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ABSTRACT Nucleic acid sequence classification is a fundamental task in the field of bioinformatics. Due to
the increasing amount of unlabeled nucleotide sequences, fast and accurate classification of them on a large
scale has become crucial. In this work, we developed NASCUP, a new classification method that captures
statistical structures of nucleotide sequences by compact context-tree models and universal probability from
information theory. A comprehensive experimental study involving nine public databases for functional non-
coding RNA, microbial taxonomy and coding/non-coding RNA classification demonstrates the advantages
of NASCUP over widely-used alternatives in efficiency, accuracy, and scalability across all datasets consid-
ered. NASCUP achieved BLAST-like classification accuracy consistently for several large-scale databases in
orders-of-magnitude reduced runtime, and was applied to other bioinformatics tasks such as outlier detection
and synthetic sequence generation.

INDEX TERMS Bioinformatics, context-tree models, information theory, sequence classification, universal
probability.

I. INTRODUCTION
Sequence classification plays a key role in various bioin-
formatics pipelines by revealing the proximity and mem-
bership of a biological sequence to known sequence groups
[1]–[5]. Expedited by new sequencing technologies,
nucleotide sequence databases are rapidly expanding at a
rate that exceeds that of the technologies to handle the
bioinformatics around the sequences [6]. Moreover, exist-
ing databases sometimes contain mislabeled sequences that
can potentially impair the identification accuracy signifi-
cantly [7]. To address these challenges, we present NASCUP,
an accurate and computationally efficient classification
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method that is scalable for large and growing datasets and
robust against mislabeling errors.

Common approaches to sequence classification can be
broadly divided into two categories—alignment-based and
model-based ones. In alignment-based approaches, the class
of the query sequence is determined by sequence-to-sequence
comparison. Alignment tools, including BLAST [8], typi-
cally exhibit high accuracy, but are vulnerable to errors and
often becomes time-consuming as the number of sequences
increases. Model-based approaches, such as RDP [9],
HMMER [10], and Phymm [11], derive statistical mod-
els from each group of sequences and compare the query
sequence to these models. Sequence-to-model comparison
is more scalable than sequence-to-sequence comparison,
but it is often difficult to extract a model from a group
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of sequences that is statistically meaningful and does not
overfit the data. The proposed NASCUP, which belongs
to model-based classification method, combines the mer-
its of existing model-based methods and compression-based
methods. By utilizing compact context-tree models along
with the notion of universal probability from information
theory, NASCUP delivers high accuracy comparable to the
sequence-to-sequence comparison approaches, while provid-
ing robustness and scalability as a computationally efficient
sequence-to-model comparison approach suitable for large-
scale, expanding datasets.

NASCUP utilizes the context-tree model constructed from
k-mer statistics of training sequences with the notion of
minimax universal probability measure used in information
theory [12]–[14]. This allows for efficient and effective mod-
eling and classification of multiple sequences in two stages,
improving significantly upon the performance and scalability
of compression based approaches. In addition to alleviating
the efficiency problem of existing k-mer based approaches
(sparse vs. dense trees) in representing the probabilistic struc-
ture of a sequence, these contexts also capture the textual
information of the sequence by only keeping segments of
statistical importance.

SinceNASCUP does not rely on any sequence-to-sequence
comparison, the classification time of NASCUP is indepen-
dent of the number of sequences per family, which enables
a significant speedup. For gigabase-scale databases, such
as Greengenes [15] and SILVA [16], many alignment-based
methods would take days or even weeks for database-
wide classification, whereas the time demand of NASCUP
is orders-of-magnitude lower. NASCUP runs faster than
HMM-based approaches which require MSA preprocessing
and ICM-based approaches which also utilize context trees.

In this study, we experimentally prove highly competitive
performance of NASCUP in diverse datasets in terms of
classification accuracy and time efficiency. Regardless of the
number of families and the level of intra-family sequence
similarity, which affected the performance of most of the
alternatives, NASCUP successfully maintained its accuracy
with sufficiently fast speed, confirming its robustness.

II. BACKGROUND
A. MARKOV AND CONTEXT-TREE MODELS
The simplest probabilistic model for nucleotide sequences
is the independent and identical distribution (IID) model
that assigns one of the four fixed probabilities pA, pC, pG,
and pT to each symbol, and computes the probability of the
entire sequence as the product of those probabilities. More
precisely, a sequence x = X1 · · ·Xn with symbols A,C,G,
and T respectively appearing nA, nC, nG, and nT times has the
probability

P(x) = pnAA p
nC
C p

nG
G p

nT
T . (1)

A d-th order Markov model introduces dependence across
d + 1 consecutive symbols (i.e., k-mers for k = d +
1) by assigning one of the probabilities pA(s), pC(s), pG(s),

and pT(s) to the symbol Xi at position i if the previ-
ous d symbols Xi−d · · ·Xi−1, namely, the state, is equal
to s. For example, a second-order Markov model assigns
the probability pG(GG)2pA(GG)pC(GG)pG(AG)pG(GA) to the
sequence GG|GAGGGC from the third position. In gen-
eral, a d-th order Markov model assigns the probability
P(x) =

∏n
i=d+1 pXi (Xi−d · · ·Xi−1) to the sequence x =

X1 · · ·Xd |Xd+1 · · ·Xn from the (d+1)-st position. By parsing
the sequence into subsequences by states, this probability can
be equivalently expressed as

P(x) =
∏
s

Ps(x)

=

∏
s

pA(s)nA(s)pC(s)nC(s)pG(s)nG(s)pT(s)nT(s), (2)

where the products are over all states s ∈ {A,C,G,T}d ,
Ps(x) denotes the probability assigned to the subsequence of
x in state s (that is, the symbols in x that are preceded by
s), and nX(s) denotes the number of occurrences of symbol
X ∈ {A,C,G,T} in that subsequence. An IID model cor-
responds to a zeroth-order Markov (1-mer) model with the
empty string as the only state, and that a d-th order Markov
model can be decomposed as multiple IID models, each cor-
responding to one of the 4d distinct states. A hidden Markov
model used in HMMER [10] is a generalization of a Markov
model by stochastically transforming a Markov model
symbol-by-symbol.

A context-tree model (CTM) [17] is both a specialization
and generalization of a Markov model, in which states with
a common suffix share the same probability assignments
and thus are aggregated to form a context. For example,
the set {AA,CA,GA,TA} consists of all possible states of a
second-order Markov chain that has the common suffix A.
This set is represented in shorthand notation *A, where *
denotes ‘‘any’’ symbol. Since the probability assignments are
the same for all states in the context *A, the symbols preceded
by A effectively follow a first-order Markov distribution.
Since the effective Markov order varies from one context
to another, a CTM is also referred to as a variable-order
Markov model [18]. Each CTM is represented by a collec-
tion S of contexts that partition {A,C,G,T}d and parame-
ters p(s) = (pA(s), pC(s), pG(s), pT(s)) associated with each
context s ∈ S. Using the contexts in S in as leaves and
merging contexts that share suffixes in a hierarchical manner,
we can form a proper (that is, each node has 0 or 4 children)
suffix tree with root node *

d
= * · · ·* (d times). For

example, the contexts *A,AC,CC,GC,TC,*G,*T partition
{A,C,G,T}2 and form a suffix tree. Consequently, a CTM is
equivalently represented by a suffix tree along with probabil-
ity assignments on its leaves, and thus is referred to as a prob-
abilistic suffix tree model [19] as well. A d-th order Markov
model can be viewed as a CTM on a perfect suffix tree that
has {A,C,G,T}d as its 4d leaves. A typical CTM of depth d
consists of a fewer number of contexts (and corresponding
probability parameters) than a d-th order Markov model,
providing a more succinct representation of the data. A CTM
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can be further generalized by allowing states to be merged
to a context at any position, e.g., A* = {AA,AC,AG,AT}.
An interpolated context model used in Phymm [11] is a mix-
ture of such generalized CTMs. NASCUP uses only suffix
trees since this restriction does not incur any empirical perfor-
mance loss compared to CTMs, and it allows computationally
efficient comparison among all suffix trees.

B. MAXIMUM LIKELIHOOD AND UNIVERSAL
PROBABILITY ESTIMATES
When the parameters pA, pC, pG, pT of an IID model are
not known, the most naive approach to estimating the true
probability P(x) of a given sequence x is to find the param-
eters that maximize the sequence probability expression
in (1) and then to compute the probability of the entire
sequence using these parameter estimates. It can be easily
verified that the empirical probabilities (pA, pC, pG, pT) =
(nA/n, nC/n, nG/n, nT/n) maximize (1) for any sequence x
with symbol counts nA, nC, nG, nT and length n = nA + nC +
nG+ nT. The resulting maximum likelihood (ML) estimate of
the true probability is

QML(x) =
(
nA
n

)nA(nC
n

)nC(nG
n

)nG(nT
n

)nT
. (3)

Note that QML(x) is a function only of the symbol count
vector n = (nA, nC, nG, nT). Hence, with a slight abuse of
notation, we will write the righthand side (RHS) of (3) as
QML(n). More generally, for a depth-d CTM on a given
context set S with unknown parameters p(s), s ∈ S, the ML
estimate QML(x) of the true probability P(x) =

∏
s Ps(x)

(from the (d + 1)-st position) as in (2) is the product of the
ML estimates of subsequence probabilities Ps(x), namely,

QML(x) =
∏
s∈S

QML(n(s)), (4)

where QML(n(s)) denotes the ML estimate of an IID prob-
ability in (3) evaluated with the count vector n(s) =
(nA(s), nC(s), nG(s), nT(s)) for context s. The ML estimate
QML(x) overfits the given data x by discounting the symbols
that did not appear in it. In fact, QML(·) is not a valid proba-
bility assignment since the sum of the estimated probabilities
QML(x) over all sequences x ∈ {A,C,G,T}n is greater than 1.
As an alternative, NASCUP relies on the notion of uni-

versal probability [20], [21] in information theory that is
chosen independent of the data x and is close to all unknown
probability models in a given class. The most basic exam-
ple of universal probability is the Krichevski–Trofimov (KT)
estimate [12] for IID models that assigns the sequence
probability

QKT(x) =
∫
pnAA p

nC
C p

nG
G p

nT
T f (pA, pC, pG, pT)dpAdpCdpGdpT,

(5)

where f (pA, pC, pG, pT) is the Dirichlet prior on the quater-
nary probability simplex with parameters 1/2, 1/2, 1/2, 1/2.
As a Dirichlet mixture of IID models, the KT estimate is a

valid probability assignment (that is, QKT(x) ≥ 0 for every
x and

∑
x Q

KT(x) = 1). Moreover, QKT is uniformly close
to every IID probability model P on quaternary sequences of
length n in the sense that both the relative entropy (Kullback–
Leibler divergence) [22]

D(P‖QKT) =
∑

x∈{A,C,G,T}n
P(x) log

P(x)
QKT(x)

and the maximum log likelihood ratio

max
x

log
P(x)
QKT(x)

are upper bounded by (3/2) log n plus uniform constants
independent of P, which vanishes when normalized by the
sequence length n and is essentially tight as no other prob-
ability estimate can approximate all IID probability models
uniformly closer [23], [24].

Since the Dirichlet distribution is the conjugate prior for
the parameters of an IID model, the KT probability estimate
has the predictive ‘‘add-half’’ formula for the conditional
probability

QKT(Xi+1 = X|X1, . . . ,Xi) =
iX + 1/2
i+ 2

, (6)

when X ∈ {A,C,G,T}, i = 0, 1, 2, . . ., and the sequence
X1 · · ·Xi has symbol counts iA, iC, iG, iT. Applying this pre-
dictive estimate sequentially, the KT probability estimate of
the entire length-n sequence x in (5) can be expressed as

QKT(x) =

∏
X∈{A,C,G,T}

∏nX
iX=1

(iX − 1/2)∏n
i=1(i+ 1)

=

∏
X∈{A,C,G,T} 0(nX + 1/2)

π20(n+ 2)
, (7)

where 0(·) is the standard Gamma function. As with the ML
estimate, the KT estimate is a function of x only through
the symbol count vector n = (nA, nC, nG, nT) and hence we
will write the RHS of (7) as QKT(n). Further extending the
predictive estimate in (6), we can express the conditional
probability of a sequence x with symbol count vectorm given
a preceding sequence y with symbol count vector n as

QKT(x|y) =
QKT(y, x)
QKT(y)

=
QKT(m+ n)
QKT(n)

. (8)

Paralleling (2) and (4), we can generalize the KT estimate
to a CTM on a given context set S with unknown parameters
p(s). In this case, the KT estimate of the probability of the
sequence x with symbol count vectors n(s), s ∈ S, is

QKT(x) =
∏
s∈S

QKT(n(s)) (9)

and the KT estimate of the conditional probability of x with
symbol count vectorsm(s) given ywith symbol count vectors
n(s) is

QKT(x|y) =
∏
s∈S

QKT(m(s)+ n(s))
QKT(n(s))

. (10)
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FIGURE 1. Overall flow of NASCUP. The proposed NASCUP methodology consists of (A) model-building and
(B) classification pipelines that leverage the notion of universal probability in steps A2 and B2 in place of
the unknown true probability. For each sequence group, the context-tree model with the highest universal
probability is found and the query sequence is classified to the group with the highest conditional universal
probability given the context tree model.

As in the IID case, the KT probability estimate is universal
in the sense that QKT is uniformly close to all CTMs on the
given context set S .

III. METHODS
Similar to most model-based sequence classification tools,
the NASCUP pipeline consists of two stages as illustrated
in (Fig 1): model building and classification. In the first,
model-building stage, NASCUP learns the statistical struc-
ture of each nucleotide sequence group in a database from
the occurrence counts of all k-mers (substrings of length k)
in the sequences and builds a corresponding context-tree
model (CTM) [17] (alternatively referred to as variable-order
Markov models [18] or probabilistic suffix trees [19]) that
represents the data best. Such context-treemodels, as reported
for protein sequence classification [25] are simple enough for
fast and scalable processing (as in k-mer count models of
RDP), yet rich enough for accurate modeling of the data (as
in hiddenMarkov models of HMMER or interpolated context
models of Phymm). In the second, classification stage of its
pipeline, NASCUP evaluates the likelihood of a test sequence
under the context-tree model of each sequence group and
chooses the group that maximizes the likelihood.

In both model-building and classification stages, NASCUP
utilizes the notion of universal probability [20], [21] from
information theory. In a nutshell, universal probability
approximates all probability distributions in a given class
of models, and serves as a close proxy to an unknown true
probability distribution of given data without unnecessary
overfitting.With theoretical performance guarantee and prac-
tical low-complexity implementations, universal probability
has found many successful applications, including compres-
sion and prediction of sequential data of a priori unknown
statistics. NASCUP measures how likely a sequence group

fits a context-tree model and how likely a test sequence
fits the chosen context-tree model of a sequence group by
evaluating the universal probabilities of the sequences. The
inference approach based on universal probability in particu-
lar and the information-theoretic principle in general has an
additional benefit of having no tunable parameter [26] except
the maximum depth of the context-tree models.

A. MODEL BUILDING
Given a collection of sequence groups in a database,
NASCUP models each sequence group by a CTM of an
unknown context set S and unknown parameters p(s), s ∈ S.
NASCUP estimates the probability of such an unknown CTM
by selecting the ‘‘maximum likelihood’’ context set S∗ based
on the sequences y in the group. Since the parameters are
unknown, NASCUP evaluates the universal probability of
the Krichevski–Trofimov (KT) [12] estimate QKT(y;S) for
all possible S , and chooses S∗ that attains the maximum.
This context tree selection procedure of NASCUP is inti-
mately related to the model selection method of theminimum
description length principle [27], [28] and other information
criteria used in statistics and information theory. The resulting
context set S∗ and the count vectors are used for the subse-
quent classification stage.

The detail of the model-building stage is as follows.
NASCUP initially counts the nucleotide symbols A,C,G,T
for all sequences in the group that follow each of length-d
contexts s ∈ {A,C,G,T,*}d and forms count vectors n(s).
* implies any possible symbols. These count vectors can
be calculated by merging bottom–up from the leaves of the
perfect suffix tree (the d-th order Markov model) to the root
(the IID model) iteratively. As an example, for d = 2,
n(*A) = n(AA) + n(CA) + n(GA) + n(TA) and n(**) =
n(*A) + n(*C) + n(*G) + n(*T). NASCUP then finds the
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FIGURE 2. Example of a context-tree model. A complete suffix tree consists contexts from every-order Markov model of {*}j × {A,C,G,T}d−j for
some j , where * denotes ‘‘any’’. Leaf nodes consist of {A,C,G,T}d and root node consists of {*}d . Parent nodes have one more * replacing the
A,C,G,T in child nodes, e.g., *C is a parent node of child-nodes AC, CC, GC, and TC. Root node ** is a parent node of child-nodes *A, *C, *G, and
*T. CTM has contexts disjointly, e.g., *A,AC,CC,GC,TC,*G,*T.

context set S that maximizes the KT estimate probability,
which can be viewed as a proxy for all unknown CTMs on S.
This maximization can be performed efficiently in a recursive
manner [29], [30] by starting with the root in the perfect suffix
tree in a depth-first manner and computing for each node
s ∈ {A,C,G,T,*}d in the tree

Q(s) = max
{
QKT(n(s)),

∏
s′: children of s

Q(s′)
}
.

If s is a leaf (at depth d), then Q(s) = QKT(n(s)). As an
example, for d = 2,

Q(**) = max{QKT(n(**)),Q(*A)Q(*C)Q(*G)Q(*T)}

and

Q(*A) = max{QKT(n(*A)),

QKT(n(AA))QKT(n(CA))QKT(n(GA))QKT(n(TA))}.

A branch that does not attain the maximum is pruned.
A tie between a parent node and its children is broken against
branching for the sparsity of the resulting model. Upon com-
pletion of this maximizing and pruning step, at the end of
model building for each sequence group, NASCUP produces
a valid context set S∗ and symbol count vectors n(s) for all
contexts s ∈ S∗. Fig 2 illustrates an example of obtained
context tree model by the model building process explained.

B. CLASSIFICATION
The notion of universal probability plays a pivotal role in the
classification stage as well. If the true CTM Pj for sequence
group j in the database were known, then the maximum like-
lihood classifier would compute Pj(x) of the query sequence
x for all groups j and select the group j∗ that maximizes the
likelihood. As in the model-building stage, NASCUP relies
on the first principle of using the universal probability when
the true probability is unknown, and computes the maximum
using the universal probability instead of Pj. More concretely,

NASCUP first generates count vectors m(s) from the query
sequence x for all contexts s ∈ {A,C,G,T,*}d bottom–
up. For each sequence group j with context tree S∗j and
count vectors n(s), s ∈ S∗j , NASCUP then compute the KT
estimateQKT(x|yj) of the conditional probability of the query
sequence x given the existing sequences yj in group j and its
count vectorsm(s) by

QKT(x|y) =
∏
s∈S

QKT(m(s)+ n(s))
QKT(n(s))

.

Assuming that the correct context tree S∗j was found, this
KT estimate QKT(x|yj) is universal and thus is uniformly
close to the true conditional probability Pj(x|y), which is
in turn uniformly close to Pj(x) due to the Markov prop-
erty of the CTM. Hence, we can perform ML classification
approximately without knowing the true probability distribu-
tions. NASCUP thus compares QKT(x|yj) over all sequence
groups j and selects the one with the maximum KT condi-
tional probability. The idea of using universal probability in
sequence classification traces back to the information theory
literature [31], [32] and NASCUP extends it to CTMs and
associated universal probability estimates. Note that the mea-
sure, log 1/Pj(x|yj), can be interpreted as the code length for
lossless compression of the sequence [22] under the proba-
bility model Pj. In this sense, NASCUP can be viewed as a
refinement of the nucleotide sequence classification methods
based on compression [33], [34] in that the code length from
NASCUP is essentially optimal and NASCUP provides the
probability model itself instead of the code length.

C. SCORES, RANKING, AND MULTI-CANDIDATE
CLASSIFICATION
For each sequence group j = 1, . . . , J in the database,
NASCUP computes the estimate QKT(x|yj) of the likelihood
that the query sequence is generated from group j. This
likelihood estimate serves as a score for each group, which
can be rank-ordered to form a small list of candidate groups

VOLUME 9, 2021 162783



S. Kwon et al.: NASCUP: Nucleic Acid Sequence Classification by Universal Probability

of the query sequence. Such a candidate list can boost the
accuracy of classification, for example, as an input to a slower
yet more accurate classifier, or even as a focused target for
biological experiments. The simplest approach to forming a
list is to sorting all J groups in the database by the likeli-
hood and choosing the top K groups for a fixed number K .
Alternatively, the list size K can be adjusted adaptively by
estimating the overall accuracy of the list. By the Bayes
rule, under the uniform prior on the sequence groups, the
posterior probability that the sequence x belongs group j is
approximately

QKT(x|yj)∑J
j=1Q

KT(x|yj)
.

The sum of these posterior probabilities of the candidates
in a list provides an estimate of the classification accuracy,
which can be used to control the size of the list. Note that this
approach can incorporate an arbitrary prior on the sequence
groups.

D. OUTLIER DETECTION
The CTM that NASCUP finds in the model-building stage
and the resulting KT estimate of the conditional probability
can be utilized beyond classification of query sequences. Sup-
pose that there are a few outliers in a sequence group. Since
the symbol counts used by NASCUP reflects the statistical
behavior of the entire group, the generated model is rather
immune to a small number of outliers and other errors in the
data. Once the model is built, we can detect outliers within
the group by evaluating the universal probability QKT(x|y)
trained by all sequences y in the group with each individual
sequence x in the group. We measure the degree of confor-
mance to the model of each sequence x of length m by its
normalized negative log-likelihood (NLL)

1
m

log
1

QKT(x|y)
.

The smaller the NLL value is, the better the conformance
to the model is. Conversely, the larger the value, the greater
the difference from the model, indicating a high likelihood of
being an outlier (Fig 6).

E. SYNTHETIC SEQUENCE GENERATION
Let d be the depth of the context tree and l be the average
length of the sequences y in a sequence group. First, we gen-
erate the starting string X1 · · ·Xd of length d by copying the
most frequent starting string of the same length among the
existing sequences in the group. Using a suffix of X1 · · ·Xd
as the context s, we generate the next symbol Xd+1 according
to

QKT (Xd+1 = X|X1, . . . ,Xd , y) =
nX(s)+ 1/2
n(s)+ 2

as in (6). Subsequently, we generate Xi, i = d + 2, . . . , l,
each according to a similar predictive probability estimate

with a suffix of Xi−d · · ·Xi−1 as the context and the corre-
sponding count vector from the existing sequences y as well
as the preceding symbols Xd+1 · · ·Xi−1. This sliding-window
sequence generation procedure is an extension of Polya’s urn
process in the standard Bayesian statistics to a CTM. Due to
the conjugacy of the Dirichlet prior, the distribution of the
generated sequence x (from the (d + 1)-st position and on)
is equivalent to a CTM with random parameters p(s) drawn
from the Dirichlet prior with parameters nA(s)+1/2, nC(s)+
1/2, nG(s)+ 1/2, nT(s)+ 1/2 for each s ∈ S.

IV. EXPERIMENTS
Wemeasured performance of NASCUP and compared it with
four main alternative methods (BLAST, HMMER, RDP, and
USEARCH) in classification accuracy and classification time
(Fig 3). We also examined additional methods (Phymm, gzip,
UBLAST, caBLAST, BLAT, and three methods provided by
QIIME [37] — Naive Bayes in QIIME-2, and UCLUST and
Mothur in QIIME-1) (Supplementary Table 2 and Supple-
mentary Table 3). For BLAST and its variants based on
sequence alignment (USEARCH, UBLAST, caBLAST, and
BLAT), the class of a query sequence was determined by the
best hit. For gzip, the class was determined by the smallest
difference between the lengths of compressed representations
of a sequence group and the group appended by the query
sequence.

Experiments were done using a Linux machine (Ubuntu
12.04, 2.2 GHz Intel Xeon E5-4620, and 512 GB memory)
without any parallelization. All command scripts of NASCUP
and other methods are provided as Supplementary Table 1.
Source code of NASCUP and the dataset used for experi-
ments are available at https://github.com/nascup/nascup.

A. DATASET
Real sequence datasets from a variety of sources, organized
on a functional or taxonomic basis with varying degrees
of inter-group similarity (TABLE 1) are used to validate
the classification accuracy and efficiency of NASCUP: a
function-based RNA family database (Rfam [3]), taxonomy-
based rRNA databases (RDP [9], [35], Greengenes [15],
and SILVA-SSU/LSU [16]), and pyrosequencing databases
(Artificial/Divergent [36]).

We excluded sequences containing symbols other than
ACGT(U) and sequence groups of size less than ten for
10-fold cross-validation. We compacted Greengenes and
SILVA with cd-hit-est [38] by 97% similarity and limited
the number of sequences in a group to 2,000. The datasets
thus obtained had diverse characteristics: the number of
groups from 23 to 1,320, the sequence length from 20 to
almost 5,000, and the average normalized intra-group pair-
wise sequence distance from 0.08 to 0.33.

B. CLASSIFICATION ACCURACY
AND COMPUTATION SPEED
NASCUP achieves superb performance with respect to
accuracy and speed among the five classification methods
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TABLE 1. Details of the dataset used in the experiments.

FIGURE 3. Performance comparision of NASCUP and alternatives. (A) Classification accuracy and (B) classification time in
log scale of NASCUP and the four main alternatives (BLAST, USEARCH, HMMER, and RDP) on seven sequence datasets. Each
value is the average of 10-fold cross validation. (C) 2-D plot to assess methods by comparing accuracy and speed
simultaneously. A method closer to the left bottom corner is the better.

compared, consistently across the diverse set of seven
datasets (Fig 3 (C)).

In terms of accuracy, NASCUP achieved the highest aver-
age accuracy of 97.8% (in terms of both arithmetic and
geometric means) among an expanded collection of thirteen
alternative classification methods, which is trailed slightly
by the BLAST-based classification method (Fig 3 (A) and
Supplementary Table 2). In particular, NASCUP showed
the highest accuracy on RF dataset, which was the most
difficult dataset to classify due to its largest number of classes
and widest intra-group sequence distance (AIGD). More
than half of the thirteen classification methods (UBLAST,
BLAT, caBLAST, RDP, gzip, UCLUST, and Mothur) exhib-
ited unsatisfactory results of below 80% of accuracy on RF.

NASCUP and BLASTmaintained the accuracy of above 95%
across all datasets considered, whereas the performance of
the other methods varied often significantly from dataset to
dataset.

Except for NASCUP and BLAST, the classification accu-
racy varied significantly over the datasets. In particular,
HMMER was accurate on the functional RNA datasets but
not on metagenomic microbial datasets, while RDP worked
well on microbial datasets but showed unsatisfactory results
on functional RNAs.

NASCUP, RDP, USEARCH, and QIIME package based
methods ran significantly (often by orders of magnitude)
faster for most of the datasets (Fig 3 (B) and Supplementary
Table 3).
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FIGURE 4. Time comparision to check scalability Model building and classification time of NASCUP for
(A) sequencewise and (B) groupwise expanding datasets. Total runtime of NASCUP and the four main
alternatives on (C) sequencewise and (D) groupwise expanding datasets.

Statistical significance test (Wilcoxon signed-rank test)
was performed in the SciPy library on normalized and unnor-
malized aggregate datasets as well as individual datasets
(Supplementary Table 4). The normalized aggregate dataset
was formed by combining the seven datasets in TABLE 1.
In order to balance the impacts of the individual datasets on
the aggregate, we drew bootstrap samples of the same size
from each. The sample size of 2,900 was used, which is one
tenth of the average size of the component datasets excluding
the smallest (RD) and the largest (RF). We used the averaged
p-value over 100 signed-rank tests repeated on independently
generated bootstrap samples. For the unnormalized aggregate
dataset, we used all samples in the seven datasets without
normalization of their sizes. All pairs of the five main classi-
fication methods (NASCUP, BLAST, USEARCH, HMMER,
RDP) were compared for statistical significance.

C. SCALABILITY
To emulate the usage of classification tools for a realistic
environment in which sequence databases scale over time,
we prepared two types of artificial expanding datasets—one
by increasing the number of sequences for a fixed number of
groups and the other by increasing the number of groups for
a fixed number of sequences per group.

For sequencewise expansion, the model building (first
stage) time of NASCUP grew linearly as the number of
sequences increased. The actual classification time, how-
ever, was affected only marginally since the second-stage
classification operation is almost independent of the num-
ber of sequences in a group once the modeling has been
completed (Fig 4 (A)). The total runtime of NASCUP (the
sum of modeling and classification times) was lower than the
other four classification methods regardless of the data size
(Fig 4 (C)).

For groupwise expansion, the classification time of
NASCUP grew as the number of groups (as well as the
total number of sequences) increased. The modeling time did
not increase since the model building procedure had to be
performed only for newly added groups (Fig 4 (B)). The per-
formance of NASCUP was among the top under groupwise
expansion, especially for very large databases (Fig 4 (D)).

In both sequencewise and groupwise expansion exper-
iments, NASCUP was orders-of-magnitude faster than
BLAST, the only method that achieved a comparable level
of accuracy, across all database sizes.

D. ROBUSTNESS TO MISLABELING ERRORS
We tested the robustness of NASCUP against mislabeling
errors in the sequence database, which, in principle, exists
in any real dataset labeled in the absence of the ground
truth and especially in pyrogenetic datasets. We prepared
a dataset with classification errors at a rate ranging from
1% to 20% and compared the classification accuracy of five
alternative methods (Fig 5). The accuracy of NASCUP was
robust with marginal performance degradation even when
20% of the sequences in the database were mislabeled to
arbitrary groups. RDP exhibited a similar level of robustness,
whereas the performance of the other three methods degraded
as the error rate increased.

E. SCORING
NASCUP computes the likelihood of a test sequence belong-
ing to each sequence group. This numerical likelihood value
provides additional soft information that can augment the
hard classification outcome. As the simplest application of
such likelihood values, we evaluated how the accuracy of
NASCUP improves when it produces a ranked list of likely
groups, instead of a single most likely group, for a given
test sequence. By increasing the list size, NASCUP achieved
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FIGURE 5. Performance degradation from mislabeling errors. Classification accuracy was measured when
a fraction of database sequences in RF and GG datasets were mislabeled. The mislabeling error rate
increased from 1% to 20% and the bar color gradually faded as the error rate increased. HMMER was not
able to build models on RF datasets of higher mislabeling error rate, because the multiple sequence
alignment (MSA) could not be performed properly due to no consensus columns from too diverse
sequences.

TABLE 2. Accuracy comparison from candidate extraction. Two sections represent different extracting methods about extracting candidate groups as
varying (A) number of candidates, fixed to K and (B) threshold T on the sum of the posterior probabilities, respectively. Each value in the seven datasets
is the average accuracy of 10-fold cross-validation. In the second section, the numbers in parentheses mean the average number of candidate groups.

near-perfect accuracy (TABLE 2 (A)). In particular, the ten
most likely sequence groups produced by NASCUP included
the correct group over 99% of the time for all datasets. Instead
of producing a fixed number of candidate groups, NASCUP
can produce a variable-size list according to the target accu-
racy, which can be estimated by the likelihood values and the
Bayes rule (TABLE 2 (B)). The list of top candidate groups
can be fed into subsequent bioinformatics pipelines (such as
cross-validation by BLAST) or actual biological experiments
on a far reduced set of groups than before preprocessed by
NASCUP.

F. OUTLIER DETECTION
As another application of the likelihood value computed
by NASCUP, we performed one-class classification that
identifies whether a test sequence belongs to a single target
sequence group or not. For NASCUP and HMMER, both
of which build generative models for the target group and
provide the likelihood values of the test sequence. We used

normalized negative log likelihood value to distinguish mem-
ber sequences in the target group from outliers. NASCUP
showed a clear separation of outliers, which manifested in the
much larger area under the precision–recall curve (Fig 6).

G. SYNTHETIC SEQUENCE GENERATION
To ascertain the quality of synthetic sequences in our proce-
dure, we generated synthetic sequences fromRF, RD, andGG
datasets, one per group, and classified them using BLAST
(Fig 7). The combination of context-tree models and univer-
sal probability in NASCUPfinds statistical generativemodels
of nucleotide sequence groups that are parsimonious and con-
sequently are expected to better represent the ground truth by
Occam’s razor (Fig 8 and Fig 9). In order to demonstrate the
interpretive power of such generative models, we generated
synthetic sequences randomly according to four generative
models—a combination of context-tree vs. Markov mod-
els and universal vs. maximum-likelihood probabilities—
and measured how often these sequences looked real by
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FIGURE 6. Outlier detection with normalized NLL. Distribution of predicted normalized negative
log-likelihood (NLL) values with histogram and boxplot of NASCUP (left column) and HMMER (center
column). Precision-recall (PR) curves and their area under the curve (AUC) values of NASCUP and
HMMER are drawn in the right column. The top three plots are experimental results on staphylococcus
mixed with outliers from GG dataset, and the bottom three plots are results on miR-598 mixed with
outliers from RF dataset. The datasets were mixed with 10:1 ratio of sequences from targets and
others (outliers). The sequences of outliers were randomly taken from each group except the target
group. The number of sequences in the staphylococcus and others were 10,390 and 1,039,
respectively. The number of sequences in miR-598 and others were 1,800 and 180, respectively.

FIGURE 7. Quality assessment of synthetic sequence generation. For three datasets of RF, RD,
GG, a total of respectively 1,320, 134, and 464 synthetic sequences (one synthetic sequence per
group) were generated and classified by the combination of the modeling methods (Markov vs.
CTM) and sampling methods (universal probability (KT) and maximum likelihood (ML)). The
depth varied from 2 to 10. NASCUP and Markov models are expressed in blue and gray colors,
respectively. KT and ML estimators are represented by a solid line and dotted line, respectively.

classifying them using BLAST. As the maximum context
size increased, BLAST could classify the synthetic sequences
generated by NASCUP (context-tree models and universal
probability) correctly with very high accuracy, while the syn-
thetic sequences generated by the other three models failed to
emulate real sequences due to inadequate modeling and over-
fitting (Fig 7). Similar trends were observed when BLAST
was replaced by other classification methods.

H. NASCUP DESIGN ALTERNATIVES
Universal probability and context-tree models are two key
features of NASCUP. In order to demonstrate their combined

benefit, we compared classification accuracy among a few
design alternatives by varying the model depth (Fig 8). As an
alternative to a CTM, a Markov model provides a baseline
before pruning context trees based on recursive likelihood
maximization. For probability assignment, the maximum
likelihood (ML) estimator provides a naive alternative to the
KT estimator in assigning the conditional probability in each
context.

Since the number of possible contexts grows exponen-
tially as the model depth increases, the occurrence of each
context becomes sparse with a restricted number of training
data. Consequently, the Markov model and ML estimator are

162788 VOLUME 9, 2021



S. Kwon et al.: NASCUP: Nucleic Acid Sequence Classification by Universal Probability

FIGURE 8. Accuracy of NASCUP variants. For each dataset, we examined classification
accuracy for the combination of modeling methods (Markov vs. CTM) and probability
estimators (ML vs. KT). The depth varied from 2 to 9. NASCUP and Markov models are
expressed in blue and gray colors, respectively. KT and ML estimators are represented by a
solid line and dotted line, respectively. NASCUP (CTM–KT) performed consistently better than
other combinations, without any performance degradation when depth becomes too large.

FIGURE 9. The ratio of the numbers of leaf nodes. The number of leaf nodes in a CTM was
much smaller than that of the corresponding Markov model, which demonstrates that CTMs
find a sparse and meaningful structure of the sequence groups. For each dataset, the ratio of
the average number of leaf nodes of the CTM selected in the model-building stage to the
number 4d of all leaf nodes in a Markov model is plotted as depth changes. For model building
with CTMs, both KT and ML probability estimators were tested, represented by blue dotted and
red dashed lines, respectively.

prone to overfitting in general. In our accuracy comparison
experiments, both Markov and context-tree models with ML
estimator performed rather poorly. While the performance
advantage of CTMs over Markov models was not very pro-
nounced, the numbers of leaves in CTMs did not increase
exponentially as those in Markov models and their ratios
dropped rapidly as the depth increased (Fig 9). Moreover,

CTMs using KT estimator always have fewer leaf nodes than
CTMs usingML estimator. In conclusion, the combination of
KT and CTM used in NASCUP was the most parsimonious.
This sparsity can be interpreted as being closer to the ground
truth in principle (which was cross-examined by the synthetic
sequence generation experiment), but also leads to faster and
more efficient classification as a practical benefit.
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V. DISCUSSION
As a model-based method, NASCUP can be easily adapted
to test similarity between families or a membership of a
sequence or a sequence family in a group of families.
We expect that this modified version of NASCUP can be
applied to problemswith inherent hierarchical structures such
as taxonomy classification and phylogenetic tree construc-
tion. A phylogenetic tree is typically constructed by measur-
ing sequence similarities using heuristics such as progressive
alignment and then by applying linkage methods to produce a
dendrogram structure. In this conventional approach, results
may vary (often dramatically) according to which linkage
method is used. In contrast, the modified version of NASCUP
would allow direct model-to-model comparison, alleviating
the aforementioned limitations of alignment–linkage meth-
ods. Going one step further, we expect that the modified
NASCUP, fully utilizing the simple Bayesian update struc-
ture of universal probability assignments in the classification
stage, will be applicable to incremental clustering, in which
an initial model is constructed from close sequences and then
is incrementally augmented by adding additional sequences.

Instead of unidirectional contexts (that precede symbols),
we can use bidirectional contexts (that precede and succeed
symbols). More generally, the directionality of nucleotide
sequences or the lack thereof can be incorporated into mod-
eling and classification stages. Additionally, the maximum
depth of context-tree models can be adjusted more flexibly
in a data-dependent manner. A similar technique has been
developed in the context of data compression [39], which is
expected to be applicable in our problem. The use of bidirec-
tional contexts and adaptive maximal depths is expected to
boost accuracy further at some cost of time efficiency.
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