1 := Yv∗1 , Z21 := Yu21 , Z22 :=
∑

w∈Ps2(v∗1)
Xw.

• Hence by the definition of the channels, condition 1) of the claim is satisfied.

• By the definition of v∗1, we see that the first Markov chain in condition 2) is satisfied. By

condition T(12)
3 and the definition of the induced graph G12 we see that the second Markov

chain is also satisfied. Hence, condition 2) is satisfied.

• By conditions T(12)
3 and T(12)

4 , we see that the Markov chain in condition 3) is satisfied.

• Condition 4) is satisfied with equality due to the definition of Z22 and condition T(12)
4 .

• Condition 5) is satisfied due to the definition of Z22 and conditions T(12)
2 and T(12)

4 .

Similarly, if the condition T(21) is satisfied, then R1 + 2R2 ≤ 2 by symmetry.

C. Outer Bound on 2R1 + 2R2

We want to show that if the condition P(12) is satisfied, then 2R1+2R2 ≤ 3 for any achievable

(R1, R2). We first show the following claim.

Claim 6.2: If there exists random variables {Z11, Z12, Z21, Z22} in the network satisfying

1) H(Z11) ≤ 1, H(Z12) ≤ 1, H(Z21) ≤ 1, H(Z22) ≤ 1

2) XN
s1
↔ ZN

11 ↔ Y N
d1

and XN
s2
↔ (ZN

21, Z
N
22)↔ Y N

d2

3) XN
s1
↔ (ZN

21, Z
N
22, X

N
s2

)↔ Y N
d1

and

XN
s2
↔ (ZN

12, X
N
s1

)↔ Y N
d2

4) H
(
ZN

11|XN
s1

)
≥ H

(
ZN

22|XN
s1

)
5) ZN

22 is a function of ZN
12

then 2R1 + 2R2 ≤ 3 for any achievable (R1, R2).

Proof is detailed in the appendix.
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We shall use the above claim to complete the proof of the outer bound 2R1 + 2R2 ≤ 3. We

set Z11 := Yv1 , Z12 := Yw12 , Z21 := Yu21 , Z22 :=
∑

w∈Ps2(v∗1)
Xw.

• By the definition of the channels, condition 1) of the claim is satisfied.

• By the definition of v∗1, we see that the first Markov chain in condition 2) is satisfied. By

condition P(12)
3 and the definition of the induced graph G12 we see that the second Markov

chain is also satisfied. Hence, condition 2) is satisfied.

• The first Markov chain in condition 3) is due to condition P(12)
3 and the definition of the

induced graph G12. The second Markov chain is due to condition P(12)
4 . Hence condition 3)

is satisfied.

• Condition 4) is satisfied with equality due to the definition of Z22.

• Condition 5) is satisfied due to the definition of Z12, Z22 and conditions P(12)
2 and P(12)

4 .

Similarly, if the condition P(21) is satisfied, then 2R1 + 2R2 ≤ 3 by symmetry.

VII. CONCLUDING REMARKS

In this paper, we completely characterize the capacity region of two unicast information flows

over a layered linear deterministic network with base field F2 under the unit-channel strength

assumption. It turns out that when each source can reach its own destination, the capacity region

is one of the five: the triangle T, the trapezoids T12,T21, the pentagon P, and the square S.

The necessary and sufficient condition for the capacity region to be one of them elucidates when

and how the connectivity of the network limits the amount of information deliverable to the

destination under the presence of the other interfering information flow.

Our result extends to a more general linear deterministic channel setting where a general

matrix in F2 (not necessarily a shift matrix) is associated to each edge in the network. Such

generalization is made possible by looking at entries of the receive/transmit vectors, called

“bubbles”, and redefining omniscience, clone sets, parents, cuts, etc., for bubbles. This result

will be detailed in a later version of this paper.
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APPENDIX A

PROOF OF LEMMAS AND CLAIMS

By the phrase “with high probability”, we mean a probability that goes to 1 as the size of the

field F2r goes to infinity.

June 1, 2011 DRAFT



36

A. Proof of Lemma 3.1

If k∗1 = 0 and k∗2 = 1, then both s1 and s2 are v∗2’s parents, and obviously v∗2 is omniscient,

violating the assumption. Hence, k∗2 = 0 or k∗2 ≥ 2. If k∗2 = 0, then there is no interference at

destination d1 from source s2 and vice versa. In this case, clearly (1, 1) is achievable.

If k∗2 ≥ 2, we shall show that (1, 1) can be achieved provided that there is no omniscient

node. Nodes do RLC with s1 transmitting a scaled copy of symbol a ∈ F2r and s2 transmitting

a scaled copy of symbol b ∈ F2r , until layer Lk∗2−1. By definitions of v∗2 and C1, layer Lk∗2 is

partitioned by K(v∗2) and C1 ∩ Lk∗2 . Since v∗2 is not omniscient,

∃ u1 ∈ C1 ∩ Lk∗2 such that P s1(u1)(= P(u1)) 6= P s1(v∗2).

Note that since u1 ∈ C1, P s1(u1) = P(u1). Also note that all nodes in C1 are s1-only-reachable.

Consider the following two cases:

1) P(u1) \P s1(v∗2) 6= ∅. In this case we arrange nodes in P(v∗2) so that user 2’s symbol b can

be decoded at v∗2. Then use nodes in P(u1) \ P s1(v∗2) to provide user 1’s symbol a at u1

if necessary. u1 and v∗2 and their successors do RLC.

2) P(u1) ( P s1(v∗2). In this case we first let nodes in P(u1) do RLC and place user 1’s

symbol a at u1. Then, use nodes in P s1(v∗2) \ P(u1) and nodes in P(v∗2) to neutralize user

1’s symbol a and place user 2’s symbol b at v∗2. u1 and v∗2 and their successors do RLC.

Hence, (1, 1) is achievable when k∗1 = 0.

B. Proof of Lemma 3.2

Suppose i = 1. Suppose C (s1, s2;P(v∗1)) 6= 2. It cannot be larger than 2 by definition and it

cannot be 0 because {s1, s2} has paths to P(v∗1). So, suppose C (s1, s2;P(v∗1)) = 1.

Let A ⊆ V be the set of nodes in the graph that can be reached by {s1, s2} and can reach

P(v∗1). Let G ′ be the graph induced by nodes in A and for U ⊆ A, let CG′ (s1, s2;U) denote the

mincut from {s1, s2} to U in the graph G ′. Then, obviously CG′ (s1, s2;P(v∗1)) = 1.

Note that for any partition of the vertices of A into (B,A \ B) with {s1, s2} ⊆ B,P(v∗1) ⊆

A\B, if there exist nodes in the same layer u1, u2 ∈ A such that u1 ∈ B and u2 ∈ A \B, then

the rank of the transfer matrix across the cut (B,A\B) is at least 2. Thus, if there exists a cut

(B,A \ B) of value 1, then the cut must be of the form B = (∪tl=0Ll) ∩ A, for some t ≥ 0.
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This tells us that if u ∈ A∩Lt+1, then K(u) ⊇ A∩Lt+1, so that K(u) is a (s1, s2; d1)-vertex-cut

violating the definition of critical node v∗1. Hence we complete the proof by contradiction.

C. Proof of Lemma 3.3

Suppose node v is omniscient, say K(v) is a (s1, s2; d1)-vertex-cut and Ks2(v) is a (s2; d2)-

vertex-cut. Suppose v∗1 is not omniscient. As K(v) is a (s1, s2; d1)-vertex-cut, we have that either

v ∈ K(v∗1) or that v lies in a layer Lk with k > k∗1. This follows from the definition of the

critical node v∗1. In the first case, we automatically have that v∗1 is omniscient. So, suppose v lies

in layer Lk with k > k∗1. Then, since v∗1 is not omniscient, there exists a path from s2 to d2 with

a node uk∗1 in layer Lk∗1 and a node uk in layer Lk such that P s2(v∗1) 6= P s2(uk∗1 ). Since node

v is omniscient, we must have that P s2(v) = P s2(uk). But this is impossible since uk has an

s2-reachable parent from the path that does not lie in the cloud C1 which contains all the parents

of v. This contradiction establishes that v∗1 must have been omniscient.

D. Proof of Lemma 3.4

First note that if we restrict attention to the induced subgraph G ′ obtained by deleting all

nodes which can either not reach the set of nodes U or cannot be reached by at least one of s1

and s2, then the mincut value C (s1, s2;U) is preserved. Since each node can be reached by at

least one of s1 or s2, we only have to delete nodes that cannot reach some node in U .
Now, we are looking at a graph where the set of nodes in layer l is Ul for 0 ≤ l < k and U

for layer k.

Consider, for this graph, the set of all vertex bipartitions between {s1, s2} and U which yield

a transfer matrix of rank 1. All such bipartition cuts must be ‘vertical’, i.e. they are partitions of

the form (A,Ac) where A = ∪rl=0Ul for some l, 0 ≤ l < k. This is because any non-‘vertical’

cut yields a transfer matrix of rank at least 2. This establishes that the parents sets of all nodes

in Ul∗ are identical in this graph and so, also in the original graph because every node in the

new graph G ′ has the same parent set as in the original graph. This concludes the proof of the

lemma.

E. Proof of Lemma 3.5

We are in the scenario where C (s1, s2;P s2(v∗1)) = 1. Consider G12(w) for some node w ∈

P s2(v∗1) and suppose that there is no omniscient node in G12(w). As G12(w) has no paths from
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s2 to d1, by Lemma 3.1, we can achieve (1, 1) in G12(w), with high probability, by all nodes

except nodes in P(v∗2) performing RLC. Then, with high probability all nodes in P s2(v∗1) receive

a non-trivial linear combination and each has a non-zero coefficient of symbol b sent by s2. Take

any such (1, 1) achieving scheme and any other node w′ ∈ P s2(v∗1). Consider G12(w′). Note w

has no outgoing edges in G12(w) and w′ has no outgoing edges in G12(w′). Let the reception

of node w and w′ in G12(w) be βw,s1 · a + βw,s2 · b and βw′,s1 · a + βw′,s2 · b respectively, where

βw,s2 , βw′,s2 6= 0. Just make all nodes choose the same coefficients in G12(w′) as in G12(w) except

for node w′ which chooses αw′ |G12(w′) = αw ·
βw,s2
βw′,s2

. Then, the receptions of all nodes will be

identical to those in G12(w). This achieves (1, 1) in G12(w′) and hence, there cannot be any

omniscient node in this network either by the Omniscient node outer bound.

F. Proof of Lemma 5.1

Without loss of generality let i = 1. We shall prove this by induction on the layer index where

u lies. Say u ∈ Lk. The node u receives βu,s1 · a+ βu,s2 · b.

For k = 1, βu,s1 = αs1βs1,s1 = αs1 . Since all predecessors of u are doing RLC, so does s1 and

hence αs1 is chosen uniformly and randomly over F2r . Therefore, Pr{βu,s1 = 0} = Pr{αs1 =

0} → 0 as r →∞.

Suppose for all nodes in Ll, l ≥ 1, that are reachable from s1 the coefficient of user 1’s

symbol a is non-zero with high probability. Consider an s1-reachable node in Ll+1. We have

βu,s1 =
∑

v∈P(u)

αvβv,s1 =
∑

v∈Ps1 (u)

αvβv,s1 ,

since for nodes that cannot be reached by s1 the coefficient of a is always 0. Conditioned on a

realization of {βv,s1 : v ∈ P s1(u)} where they are not all zero, βu,s1 is uniformly distributed over

F2r since {αv| v ∈ P s1(u)} are chosen independently of one another and {βv,s1 : v ∈ P s1(u)},

and uniformly over F2r . Consequently,

Pr {βu,s1 = 0|{βv,s1 : v ∈ P s1(u)}} → 0

as r →∞, if {βv,s1 : v ∈ P s1(u)} are not all zeros. By the induction assumption, the probability

that they are all zeros also goes to zero as r →∞, and so we have Pr {βu,s1 = 0} → 0 as r →∞.

This completes the proof by induction.
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G. Proof of Lemma 5.2

1) Proof of Part (a): Consider a super-sink d′ with full access to the reception of all nodes in

U . Since C(s1, s2;U) = 2, we have C(s1, s2; d
′) = 2. Moreover, we can easily argue that both s1

and s2 can reach d′ by contradiction, and hence C(si; d
′) = 1, for i = 1, 2. Consider a multiple

access flow problem with two sources s1, s2 and a single destination d′. The capacity region is the

square region {(R1, R2) : R1, R2 ≥ 0, R1 ≤ C(s1; d
′), R2 ≤ C(s2; d

′), R1 + R2 ≤ C(s1, s2; d
′)}

and can be achieved via scalar random linear coding if the extension field size 2r is sufficiently

large [17]. Hence (1, 1) can be achieved, and d′ can decode both user’s symbols and so can U .

2) Proof of Part (b): Fix the transmission from P(v) \ U . We write the reception of v as∑
u∈U

(αuβu,s1 · a+ αuβu,s2 · b)︸ ︷︷ ︸
To be determined

+
∑

u∈P(v)\U

(αuβu,s1 · a+ αuβu,s2 · b)︸ ︷︷ ︸
Given

From part (a) we know that U can collectively solve a and b with high probability, and hence

it can construct any linear combination of a and b. Therefore, they can arrange their transmission

by choosing the scaling coefficients α’s carefully so that combined with the given part in v, the

aggregate reception at v is the desired linear combination.

3) Proof of Part (c): From part (a) we know the the subspace spanned by the received linear

combinations of U has dimension 2 with high probability. The received linear combination of u

spans an one-dimensional space with high probability. Note that U \ {u} 6= ∅.
Consider the subspace spanned by the received linear combination(s) of U\{u}. This subspace

is either has dimension 2 or has dimension 1 but not aligned with the reception of u. In the

first case, after the nodes in U \ {u} chose the scaling coefficients randomly, uniformly, and

independently over F2r , the resulting effective linear combination at v contributed by this part

is uniformly distributed over the whole two-dimensional space. Hence it is not aligned with the

reception of u with high probability. u can then choose its scaling coefficient properly so that

any desired linear combination except those aligned with the reception of u can be formed at

v. In the second case, it can be guaranteed that the resulting effective linear combination at v

contributed by U \ {u} is not aligned with the reception of u. Hence we arrive at the same

conclusion as above.
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4) Proof of Part (d): This is a simple corollary of part (c). Since u is s1s2-reachable, with

all its predecessors doing RLC it will receive a linear combination of a and b with non-zero

coefficients for both symbols with high probability. Hence linear combinations consisting of

purely a or b with high probability at v can be formed at v due to the conclusion in part (c).

H. Proof of Lemma 5.3

C(s1, s2;U) = 2. Note that all nodes can be reached by at least one of the source nodes. Fix

node u ∈ U .

For sufficiently large block length N, if all nodes perform RLC with one symbol from each

source, then by Lemma 5.1 and Lemma 5.2(a), we have the following with high probability:

• the subspace spanned by the received linear combination at u has dimension 1, and

• the subspace spanned by the received linear combinations at U has dimension 2.

Fix any choice of the coefficients so that the above hold. Pick any other node w ∈ U such that

the subspace spanned by the received linear combinations at u and w has dimension 2. Then, we

must have C(s1, s2; u,w) = 2, or else u,w could not have received linearly independent linear

combinations.

(Note: Lemma 5.3 is a purely graph-theoretic lemma. It is easier to prove it however using

the random coding arguments in Lemma 5.1 and Lemma 5.2(a).)

I. Proof of Lemma 5.4

For all four cases, the direction “⇐” is quite obvious. Also note that when k∗1 = k∗2 = k∗ and

there is no omniscient node in, the two clone-sets, K(v∗1) and K(v∗2), partition the whole layer

Lk∗ . Therefore, it is sufficient to look at v∗1 and v∗2 only.

For the other direction “⇒”, we shall prove the first and the third case, in which the superscript

of the conditions is “(12)”. To satisfy T(12)
2 and T(12)

3 (equivalently P(12)
2 and P(12)

3 ), we require

C (s1, s2;P s2(v∗1)) = 1 as well as Ks1
G12 (u21) forms an (s1; d1)-vertex-cut in G12. In generating

G12, since there is only one node v∗2 (up to clones) in the same layer as v∗1, the reorganization step

will not involve any change in edges, as M = 1. There are two possible cases where Ks1
G12 (u21)

forms an (s1; d1)-vertex-cut in G12: u21 6= v∗2, or u21 = v∗2.

In the first case where u21 6= v∗2, we have CG12 (s1, s2;PG12(v∗2)) = 1. Hence all nodes in P s2(v∗1)

are parents of v∗2, and C (s1, s2;P(v∗2) \ P s2(v∗1)) = 1. Due to the fact that v∗1 is not omniscient,
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s2 must be able to reach P(v∗2) \ P s2(v∗1). On the other hand, nodes in P(v∗1) \ P s2(v∗1) are all

s1-only-reachable and hence cannot belong to P(v∗2)\P s2(v∗1). Similarly nodes in P(v∗2)\P s2(v∗1)

cannot be in P(v∗1)\P s2(v∗1). Therefore, we conclude that U1 is s1-only-reachable, C (s1, s2;W) =

C (s1, s2;U2) = 1. Then condition 3 and 4 in T(12) (P(12)) imply the rest of the conditions in the

right-hand-side of the case T(12) (P(12)). It is quite easy to see that in this case P(12) ∩T(21) = ∅.

In the second case where u21 = v∗2, P(v∗1) \P s2(v∗1) should be equal to the set of s1-reachable

parents of v∗2 in G12. If T(12)
3 is satisfied, then v∗1 and v∗2 will share the same s1-reachable parents,

contradicting the assumption that there is no omniscient node. If P(12)
3 is satisfied, then it must be

the case that v∗2 has no parents in P s2(v∗1). Therefore, P s2(v∗1) = U1, all nodes in W are s1-only-

reachable, and all nodes in U1 are s2-only-reachable. Then condition P(12)
4 implies that Ks2 (w12)

forms an (s2; d2)-vertex-cut. Then it is easy to verify that T(21) is satisfied. So considering

P(12) \ T(21), this pattern will not be included. Proof complete.

J. Proof of Claim 5.1

It is quite obvious that (1, 1) is achievable when W = ∅. The assumption that there is no

omniscient node combined with U s1
1 = ∅ or U s2

2 = ∅, implies the following three cases:

1) P s1(v∗1) ( P s1(v∗2) and P s2(v∗2) \ P s2(v∗1) 6= ∅: Pick u1 ∈ P s1(v∗1) and then find a node

w1 ∈ P(v∗1) such that C(s1, s2; u1,w1) = 2. Such a node exists by Lemma 5.3. Pick nodes

u2 ∈ P s2(v∗2) \ P s2(v∗1) and w2 ∈ P s1(v∗2) \ P s1(v∗1). Note that u2,w2 may be the same node.

(i) Suppose there exist u2 and w2 described as above such that C(s1, s2; u2,w2) = 2: See

Fig. 6(a) for an illustration. We first arrange the transmission of u1 and w1 so that only

user 1’s symbol appears at v∗1. This can be done due to Lemma 5.2(a). Next we arrange

the transmission of u2 and w2 so that the effect of user 1’s symbol in the transmission of

u1 (and possibly w2) at v∗2 can be neutralized, and user 2’s symbol can appear cleanly. This

can be done due to Lemma 5.2(b).

(ii) Suppose C(s1, s2; u2,w2) = 1 for all u2 and w2 described as above: Then, we must have

P s2(v∗2) \ P s2(v∗1) = P s1(v∗2) \ P s1(v∗1), for if not, we can always find nodes u2 ∈ P s2(v∗2) \

P s2(v∗1) and w2 ∈ P s1(v∗2) \ P s1(v∗1) such that C(s1, s2; u2,w2) = 2. Thus, there must be a

node w′2 ∈ P(v∗1) ∩ P(v∗2) such that C(s1, s2; u2,w
′
2) = 2, by the definition of v∗2. Note that

w′2 may be the same node as u1, w1, or a clone of either one. Also note that now u2 must
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v∗1

v∗2

u1

u2

w2

w1

(a) Illustration of Case 1)(i). u1 and w2 are s1-

reachable and u2 is s2-reachable.

v∗1

v∗2

u1

u2

w′
2

w1

(b) Illustration of Case 1)(ii)(1). u1 is s1-

reachable, u2 is s1s2-reachable, and w1 is s1-only-

reachable.

v∗1

v∗2

u1

u2

w′
2

w1

(c) Illustration of Case 1)(ii)(2). u1 is s1-

reachable and u2 is s1s2-reachable.

v∗1

v∗2

u1

u2

w2

w1

(d) Illustration of Case A1 ∩ B2. u1 is s1-

reachable and u2 is s2-reachable.

Fig. 6. Critical Nodes in the Same Layer

be s1s2-reachable. See Fig. 6(b)(c) for an illustration. We further distinguish into two cases

based on whether w1 is a parent of v∗2 or not:

(1) If w1 is not a parent of v∗2, then it is s2-only-reachable since P s1(v∗1) ( P s1(v∗2). We let u1

and w′2 do RLC. Since u2 is s1s2-reachable, by Lemma 5.2(d), it can arrange its transmission

so that v∗2 can decode s2’s symbol. We can then use w1 to neutralize user 2’s symbol in v∗1’s

reception if necessary. Since u1 is s1-reachable, v∗1 can obtain user 1’s symbol cleanly after

neutralization.

June 1, 2011 DRAFT



43

(2) If w1 is a parent of v∗2, then we first arrange the transmission of {u1,w1,w
′
2} so that

v∗1 can decode user 1’s symbol. This can be done due to Lemma 5.2(a). Next, since their

aggregate at v∗2 has only user 1’s symbol and u2 is s1s2-reachable, we can arrange the

transmission of u2 so that user 1’s symbol is neutralized and only user 2’s symbol is left.

2) P s2(v∗2) ( P s2(v∗1) and P s1(v∗1) \ P s1(v∗2) 6= ∅: Similar to the previous case.

3) P s1(v∗1) ( P s1(v∗2) and P s2(v∗2) ( P s2(v∗1): Pick a node u1 ∈ P s2(v∗1) \ P s2(v∗2) and a node

u2 ∈ P s1(v∗2) \ P s1(v∗1). By the definition of v∗1 and v∗2, we shall be able to find w1 ∈ P(v∗1) and

w2 ∈ P(v∗2) such that C(s1, s2; u1,w1) = C(s1, s2; u2,w2) = 2. Note that w1,w2 may be the same

node but u1, u2 are different nodes, although they may be clones. We shall show that (1, 1) is

achievable. First let {w1,w2} do RLC. Then we can arrange the transmission of u1 and u2 such

that v∗1 and v∗2 can obtain their desired symbols due to Lemma 5.2(c).

K. Proof of Claim 5.2

Note that

¬ (A ∨B) = ¬ (A1 ∧ A2) ∧ ¬ (B1 ∧B2) = (¬A1 ∨ ¬A2) ∧ (¬B1 ∨ ¬B2)

= (¬A1 ∧ ¬B1) ∨ (¬A1 ∧ ¬B2) ∨ (¬A2 ∧ ¬B1) ∨ (¬A2 ∧ ¬B2) .

We distinguish into 4 cases.

1) ¬A1 ∧ ¬B1:

In this case, there is a node in P s1
1 that is s1s2-reachable and there is another node in P s1

1

that is s1-only-reachable. Hence C (s1, s2;P s1
1 ) = 2. We can first arrange the transmission of

P(v∗2) so that v∗2 can decode b. Since C (s1, s2;P s1
1 ) = 2, we can arrange their transmission

to form any linear combination of a and b; in particular, the one that combined with the

transmission from W forms a at v∗1. Hence (1, 1) is achievable.

2) ¬A1 ∧ ¬B2:

In this case there is a node u1 ∈ P s1
1 that is s1s2-reachable and there is a node u2 ∈ P s2

2 that

is s1s2-reachable. Locate nodes w1 ∈ P(v∗1) and w2 ∈ P(v∗2) such that C (s1, s2; u1,w1) =

C (s1, s2; u2,w2) = 2. Note that w1,w2 may be the same node but u1, u2 will be different

nodes although they may be clones. Then, let w1,w2 perform RLC while u1, u2 arrange

June 1, 2011 DRAFT



44

their transmissions so that v∗1, v
∗
2 can decode their desired symbols. This can be done with

high probability due to Lemma 5.2(d). See Fig. 6(d) for an illustration.

3) ¬A2 ∧ ¬B1:

In this case there is a node in P s1
1 that is s1-only-reachable and there is a node in P s2

2 that

is s2-only-reachable. Obviously (1, 1) is achievable.

4) ¬A2 ∧ ¬B2:

In this case, there is a node in P s2
2 that is s2-only-reachable and there is another node in

P s2
2 that is s1s2-reachable. Similar to the first case, (1, 1) is achievable.

Proof complete.

L. Proof of Lemma 5.5

We shall distinguish the condition P s2(u2) 6= P s2(v∗1) into two cases, (1) P s2(u2)\P s2(v∗1) 6= ∅,

and (2) P s2(u2) ( P s2(v∗1).

1) P s2(u2) \ P s2(v∗1) 6= ∅: In this case, if P s2(u2) ∩ P s2(v∗1) = ∅, then the special linear

coding operation in P s2(u2) will not affect the coefficient of user 2’s symbol b in the reception

of u. Therefore the goal in the claim of this lemma can be met from C(s1, s2;P(v∗1)) = 2 and

Lemma 5.2(b). Below we consider the case where P s2(u2) ∩ P s2(v∗1) 6= ∅.

If P s2(v∗1) \P s2(u2) 6= ∅, then we shall let the nodes in P s2(u2)∩P s2(v∗1) do RLC. Hence the

parents of u2 are all doing RLC. Since s2 can reach u2, the coefficient of b in the reception of u2

is non-zero with high probability. Now we turn to v∗1. As C(s1, s2;P(v∗1)) = 2 and all nodes other

than P s2(v∗1) \ P s2(u2) are doing RLC, by Lemma 5.2(c) they can arrange their transmission so

that v∗1 receives a linear combination consisting of a solely.

2) P s2(u2) ( P s2(v∗1): In this case we let the nodes in P s2(u2) do RLC. Hence the coefficient

of b in the reception of u2 is non-zero with high probability since all its predecessor are doing

RLC. Then as C(s1, s2;P(v∗1)) = 2 and all nodes other than P s2(v∗1) \ P s2(u2) are doing RLC,

by Lemma 5.2(c) they can arrange their transmission so that v∗1 receives a linear combination

consisting of a solely.

M. Proof of Lemma 5.6

The special coding operation performed by nodes in P s2(v∗1) is as follows: Nodes choose their

coefficients independently and uniformly over the set of coefficients satisfying
∑

u∈U αuβu,s2 = 0.
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Under this special coding, it is easy to show the first part of the assertion, namely, that each

node receives a non-trivial linear combination. Because the reception of P s2(v∗1) has full rank,

the linear constraint leaves the sum
∑

u∈U αuβu,s1 non-zero with high probability. This allows us

to argue that any s1-reachable node receives a non-zero coefficient for the symbol a transmitted

by source s1 inspite of the special coding.

Find node u ∈ U such that u /∈ Ks2(v∗1). and u is s2-reachable. Such a node exists because v∗1

is not omniscient. Then, find node w ∈ U such that C(s1, s2; u,w) = 2. If all nodes in P s2(v∗1)

performed random linear coding, then u,w jointly can decode both symbols a and b with high

probability.

Let P1 := P(u) \ P(w),P12 := P(u) ∩ P(w),P2 := P(w) \ P(u).

• As P(u) 6= ∅, we have P1 ∪ P12 6= ∅.

• As P(w) 6= ∅, we have P12 ∪ P2 6= ∅.

• As P(u) 6= P(w) (since C(s1, s2; u,w) = 2), we have P1 ∪ P2 6= ∅.

Note that the conditions on the sets P1,P12,P2 are symmetric.

Reception of node u:(∑
x∈P1∪P12

αxβx,s1
)
· a+

(∑
x∈P1∪P12

αxβx,s2
)
· b

Reception of node w:(∑
x∈P12∪P2

αxβx,s1
)
· a+

(∑
x∈P12∪P2

αxβx,s2
)
· b

Let D :=

∣∣∣∣∣∣
∑

x∈P1∪P12
αxβx,s1

∑
x∈P1∪P12

αxβx,s2∑
x∈P12∪P2

αxβx,s1
∑

x∈P12∪P2
αxβx,s2

∣∣∣∣∣∣ . D is non-zero if and only if u,w can jointly

decode both symbols a and b.

For two nodes x, y, denote the determinant

∣∣∣∣∣∣βx,s1 βx,s2

βy,s1 βy,s2

∣∣∣∣∣∣ by β(x, y). Some algebra allows the

determinant D to be expressed as:

D =
∑
x∈P1

∑
y∈P12

αxαyβ(x, y) +
∑
x∈P12

∑
y∈P2

αxαyβ(x, y)

+
∑
x∈P2

∑
y∈P1

αxαyβ(x, y). (7)

Note that D is also symmetric in the sets P1,P12,P2. Let the special coding set P s2(v∗1)

be denoted by P . We are given that C (s1, s2;P) = 2. The constraint placed on the coding

coefficients of nodes in P is
∑

x∈P αxβx,s2 = 0.
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• Suppose P \ (P1 ∪ P12 ∪ P2) 6= ∅.

Because we have with high probability, βx,s2 6= 0∀x ∈ P , we can view the special coding as

all nodes in P1∪P12∪P2 performing random linear coding while nodes in P\(P1∪P12∪P2)

performing restricted coding. In this case, parent nodes of u and w perform RLC and so,

the claim is obviously true.

• Suppose P ⊆ P1 ∪P12 ∪P2 and suppose there are two non-empty sets among P ∩P1,P ∩

P12,P ∩ P2.

Without loss of generality, assume P ∩ P1 6= ∅. Fix x0 ∈ P ∩ P1. Find x1 ∈ P such that

C (s1, s2; x0, x1) = 2. If x1 ∈ P12 or x1 ∈ P2, then we have x0 ∈ P ∩ P1, and x1 ∈ P ∩ P12

or x1 ∈ P ∩ P2 such that C (s1, s2; x0, x1) = 2.

If x1 ∈ P1, then pick any node x2 in the non-empty set P ∩ (P12 ∪P2). By submodularity,

we have C (s1, s2; x0, x1, x2) + C (s1, s2; x2) ≤ C (s1, s2; x0, x2) + C (s1, s2; x1, x2) . Since the

two terms on the left are 2 and 1 respectively, at least one term on the right must be greater

than 1 and thus, 2.

Thus, we can always find nodes x0 ∈ P∩E, x1 ∈ P∩F, where (E,F ) = (P1,P12), (P12,P2)

or (P2,P1). such that C (s1, s2; x0, x1) = 2.

Suppose, without loss of generality, we have x1 ∈ P∩P1, x2 ∈ P∩P12 so that C (s1, s2; x1, x2) =

2. We set αx1 = β−1x1,s2

(∑
x∈P\{x1} αxβx,s2

)
.

Then, evaluating Equation (7) with this substitution for αx1 gives us a polynomial in (αx :

x ∈ P1 ∪ P12 ∪ P2 \ {x1}) with coefficients being rational functions in (βx,s1 , βx,s2 : x ∈

P1∪P12∪P2 \{x1}) which are themselves polynomials in the coding coefficients from the

past stages. This polynomial has a coefficient for α2
x2

only in the sum

∑
x∈P

∑
y∈P12∪P2

αxαyβ(x, y)

=
∑

x∈P\{x1}

∑
y∈P12∪P2

αy

[
αxβ(x, y) + αxβ

−1
x1,s2

βx,s2β(x1, y)
]

=
∑

x∈P\{x1}

∑
y∈P12∪P2

αxαy
βy,s2
βx1,s2

β(x1, x)

where the last equality follows from the identity βx,s2β(x1, y)+βx1,s2β(x, y)+βy,s2β(x1, x) =

0.
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Putting x = y = x2 gives the coefficient of α2
x2

to be βx2,s2
βx1,s2

β(x1, x2) which is not identically

zero since each of βx2,s2 , βx1,s2 , β(x1, x2) are not identically zero, the first two because x1, x2

lie in P and so are s2-reachable and the third because C (s1, s2; x1, x2) = 2.

Thus, D is not identically zero and hence, evaluates to a non-zero value with high probability.

• Finally, suppose P ⊆ P1 or P ⊆ P12 or P ⊆ P2.

– First, suppose P ⊆ P1. Fix x1 ∈ P . There exists x2 ∈ P such that C (s1, s2; x1, x2) = 2.

Force αx1 = β−1x1,s2

(∑
x∈P\{x1} αxβx,s2

)
.

D

=
∑
x∈P1

∑
y∈P12∪P2

αxαyβ(x, y) +
∑
x∈P12

∑
y∈P2

αxαyβ(x, y)

=
∑
x∈P

∑
y∈P12∪P2

αxαyβ(x, y)

+
∑

x∈P1\P

∑
y∈P12∪P2

αxαyβ(x, y) +
∑
x∈P12

∑
y∈P2

αxαyβ(x, y)

=
∑

x∈P\{x1}

∑
y∈P12∪P2

αxαy
βy,s2
βx1,s2

β(x1, x)

+
∑

x∈P1\P

∑
y∈P12∪P2

αxαyβ(x, y) +
∑
x∈P12

∑
y∈P2

αxαyβ(x, y)

As u /∈ Ks2(v∗1), we have that some node y0 ∈ P12 is s2-reachable. Then, βy0,s2 is not

identically zero and the coefficient of αx2αy0 is not identically zero.

– Suppose P ⊆ P12. Then, fix x1 ∈ P . There exists x2 ∈ P such that C (s1, s2; x1, x2) = 2.

Force αx1 = β−1x1,s2

(∑
x∈P\{x1} αxβx,s2

)
.

D =
∑

x∈P\{x1}

∑
y∈P1∪P2

αxαy
βy,s2
βx1,s2

β(x1, x) +
∑

x∈P12\P

∑
y∈P1∪P2

αxαyβ(x, y)

+
∑
x∈P1

∑
y∈P2

αxαyβ(x, y).

Again, since u /∈ Ks2(v∗1), we have that some node y0 ∈ P1 is s2-reachable. Then, βy0,s2
is not identically zero and the coefficient of αx2αy0 is not identically zero.

– Now, suppose P ⊆ P2. Then, fix x1 ∈ P . There exists x2 ∈ P such that C (s1, s2; x1, x2) =
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2. Force αx1 = β−1x1,s2

(∑
x∈P\{x1} αxβx,s2

)
.

D =
∑

x∈P\{x1}

∑
y∈P1∪P12

αxαy
βy,s2
βx1,s2

β(x1, x) +
∑

x∈P2\P

∑
y∈P1∪P12

αxαyβ(x, y)

+
∑
x∈P1

∑
y∈P12

αxαyβ(x, y).

Again, as u is s2-reachable, we have that some node y0 ∈ P1 ∪ P12 is s2-reachable.

Then, βy0,s2 is not identically zero and the coefficient of αx2αy0 is not identically zero.

N. Proof of Lemma 5.7

For A ⊆ U , define f(A) as the rank of the |A| × 2 matrix with rows given by
[
λu µu

]
for

u ∈ A, and define g(A) = C (A;V) . Then, f(·), g(·) are rank functions of two matroids on the

same ground set U . The given conditions tell us that both these matroids have rank at least two

and every singleton subset has rank 1 in both matroids. We will first show that there exist a

two-element subset of U that has rank 2 in both matroids.

Find two elements x, y ∈ U , such that f({x, y}) = 2. If g({x, y}) = 2, we have found the

desired two-element subset. Else, we must have g({x, y}) = 1. Then, there exists an element

z ∈ U such that g({x, z}) = 2. If f({x, z}) = 2, we have the required 2-element subset. Else if

we have f({x, z}) = 1, then by submodularity, we must have

f({z}) + f({x, y, z}) ≤ f({x, z}) + f({y, z})

g({y}) + g({x, y, z}) ≤ g({x, y}) + g({y, z})

These give f({y, z}), g({y, z}) ≥ 2, and thus, {y, z} is the required subset of U that has rank

2 in both matroids.

Thus, we have two nodes x, y ∈ U such that

∣∣∣∣∣∣λx µx

λy µy

∣∣∣∣∣∣ 6= 0 and C (x, y;V) = 2.

Again, for A ⊆ V , the function defined by h(A) = C (x, y;A) is the rank function of a matroid

over ground set V that has rank two. Thus, there exist u,w ∈ V such that C (x, y; u,w) = 2.

Thus, when all nodes perform RLC except nodes in U \{x, y} remain silent, we have that u, v

can jointly recover both symbols a and b.

Now, if all nodes perform RLC, the a and b coefficients of the receptions of nodes u, v would

be polynomials in the random coding coefficients with a determinant that is a polynomial that

is not identically zero. QED.
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O. Proof of Lemma 5.8

If v∗2 has a parent from user 1’s cloud C1, then in either G12 or G ′12 since this node in the cloud

becomes s1-only-reachable while v∗2 can be reached by s2, v∗2 remains to be the critical node for

user 2, ie., PmcG12(d2) = PmcG′12(d2) = v∗2. Since the s1-clones of v∗2 form an (s1; d1)-vertex-cut

in G12 but not in G, the only possibility is that some parents of v∗2 are not in the cloud C1 and

are dropped in G12. These nodes are descendants of P s2(v∗1), which becomes s1-only-reachable

in G ′12. Therefore in G ′12, v∗2 has some s1-reachable parents that is not in the cloud C1, and hence

the s1-clones of v∗2 do not form an (s1; d1)-vertex-cut in G ′12.

In the rest of the proof we deal with the case where v∗2 has no parents from user 1’s cloud C1.

Hence “s1-clones of v∗2 form an (s1; d1)-vertex-cut in G12” implies that CG12(s1, s2;PG12(v∗2)) = 1.

We shall show that, for all possible G ′12, either CG′12(s1, s2;PG′12(v
∗
2)) = 2, which implies that

PmcG′12(d2) = v∗2 and s1-clones of v∗2 do not form an (s1; d1)-vertex-cut in G ′12, or directly prove

the statement.

Below a few notations are given before we proceed. U :=
{
u ∈ Lk∗1 : u can reach d2

}
. U|G′12

and U|G12 denote the nodes in the same layer as v∗1 that can reach d2 in G ′12 and G12 respectively.

Recall that R is the set of nodes in P s2(v∗1) that can reach one of the two destinations in G12.

Define the following subsets of U : (use short-hand notations P for P s2(v∗2) and S := P \ R)

UP := {u : P(u) ⊇ P} , UQ := {u : P(u) ∩ P = ∅}

UR := {u : P(u) ∩ P 6= ∅,P(u) ∩ P ⊆ R}

US := {u : S ⊆ P(u) ∩ P ( P}

Note that these four sets form a partition of U , and Ks2(v∗1) ∩ U ⊆ UP .

Let us consider the following two cases: 1) R 6= ∅, and 2) R = ∅. Note that when generating

induced graphs G12 and G ′12, some nodes may be dropped as they are no longer reachable from

the sources. Consequently U|G12 and U|G′12 may be strictly contained in U . In the following

discussion, we shall further distinguish into these cases.

1) R 6= ∅:

We shall show that in this case, CG′12(s1, s2;PG′12(v
∗
2)) = 2.

(A) U|G′12 = U : Since no nodes are dropped in U when generating G ′12, no nodes will be dropped

in the later layers and C (U ;P(v∗2)) remains the same in G and G ′12. As C (U ;P(v∗2)) ≥ 2 and
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all non-vertical cuts have cut-values at least 2, we only need to show that CG′12 (s1, s2;U) = 2.

(i) U|G12 = U :

In this case, since U|G12 = U , we have CG12 (U|G12 ;PG12(v∗2)) = C (U ;P(v∗2)) ≥ 2. Therefore,

CG12(s1, s2;PG12(v∗2)) = 1 implies that CG12(s1, s2;U|G12) = 1.

Suppose that C (s1, s2;UR) = 2. Since nodes in UR will not be affected in generating G12,

CG12 (s1, s2;UR) = 2. Hence CG12 (s1, s2;U|G12) = 2, contradicting the above fact. Besides,

UR 6= ∅. Therefore, C (s1, s2;UR) = 1.

Find a node u ∈ U such that C (s1, s2;UR ∪ {u}) = 2. Below we show that this node u ∈ US
by contradiction. Suppose u ∈ UQ. As the nodes in UQ will not be affected in generating

G12, we have CG12 (s1, s2;UR ∪ {u}) = C (s1, s2;UR ∪ {u}) = 2, contradicting the above fact

that CG12(s1, s2;U|G12) = 1. Next, suppose u ∈ UP . Let us first consider the min-cut value

from {s1, s2} to the collection of parents of UR ∪ {u}, denoted by P (UR ∪ {u}). It is 2 in

G. In G12, nodes in S are dropped, but nodes in R and nodes in P (UR ∪ {u}) \ P are not.

Therefore the min-cut value is again 2 since nodes in R receive the same linear combination

as those in P under any RLC scheme. Second, it is clear that in G12, UR ∪ {u} are not

clones as u has no parents in R. Hence, CG12 (s1, s2;UR ∪ {u}) = 2, again contradicting the

above fact that CG12(s1, s2;U|G12) = 1.

Hence, u ∈ US for all such u. We use the same argument as above to show that the min-cut

value from {s1, s2} to P (UR ∪ {u}) is again 2 in G12. Then CG12(s1, s2;U|G12) = 1 implies

that UR∪{u} become clones in G12. Next, we turn to look at G ′12. First, obviously UR∪{u}

are not clones in G ′12, as u has some parents in S which are not dropped in G ′12. Second,

CG′12
(
s1, s2;PG′12(U)

)
= 2 as R becomes s1-only-reachable in G ′12 while s2 can reach some

other node in PG′12(U). Combining the above two, we have shown that CG′12 (s1, s2;U) = 2.

(ii) U|G12 6= U :

Some nodes in U are dropped in generating G12 and hence U ∩ Ks2(v∗1) 6= ∅. The nodes in

this intersection will be come s1-only-reachable in G ′12. Since some nodes in U|G′12 = U can

be reached by s2 in G ′12, we conclude that CG′12 (s1, s2;U) = 2.

(B) U|G′12 6= U : Some nodes in U are dropped in generating G ′12, and the collection of these

nodes is U \ U|G′12 . In the same layer as P s2(w12), consider the collection of predecessors

of nodes in U \ U|G′12 . It must be equal to P s2(w12), otherwise nodes in U \ U|G′12 would
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not be dropped in generating G ′12. Hence, U \ U|G′12 cannot be reached by K(w12), and

has no parents in P . Therefore U \ U|G′12 ⊆ UQ. Nodes in U \ U|G′12 hence will not be

dropped in G12 and CG12 (s1, s2;UR ∪ UQ) = 2, as nodes in U \ U|G′12 can only be reached

by P s2(w12) while nodes in UR can be reached by w12 and its s1-only-reachable parents.

Hence, the only possibility such that CG12(s1, s2;PG12(v∗2)) = 1 is that U|G12 6= U and

CG12(U|G12 ;PG12(v∗2)) = 1.

Note that CG′12
(
U|G′12 ;PG′12(v

∗
2)
)

= C
(
U|G′12 ;P(v∗2)

)
and CG12 (U|G12 ;PG12(v∗2)) = C (U|G12 ;P(v∗2)).

Also note that U \ U|G12 will not be dropped in G ′12, and U \ U|G′12 will not be dropped

in G12. Hence U is partitioned by U \ U|G′12 , U \ U|G12 , and U|G12 ∩ U|G′12 . Furthermore,

UR ⊆ U|G12 ∩ U|G′12 .

We first show that C
(
U|G′12 ;P(v∗2)

)
≥ 2. Define a function of the subsets of U by

f(A) := C (A;P(v∗2)) , A ⊆ U .

Since f is submodular, we have

3
(a)

≤ f
(
U|G12 ∩ U|G′12

)
+ f (U) ≤ f (U|G12) + f

(
U|G′12

)
(b)
= 1 + f

(
U|G′12

)
=⇒ f

(
U|G′12

)
≥ 2.

(a) is due to f (U) ≥ 2 and f
(
U|G12 ∩ U|G′12

)
≥ 1 since UR ⊆ U|G12 ∩ U|G′12 . (b) is due to

f (U|G12) = 1.

Next we show that CG′12
(
s1, s2;U|G′12

)
= 2. This is easy to see, since U \U|G12 will become

s1-only-reachable in G ′12 and some other nodes in U|G′12 can be reached by s2.

Combining the above arguments, we conclude that CG′12
(
s1, s2;PG′12(v

∗
2)
)

= 2.

2) R = ∅:

In this case, U = UP ∩ UQ. For notational convenience, we denote P(U) \ P by Q. Since

in G12 the nodes in P no longer connects to UP , P(U|G12) = Q. Note that if UP 6= ∅, then

CG′12
(
s1, s2;P(U|G′12)

)
= 2 since P ⊆ P(U), and nodes in P become s1-only-reachable in G ′12

while some other nodes in P(U|G′12) can be reached by s2.

CG12 (s1, s2;PG12(v∗2)) = 1 implies that: (A) CG12 (s1, s2;Q) = 1, (B) CG12 (Q;U|G12) = 1, or

(C) CG12 (U|G12 ;PG12(v∗2)) = 1. Below we discuss the three cases respectively.

(A) CG12 (s1, s2;Q) = 1: Suppose UP = ∅, then P(U) = Q, and CG12 (s1, s2;Q) = 1 im-

plies C (s1, s2;Q) = 1 contradicting the definition of v∗2. Hence UP 6= ∅, implying that
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CG′12
(
s1, s2;P(U|G′12)

)
= 2.

If U|G′12 are not clones in G ′12 and CG′12
(
U|G′12 ;PG′12(v

∗
2)
)
≥ 2, then CG′12

(
s1, s2;PG′12(v

∗
2)
)

=

2.

If U|G′12 become clones in G ′12, then u′21 := PmcG′12(d1) must belong to this new clone

set. Its parent set is P ∪ Q|G′12 , as some nodes in Q may be dropped in G ′12. P becomes

s1-only-reachable in G ′12, while v∗1 has some s1-only-reachable parents not in P . Hence,

KG′12v
∗
1 ∩ K

s1
G′12

(u′21) = ∅, and Ks1
G′12

(u′21) does not form a (s1; d1)-vertex-cut in G ′12.

If CG′12
(
U|G′12 ;PG′12(v

∗
2)
)

= 1, then U|G′12 6= U , that is, some nodes in UQ are dropped in

G ′12. But no nodes in UP will be dropped. A node in UP is s1-reachable in G ′12, and is

an predecessor of u′21. This node cannot lie in K(v∗1), otherwise Q contains some s1-only-

reachable nodes implying that all nodes in Q are s1-only-reachable, contradicting the fact

that in G ′12 some nodes in Q|G′12 can be reached by s2. Hence this node is not an predecessor

of any node in the cloud C1. In G ′12, u′21 has a s1-reachable parent whose predecessors include

this node in UP , and this parent is not in the cloud C1. Therefore, Ks1
G′12

(u′21) does not form

a (s1; d1)-vertex-cut in G ′12.

(B) CG12 (Q;U|G12) = 1: In this case, U|G12 become clones in G12. Suppose UP = ∅. Then

U|G12 = U , and U are clones in G, contradicting the definition of v∗2. Hence UP 6= ∅,

implying that CG′12
(
s1, s2;P(U|G′12)

)
= 2. Moreover, we see that UQ are clones in G.

Suppose U|G′12 6= U . We know that U \U|G′12 ⊆ UQ. Since UQ are clones in G, we conclude

that U \ U|G′12 = UQ, implying that all nodes in UQ and Q will be dropped in G ′12. This

contradicts the fact that some nodes in U|G′12 can be reached by s2. Therefore, U|G′12 = U .

In G ′12, nodes in UP have parents in P . Therefore obviously U|G′12 = U are not clones in

G ′12. Combining the above discussions, we conclude that CG′12
(
s1, s2;PG′12(v

∗
2)
)

= 2.

(C) CG12 (U|G12 ;PG12(v∗2)) = 1: In this case, we must have UG12 6= U . If U|G′12 = U , we use the

same argument in Case 1)(A)(ii) to show that CG′12
(
s1, s2;PG′12(v

∗
2)
)

= 2. If If U|G′12 6= U ,

we use the same argument in Case 1)(B)(ii) to show that CG′12
(
s1, s2;PG′12(v

∗
2)
)

= 2.

Proof of the claim is now complete.

APPENDIX B

(1/2, 1)-ACHIEVABILITY IN CASE A WHEN k∗1 = k∗2 = k∗

We first state a useful lemma.
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Lemma B.1: Let p(α1, α2, . . . , αn), q(α1, α2, . . . , αn) ∈ F2[α1, α2, . . . , αn] such that p, q are

not identically equal to zero or to each other. If α1, α2, . . . , αn are chosen independently and

uniformly over F2k , then

• q(α1, α2, . . . , αn) 6= 0 with probability at least 1 − O( 1
2k

), so the rational function p
q

is

well-defined with high probability,

• and P (p
q

= γ) = O( 1
2k

) for all γ ∈ F2k .

Proof: We use a standard result from finite fields which states that if a multivariate poly-

nomial g in n variables over finite field F with degree in each variable at most d, is evaluated

at an argument chosen uniformly over the set of possible arguments, then it yields zero with

probability at most nd
|F| , provided of course that the polynomial is not identically zero.

This proves the first item in the lemma with g = q and the second item in the lemma for the

case γ = 0 using g = p.

For γ = 1, we use the fact that p− q is not identically zero to get P (p
q

= 1) = O( 1
2k

).

For any other γ ∈ F2k , we notice that p− γq cannot possibly be identically zero unless both

p and q are identically zero. This is because p, q have coefficients from F2 while γ 6= 0, 1. This

establishes that p− γq evaluates to zero with probability atmost O( 1
2k

).

We start the proof of (1/2, 1)-achievability below.

Here, we have

• P s1(v∗1) \ P s1(v∗2) 6= ∅,P s2(v∗2) \ P s2(v∗1) 6= ∅,

• u1 ∈ P s1(v∗1) \ P s1(v∗2) 6= ∅ and u2 ∈ P s2(v∗2) \ P s2(v∗1) 6= ∅,

• u1 is s1-only-reachable and u2 is s1s2-reachable,

• w2 ∈ P(v∗2) such that C (s1, s2; u2,w2) = 2, and w2 is a parent of v∗1, and w2 is s2-reachable.

We will use RLC for the transmission of all nodes in layers 0 through k∗ − 2. The RLC is

performed without mixing across the time steps. In the first time step, s1 transmits the symbol

a while s2 transmits the symbol b1. In the second time step, s1 transmits symbol a while s2

transmits the symbol b2.

Suppose now that w2 is s1s2-reachable.

Consider the scheme where w2 and u2 both zero-force user 1’s symbol a. u1 and u2 transmit

in the first time slot, thus causing no interference at v∗1 and v∗2. w2 transmits in the second time

slot.
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We have β(1)
u1,s2 = β

(1)
u1,s2 = 0, while β(1)

u1,s1 6= 0 with high probability from Lemma 5.1. Thus

u1 can decode s1’s symbol a with high probability.

Now, the receptions of u2 in the two time slots are β(1)
u2,s1 ·a+β

(1)
u2,s2 ·b1 and β(2)

u2,s1 ·a+β
(2)
u2,s2 ·b2

respectively. Similarly, the receptions of w2 are β(1)
w2,s1 ·a+β

(1)
w2,s2 ·b1 and β(2)

w2,s1 ·a+β
(2)
w2,s2 ·b2. Note

that the coefficients of these symbols are all non-zero with high probability from Lemma 5.1.

The zero-forcing yields:

• Transmission of u2 : β
(1)
u2,s2β

(2)
u2,s1 · b1 − β

(2)
u2,s2β

(1)
u2,s1 · b2

• Transmission of w2 : β
(1)
w2,s2β

(2)
w2,s1 · b1 − β

(2)
w2,s2β

(1)
w2,s1 · b2

To show that v∗2 can decode, we only need to show that the determinant

∣∣∣∣∣∣β
(1)
u2,s2β

(2)
u2,s1 −β(2)

u2,s2β
(1)
u2,s1

β
(1)
w2,s2β

(2)
w2,s1 −β

(2)
w2,s2β

(1)
w2,s1

∣∣∣∣∣∣
is non-zero, ie that β(1)

u2,s2β
(2)
u2,s1β

(2)
w2,s2β

(1)
w2,s1 6= β

(2)
u2,s2β

(1)
u2,s1β

(1)
w2,s2β

(2)
w2,s1 or

β
(1)
u2,s2β

(1)
w2,s1

β
(1)
u2,s1β

(1)
w2,s2

6= β
(2)
u2,s2β

(2)
w2,s1

β
(2)
u2,s1β

(2)
w2,s2

Note that the coefficients with 1 superscript are independent of the coefficients with 2 su-

perscript. So, LHS and RHS are two independent and identically distributed random variables

taking values in F2r .

By Lemma 5.2, we have that the determinant

∣∣∣∣∣∣β
(1)
u2,s1 β

(1)
u2,s2

β
(1)
w2,s1 β

(1)
w2,s2

∣∣∣∣∣∣ 6= 0 with high probability. So,

the above random variable is not equal to 1 with high probability.

Now, we note that the random variable is a ratio of two polynomials with coefficients from

F2, a ratio that is not identically 1. The equality stating that the ratio equals γ ∈ F2r , γ 6= 0, 1

is an equality stating that a polynomial not identically zero evaluates to 0. If all coefficients are

chosen indpendently and uniformly at random, this polynomial evaluates to 0 with probability

O
(

1
|F2r |

)
. Thus, the random variable does not concentrate on any given value γ ∈ F2r and so,

two independent and identically distributed copies of the random variable are unequal with high

probability.

Suppose that w2 is s2-only-reachable. Then, u1, u2 transmit in the first time slot with u2 zero-

forcing user 1’s symbol a. In the second time slot, w2 which can recover both b1 and b2 with

high probability, provides a linearly independent signal to u2’s transmission.
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APPENDIX C

FORMAL PROOFS OF OUTER BOUNDS

A. Proof of the Omniscient Bound

Since K(v) is a (s1, s2; d1)-vertex-cut, the received signal at d1, Yd1 is a function of Yv. On

the other hand, since Ks2(v) is a (s2; d2)-vertex-cut, we have that Y N
d2

is a function of XN
s1

and

Y N
v . Hence we have the Markov chains

XN
s1
↔ Y N

v ↔ Y N
d1

(8)

XN
s2
↔
(
Y N
v , XN

s1

)
↔ Y N

d1
(9)

By Fano’s inequality and the data processing inequality, we have for any scheme of block length

N,

N (R1 +R2 − εN)

≤ I
(
XN

s1
;Y N

d1

)
+ I

(
XN

s2
;Y N

d2

)
≤ I

(
XN

s1
;Y N

v

)
+ I

(
XN

s2
;Y N

v , XN
s1

)
(from (8) and (9))

≤ I
(
XN

s1
;Y N

v

)
+ I

(
XN

s2
;Y N

v |XN
s1

)
= H

(
Y N
v

)
−H

(
Y N
v |XN

s1

)
+H

(
Y N
v |XN

s1

)
= H

(
Y N
v

)
≤ N,

where εN → 0 as N →∞. Hence R1 +R2 ≤ 1.

B. Proof of Claim 6.1

Proof: If (R1, R2) is achievable, from data processing inequality and Fano’s inequality, we

have

N (2R1 +R2 − εN)

≤ I
(
XN

s1
;Y N

d1

)
+ I

(
XN

s1
;Y N

d1

)
+ I

(
XN

s2
;Y N

d2

)
(a)

≤ I
(
XN

s1
;ZN

21, X
N
s2

)
+ I

(
XN

s1
;ZN

1

)
+ I

(
XN

s2
;ZN

21, Z
N
22

)
(b)
= I

(
XN

s1
;ZN

21|XN
s2

)
+ I

(
XN

s1
;ZN

1

)
+ I

(
XN

s2
;ZN

21, Z
N
22

)
= H

(
ZN

21|XN
s2

)
+H

(
ZN

1

)
−H

(
ZN

1 |XN
s1

)
+H

(
ZN

21, Z
N
22

)
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−H
(
ZN

21, Z
N
22|XN

s2

)
(c)
= H

(
ZN

1

)
+H

(
ZN

21|XN
s2

)
−H

(
ZN

21|XN
s2

)
+H

(
ZN

21, Z
N
22

)
−H

(
ZN

1 |XN
s1

)
(d)

≤ H
(
ZN

1

)
+H

(
ZN

21, Z
N
22

)
−H

(
ZN

22

)
= H

(
ZN

1

)
+H

(
ZN

21|ZN
22

) (e)

≤ 2N

where εN → 0 as N →∞. (a) is due to condition 2) and 3). (b) is due to the fact that XN
s1

and

XN
s2

are independent. (c) is due to condition 5) and rearranging terms. (d) is due to condition

4). (e) is due to condition 1).

C. Proof of Claim 6.2

Proof: If (R1, R2) is achievable, from data processing inequality and Fano’s inequality, we

have

N (2R1 +R2 − ε1,N)

≤ I
(
XN

s1
;Y N

d1

)
+ I

(
XN

s1
;Y N

d1

)
+ I

(
XN

s2
;Y N

d2

)
(a)

≤ I
(
XN

s1
;ZN

21, Z
N
22, X

N
s2

)
+ I

(
XN

s1
;ZN

11

)
+ I

(
XN

s2
;ZN

21, Z
N
22

)
(b)
= I

(
XN

s1
;ZN

21, Z
N
22|XN

s2

)
+ I

(
XN

s1
;ZN

11

)
+ I

(
XN

s2
;ZN

21, Z
N
22

)
= H

(
ZN

21, Z
N
22|XN

s2

)
+H

(
ZN

11

)
−H

(
ZN

11|XN
s1

)
+H

(
ZN

21, Z
N
22

)
−H

(
ZN

21, Z
N
22|XN

s2

)
(c)

≤ H
(
ZN

11

)
−H

(
ZN

22|XN
s1

)
+H

(
ZN

22

)
+H

(
ZN

21|ZN
22

)
(d)
= H

(
ZN

11

)
+H

(
ZN

21|ZN
22

)
+ I

(
XN

s1
;ZN

22

)
(e)

≤ 2N + I
(
XN

s1
;ZN

12

)
,

where ε1,N → 0 as N → ∞. (a) is due to condition 2) and 3). (b) is due to the fact that XN
s1

and XN
s2

are independent. (c) is due to cancellation of terms and condition 4). (d) is due to

I
(
XN

s1
;ZN

22

)
= H

(
ZN

22

)
−H

(
ZN

22|XN
s1

)
. (e) is due to condition 1) and 5).
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We see that we cannot upper bound 2R1 +R2 by 2 in this case. On the other hand,

N (R2 − ε2,N) ≤ I
(
XN

s2
;Y N

d2

)
(a)

≤ I
(
XN

s2
;ZN

12, X
N
s1

) (b)
= I

(
XN

s2
;ZN

12|XN
s1

)
= H

(
ZN

12|XN
s1

)
.

where ε2,N → 0 as N →∞. (a) is due to condition (3). (b) is due to the fact that XN
s1

and XN
s2

are independent.

Combining the above two, we have

N (2R1 + 2R2 − εN)

≤ 2N + I
(
XN

s1
;ZN

12

)
+H

(
ZN

12|XN
s1

)
= 2N +H

(
ZN

12

)
(a)

≤ 3N,

where εN = ε1,N + ε2,N → 0 as N →∞. (a) is due to condition 1). Proof complete.
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