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Abstract— We derive bounds on the reliability of the additive
white Gaussian noise channel Y = X +Z with output fed back
to the transmitter over independent additive white Gaussian

noise channel Ỹ = Y + Z̃ . These bounds appear to be
new even for transmission at zero rate. As a corollary, it is
shown that linear feedback coding schemes of finite-dimensional
constellation, such as the celebrated Schalkwijk–Kailath coding
scheme, not only fail to achieve the capacity, but in fact cannot
achieve any positive rate. Our approach is applicable to the
derivation of upper bounds on the error exponents in various
other scenarios involving channels with feedback.

I. INTRODUCTION

That perfect feedback can dramatically improve the relia-

bility of a memoryless channel is pointed out by Shannon in

[18]. For the additive white Gaussian noise channel, this fact

was reconfirmed by Schalkwijk–Kailath [17] in the strong

sense that perfect feedback allows for schemes under which

the probability of error diminishes double-exponentially fast

in block length at any rate below capacity. This double expo-

nential decay has been further extended to the diminishing

probability of any number of nested exponential levels by

Pinsker [14], Kramer [8], and Zigangirov [19].

Much less explored and understood is how noise in the

feedback link affects the achievable reliability (cf. [6], [15],

[11] for some recent progress). In this paper we restrict

attention, for concreteness, to the additive white Gaussian

channel Y = X + Z with additive white Gaussian noise

corrupted feedback Ỹ = Y + Z̃ , and derive bounds on the

reliability function.

The paper is organized as follows. After describing the

problem setup in Section II, we review the case of perfect

feedback in Section III. In subsequent two sections, we

derive upper bounds on the reliability using two different

methods. The first method, based on a change-of-measure

argument, leads to a family of upper bounds on the reliability

in Section IV. Section V presents another upper bound on

the same exponent via a ‘genie-aided’ argument. For lower

bounds, we develop a simple binary messaging scheme in

Section VI and then show that true zero rate can be achieved

by a concatenated code based on the Schalkwijk–Kailath

feedback coding scheme with error exponent blowing up as

the feedback noise variance tends to zero. For positive rate,

however, we show that any linear encoding scheme no only
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fails to achieve capacity, but fails to reliably communicate

at any positive rate. We conclude in Section VIII with

a description of the way our bounds extend to the non-

Gaussian and to the discrete setting.

Throughout log will denote the natural logarithm, and

capacity and rate will be in nats per channel use.

II. CHANNEL MODEL

We wish to communicate a message index W ∈
{1, . . . , enR} over the additive white Gaussian noise channel

Yi = Xi + Zi, (1)

where Xi, Zi, Yi, respectively, denote the channel input, the

additive Gaussian noise, and the channel output. Let further

Ỹi denote a noisy version of Yi,

Ỹi = Yi + Z̃i, (2)

where Z̃i is the Gaussian noise in the backward link. We

define a (enR, n) code with the encoding function of the

form

Xi = Xi(W, Ỹ i−1) (3)

under the expected average power constraint

1

n

n
∑

i=1

EX2
i (W ; Ỹ i−1) ≤ P,

and the decoding function Ŵ (Y n) ∈ {1, . . . , enR}.

Thus, the encoder has the causal access to the noisy feed-

back. Equivalently, we can consider the encoding function

to be of the form

Xi(W, Si−1), (4)

where

Si = Zi + Z̃i, (5)

since, given X i, there is a one-to-one transformation from Ỹ i

to Si. The forward and backward noise processes, {Zi} and

{Z̃i}, are independent of each other, and independent and

identically distributed over time, with respective variances

Zi ∼ N (0, 1)

Si ∼ N (0, ε2). (6)

The probability of error P
(n)
e is defined by

P (n)
e = Pr(W 6= Ŵ (Y n))

=
1

enR

enR

∑

w=1

Pr(W 6= Ŵ (Y n)|W = w)

with W and (Zn, Sn) independent of each other.
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Finally, let EFB(R) = EFB(R; P, ε2) denote the reliability

function associated with this communication problem at rate

R, power constraint P , and the feedback noise variance

ε2. As usual, the reliability function is defined as the rate

of decay for error probability of the optimal sequence of

(enR, n) codes, i.e.,

EFB(R) = lim sup
n→∞

− 1

n
log P

(n)
e,opt(R).

We will use the notation E(R; P ) to denote the reliability of

the additive white Gaussian noise channel without feedback

under signal-to-noise ratio P .

III. PERFECT FEEDBACK

Here we give a brief review of the case when the feedback

noise Z̃ is constant, or equivalently, ε2 = 0. Our analysis is

purely information theoretic and thus very simple, compared

to the original analysis of the Schalkwijk [16] and the later

one by Butman [2], [3].

Let θ be one of enR equally spaced real numbers on

some interval, say, [−1, 1], with distance 2∆ between nearest

neighbors.

Initially, the transmitter sends

X0 = θ.

With noiseless feedback, the channel input Xi can be an

arbitrary function of the previous output values Y i−1
0 =

(Y0, . . . , Yi−1). Hence, the transmitter can subsequently send

X1 = α1(Y0 − X0) = α1Z0

and

Xi = αi(Z0 − Ẑ0(Y
i−1
1 )), i = 2, 3, . . . ,

where Ẑ0(Y
i−1
1 ) is the minimum mean square error (MMSE)

estimate of Z0 given (Y1, . . . , Yi−1), and {αi}∞i=1 are chosen

to satisfy the power constraint EX2
i = P for each i.

From the orthogonality property of the MMSE estimate

and the joint Gaussianity, it is easy to see that (Xi, Zi, Yi)
are independent of Y i−1. Furthermore, from our choice of

the scaling factor αi, {Yi}∞i=1 is i.i.d. ∼ N (0, P + 1).
Now we look at the mutual information I(Z0; Y

n
1 ). On

one hand, we have

I(Z0; Y
n
1 ) = h(Y n

1 ) − h(Y n
1 |Z0)

=
n
∑

i=1

h(Yi|Y i−1
1 ) − h(Yi|Z0, Y

i−1
1 )

=

n
∑

i=1

h(Yi) − h(Xi + Zi|Z0, Y
i−1
1 )

=

n
∑

i=1

h(Yi) − h(Zi|Z0, Y
i−1
1 )

=

n
∑

i=1

h(Yi) − h(Zi)

=
n

2
log (1 + P )

= nC. (7)

On the other hand, we have

I(Z0; Y
n
1 ) = h(Z0) − h(Z0|Y n

1 ) =
1

2
log

1

var(Z0|Y n)
,

which combined with (7) implies that

var(Z0|Y n
1 ) = e−2nC .

Finally, upon receiving (Y0, . . . , Yn), the receiver forms

the maximum likelihood estimate θ̂n of θ as

θ̂n = Y0 − Ẑ0(Y
n
1 )

= θ + Z0 − Ẑ0(Y
n
1 )

∼ N (θ, e−2nC)

and performs the nearest neighbor decoding.

It is easy to see that the decoding error happens only if

θ̂n is closer to the nearest neighbors of the true θ, that is, if

N (0, e−2nC) > ∆. Since

∆ = c0 e−nR

with c0 being a fixed constant depending only on the message

constellation, the probability of error is given by

P (n)
e = 2

(

1 − Q
(

c0 en(C−R)
))

where

Q(x) =

∫ x

−∞

1√
2π

exp

(

− t2

2

)

dt

is the standard Gaussian cumulative density function. There-

fore, if R < C, we have

P (n)
e ≤ 2 exp

(

−c2
0 e2n(C−R)

2

)

,

that is, the probability of error decays doubly exponentially

fast in block size n. In particular, this implies

EFB(R; P, ε2 = 0) = ∞
for all R < C.

IV. UPPER BOUNDS VIA CHANGE OF MEASURE

In this section, we derive upper bounds on the reliability

EFB(R; P, ε2) via a change-of-measure method. The idea is

to change the joint law of the noises in the forward and the

backward links into one under which the noisy feedback is

useless. An upper bound on the error exponent of interest

is then given by the error exponent under the latter law

(which is a classical channel coding error exponent) plus

an additional ‘penalty’ term stemming from the change of

measure.

Let (Z, S) be a generic pair of random variables dis-

tributed as the pair (Zi, Si) of (5) and (6), and we let (Z ′, S)
be a pair of independent Gaussians with Z ′ ∼ N (0, σ2) and

S′ ∼ N (0, 1+ε2). Let further f and f ′ denote the respective

densities of (Z, S) and (Z ′, S′). Finally, let Λ∗
ε2,σ2 denote the

Fenchel-Legendre transform (see, e.g., [5]) of the random

variable

log
f ′(Z ′, S′)

f(Z ′, S′)
.
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We now present the main result of this section. The proof

involves changing the law of the noise components in the

original channel from (Zi, Si)
d
= (S, Z) to (Si, Zi)

d
=

(Z ′, S′). The feedback in the latter case is useless, so the

associated error exponent is E(R; P/σ2).

Theorem 1. For every σ2 > 0,

EFB(P, ε2, R) ≤ γ + ENoFB(P/σ2, R) (8)

where γ uniquely solves

Λ∗
ε2,σ2(γ) = ENoFB(P/σ2, R)

in the region

γ ≥ D (f ′‖f)

=
1

2

[

σ2 − ε2 + σ2ε2 + 1

ε2
− log[σ2ε2(1 + ε2)]

]

.

Note that this theorem gives a family of bounds, indexed

by σ2, which should be viewed as a parameter to be

optimized over for a given value of R.

The Fenchel-Legendre transform Λ∗
ε2,σ2 can be explicitly

obtained. Towards this end note that

f(z, s) =
ε

2π
exp

{

− (1 + ε2)z2 − 2zs + s2

2ε2

}

(9)

and

f ′(z, s) =
1

2π
√

σ2(1 + ε2)
exp

{

−1

2

[

z2

σ2
+

s2

1 + ε2

]}

(10)

so that

log
f ′(Z ′, S′)

f(Z ′, S′)

= −1

2
log[σ2ε2(1 + ε2)]

+
1

2

[

(

Z ′

σ

)2
σ2 − ε2 + σ2ε2

ε2
− 2σ

√
1 + ε2

ε2

Z ′

σ

S′
√

1 + ε2
+

(

S′
√

1 + ε2

)2
1

ε2

]

. (11)

Since both Z′

σ and S′

√
1+ε2

are standard Gaussian random

variables, it is evident from (11) that

Λ∗
ε2,σ2(γ) = Λ̃∗

ε2,σ2

(

2γ + log[σ2ε2(1 + ε2)]
)

, (12)

where Λ̃∗
ε2,σ2 is the Fenchel-Legendre transform of

U2 σ2 + σ2ε2 − ε2

ε2
− 2σ

√
1 + ε2

ε2
UV + V 2 1

ε2
, (13)

with independent standard Gaussian random variables U and

V . Fortunately, Λ̃∗
ε2,σ2 can be derived in closed form

Λ̃∗
ε2,σ2(α) =

1

4

(

−2 − α(1 + σ2 + ε2(σ2 − 1))

+
√

4 + α2(ε4(σ2 − 1)2 + (σ2 + 1)2 + 2ε2(1 + σ4))
)

+
1

2
×

log
−2 +

√

4 + α2(ε4(1 − σ2)2 + (1 + σ2)2 + 2ε2(1 + σ4))

α2ε2

(14)

which, taken with (12), gives the explicit form of Λ∗
ε2,σ2(γ).

While we have obtained Λ∗
ε2,σ2(γ) explicitly, solving for

the γ that satisfies Λ∗
ε2,σ2(γ) = ENoFB(P/σ2, R), namely the

inverse function of Λ∗
ε2,σ2 , is elusive. It is therefore useful to

express the bound of Theorem 1 in parametric form. Towards

this end, let R(s, e) denote the “rate-reliability” function of

the AWGN channel without feedback under signal-to-noise

ratio P and error exponent E, i.e.,

R(E; P ) =
{

R such that E(R; P ) = E, for 0 ≤ E < E(0; P ),

0, for E ≥ E(0; P ).

(15)

Note, in particular, that

R(0; P ) =
1

2
log(1 + P ). (16)

Theorem 1 can be stated equivalently as follows.

Theorem 2. For every σ2 > 0, EFB(R; P, ε2) is upper

bounded by the following curve, which is given in parametric

form by
[

R
(

Λ∗
ε2,σ2 (γ) ; P/σ2

)

, Λ∗
ε2,σ2 (γ) + γ

]

(17)

where γ varies in the interval
[

1

2

[

σ2 − ε2 + σ2ε2 + 1

ε2
− log[σ2ε2(1 + ε2)]

]

, γmax,σ2

]

,

(18)

and γmax,σ2 is the value of γ for which Λ∗
ε2,σ2 (γ) =

E(0; P/σ2).

Although the functions E(·; P ) and R(·; P ) are not explic-

itly known, bounds on these functions can be combined with

the theorems above to obtain concrete bounds, as illustrated

in the following corollaries.

Corollary 1. For every σ2 > 0, the following curve,

in parametric form, is an upper bound to the curve of

EFB(·; P, ε2)
(

1

2

[

1 −
2Λ∗

ε2,σ2 (γ)

(P/σ2)

]

log(1 + (P/σ2)), Λ∗
ε2,σ2 (γ) + γ

)

(19)

where γ varies in the range given in (18) and γ′
max,σ2 is the

value of γ for which Λ∗
ε2,σ2 (γ) = P

2σ2 .

Proof. The corollary follows by further bounding the bound

in Theorem 2 using the sphere packing bound [1]:

E(R; P ) ≤ ESP(R; P ) ≤ P

2

[

1 − R
1
2 log(1 + P )

]

, (20)

which also implies

R(E; P ) ≤ 1

2
log(1 + P )

[

1 − 2E

P

]

. (21)
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Fig. 1. Upper bounds on EFB(1, 1, R). The purple, red, black, yellow,
and blue curves are the parametric bounds of Corollary 1 for the respective
values of σ: 2, 1.5, 1.2, 1, and 0.8. The green curve is the bound of
Corollary 3. The green line (higher of the two) is the straight line bound
on the sphere packing bound (inequality (20)), applied to the bound of
Proposition 1. The lower green line, for comparison, is the straight line
bound on the sphere packing bound of the same channel with no feedback.
This line intersects the x-axis at the capacity of this channel, 1

2
log 2 ≈

0.347 nats. Thus, the region where the bounds can be useful is 0 ≤ R ≤
1

2
log 2.

Figure 1 shows the curves of Corollary 1, for the case of

ε2 = 1, and different values of σ2. It is seen that there is

no one value which dominates for all values of R, although

there are values that are dominated for all values of R at the

relevant range [0, C] (blue curve, corresponding to σ = 0.8).

Another immediate consequence of Theorem 1 and (20)

is the following result.

Corollary 2.

E(0; P, ε2) ≤ P

2σ2
+ γ, (22)

for any σ2 > 0 and γ satisfying

Λ∗
ε2,σ2 (γ) ≥ P

2σ2
(23)

and

γ ≥ σ2 + σ2ε2 − ε2 + 1

2ε2
− 1

2
log[σ2ε2(1 + ε2)].

For another working point, note that by choosing σ2 =
P/(e2R −1) (smallest value of σ2 for which E(R; P/σ2) =
0) in Theorem 1, we obtain:

Corollary 3. For any R > 0,

E(R; P, ε2)

≤
P

e2R−1 (1 + ε2) − ε2 + 1

2ε2
− 1

2
log

Pε2(1 + ε2)

e2R − 1
. (24)

The bound of Corollary 3, for the case ε2 = 1, is plotted

in Figure 1 (green curve). Note that, as it should, this curve

passes through the endpoints of the curves of Corollary 1.

We conclude this section with the proof of Theorem 1.

Proof of Theorem 1. Fix a particular coding scheme, for

the setting of (1)–(6), operating at average power upper

bounded by P . Let Pe|m denote its probability of error when

transmitting the message m. In other words, for block length

n,

Pe|W=w = Pr ((Zn, Sn) ∈ Aw) , (25)

Aw denoting the error set

Aw = {(zn, sn) : Ŵ (yn) 6= w}, (26)

where Ŵ (yn) in (26) denotes the decoder estimate under the

fixed coding scheme and the realized values (zn, sn) when

encoding for the message m.

Consider now the following scenario of communications

with useless feedback:

Y ′
i = X ′

i + Z ′
i, X ′

i = X ′
i(w, S′i−1), (27)

where {Z ′
i} and {S′

i} are independent white noises with

Z ′
i ∼ N (0, σ2), S′

i ∼ N (0, 1 + ε2). (28)

Let P ′
e|w denote the probability of error of the coding scheme

associated with Pe|w , when operating in the useless feedback

setting. Thus, denoting

Bγ =

{

(zn, sn) :
1

n
log

f ′(zn, sn)

f(zn, sn)
≤ γ

}

, (29)

we have

P ′
e|w = Pr ((Z ′n, S′n) ∈ Aw)

=

∫

Aw

f ′(zn, sn)dzndsn

=

∫

Aw∩Bγ

f ′(zn, sn)dzndsn

+

∫

Aw∩Bc
γ

f ′(zn, sn)dzndsn

≤ enγ

∫

Aw∩Bγ

f(zn, sn)dzndsn

+

∫

Aw∩Bc
γ

f ′(zn, sn)dzndsn

≤ enγ

∫

Aw

f(zn, sn)dzndsn

+

∫

Bc
γ

f ′(zn, sn)dzndsn

= enγ Pr ((Zn, Sn) ∈ Aw) + Pr
(

(Z ′n, S′n) ∈ Bc
γ

)

= enγPe|w + Pr
(

(Z ′n, S′n) ∈ Bc
γ

)

. (30)

Averaging the two sides of (30) over w gives

P ′
e ≤ enγPe + Pr

(

(Z ′n, S′n) ∈ Bc
γ

)

(31)

or, equivalently,

e−nγP ′
e − e−nγ Pr

(

(Z ′n, S′n) ∈ Bc
γ

)

≤ Pe. (32)

Assuming γ was chosen such that Pr
(

(Z ′n, S′n) ∈ Bc
γ

)

<
P ′

e, (32) is, in turn, equivalent to

− 1

n
log Pe ≤ γ − 1

n
log[P ′

e − Pr
(

(Z ′n, S′n) ∈ Bc
γ

)

] (33)
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implying

− 1

n
log Pe ≤ γ−

1

n
log[P ′n

min(R; P, σ2) − Pr
(

(Z ′n, S′n) ∈ Bc
γ

)

], (34)

where P ′n
min(R; P, σ2) denotes the minimum probability of

error achievable with block-length l in the useless feedback

setting of (27) and (28).1 Since, by definition of E(R; P ),

lim
n→∞

− 1

n
log P ′n

min(R; P, σ2) = E(R; P/σ2), (35)

it follows that

EFB(R; P, ε2) ≤ γ + E(R; P/σ2) (36)

for γ sufficiently large that

lim inf
n→∞

− 1

n
log Pr

(

(Z ′n, S′n) ∈ Bc
γ

)

> E(R; P/σ2). (37)

The lim inf in (8), however, is in fact a limit we can explicitly

characterize. Indeed, by the definition of Bγ in (29),

Pr
(

(Z ′n, Z ′n) ∈ Bc
γ

)

(38)

= Pr

(

1

n
log

f ′(Z ′n, S′n)

f(Z ′n, S′n)
> γ

)

(39)

= Pr

(

1

n

n
∑

i=1

log
f ′(Z ′

i, S
′
i)

f(Z ′
i, S

′
i)

> γ

)

(40)

thus, for γ ≥ E
[

log f ′(Z′,S′)
f(Z′,S′)

]

= D (f ′‖f), Cramér’s

theorem (cf. [5, Th. 2.2.3]) implies

lim
n→∞

− 1

n
log Pr

(

(Z ′n, S′n) ∈ Bc
γ

)

= Λ∗(γ), (41)

where Λ∗ is the Fenchel-Legendre transform of the random

variable log f ′(Z′,S′)
f(Z′,S′) . It follows by substitution of (41) in

(37) that (8) holds for all γ ≥ D (f ′‖f) satisfying Λ∗(γ) >
E(R; P/σ2) and, consequently, by the continuity and strict

monotonicity of Λ∗(γ), for the value of γ satisfying Λ∗(γ) =
E(R; P/σ2).

V. UPPER BOUND VIA GENIE

Consider a genie-aided scheme where encoding is allowed

to depend on the Si sequence non-causally, i.e., to be of

the form Xi = Xi(W, Sn) instead of Xi(W, Si−1). Assume

further that the decoder is also given access to Sn in addition

to Y n, i.e., Ŵ = Ŵ (Y n, Sn). By conditioning on Sn we

then see that the capacity and error exponent for this setting

is exactly that for the standard additive white Gaussian

noise channel with no feedback and noise variance equals

to Var(Zi|Si) = Var(Zi|Zi + Z̃i) = ε2

ε2+1 . Of course, the

capacity and error exponent for this problem upper bound

those of our problem, since here encoder and decoder are

supplied with more information. Therefore we have the

following:

1Note that we have used here the fact that Sn d
= S′n, which implies that

the power used by the scheme in the useless feedback setting is identical
to that used in the original setting.

Proposition 1.

EFB(R; P, ε2) ≤ E

(

R;
P (ε2 + 1)

ε2

)

. (42)

Simple as the argument leading to it may be, the bound

of Proposition 1 is, in many cases, tighter than those of

the previous section (see Figure 1 for a comparison in the

case ε2 = 1). Furthermore, the bound allows us to conclude

that the noisy feedback (at least insofar as the fundamental

limits go) can be no more useful than having the power

increase by P/ε2 in the absence of feedback. Furthermore,

when combined with the sphere packing bound on ENoFB,

Proposition 1 gives

EFB(R; P, ε2) ≤ P

2

ε2 + 1

ε2
(43)

implying that EFB(R; P, ε2) increases with small ε essen-

tially no faster than P
2ε2 . The following section shows that

this bound is very tight at R = 0.

Finally, we note that the bound of Proposition 1 can

potentially be tightened by denying the decoder of the genie-

aided scheme access to Sn. The non-feedback reliability on

the right-hand side of (42) can thus be replaced by the error

exponent of the corresponding dirty paper problem [4], [10].

Unfortunately, it is as yet unknown whether the latter is

strictly smaller than the standard nonfeedback reliability.

VI. ZERO RATE AND SMALL FEEDBACK NOISE

In this section we consider the asymptotic regime of zero

rate (i.e., R → 0) and feedback noise of very small variance

(i.e., ε2 → 0). Specializing inequality (43) to this regime

yields

lim sup
ε→0

ε2 · EFB(R; P, ε2) ≤ P

2
(44)

for all R.

We shall first show that this upper bound is achievable in

the two-message setting. Denoting the two-message reliabil-

ity by EFB,binary(P, ε2), we shall thus show that

lim inf
ε→0

ε2 · EFB, binary(P, ε2) ≥ P

2
. (45)

Towards this end, we consider the following scheme for

communicating one bit, ‘0’ or ‘1’. Suppose we wish to

communicate ‘1’. Then we take the channel input as

Xi = a − Si−1 = a − Zi−1 − Z̃i−1 (46)

for some positive a whose value is to be determined. The

channel output will then be

Yi = Xi + Zi = a − Zi−1 + Zi − Z̃i−1. (47)

If ‘0’ is to be communicated, then we use −a instead of

a. The decoder declares that ‘1’ was sent if
∑n

i=1 Yi > 0;

otherwise, it decides on ‘0’. Thus, conditioned on ‘1’ being

sent,

n
∑

i=1

Yi = na + Zn −
n−1
∑

i=1

Z̃i

∼ N (na, 1 + (n − 1)ε2), (48)
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which implies

P (n)
e = P

(

∑n
i=1 Yi − na

√

1 + (n − 1)ε2
≤ −na
√

1 + (n − 1)ε2

)

= Q

(

na
√

1 + (n − 1)ε2

)

.
= exp

(

−n
a2

2ε2

)

, (49)

while the average power is

E[(Xi)
2] = a2 + 1 + ε2. (50)

Thus we have the following lower bound on the reliability.

Proposition 2. For all a > 0, ε > 0

EFB,binary(a
2 + 1 + ε2, ε2) ≥ a2

2ε2
(51)

and (by operating only fraction α of the time) for any 0 <
α < 1,

EFB,binary(α(a2 + 1 + ε2), ε2) ≥ α
a2

2ε2
. (52)

We can now use this proposition to prove (45). Proposition

2 implies that for P > 1,

lim inf
ε→0

ε2 · EFB,binary(P, ε2) ≥ P − 1

2
(53)

and, consequently, for any 0 ≤ α ≤ 1 and Q > 1,

lim inf
ε→0

ε2 · EFB,binary(αQ, ε2) ≥ α
Q − 1

2
. (54)

It follows that for any P > 0 and 0 < α < min{1, P}, by

taking Q = P/α in (54),

lim inf
ε→0

ε2 · EFB,binary(P, ε2) ≥ P − α

2
, (55)

implying (45) when taking α → 0.

Now we consider the true zero rate (i.e., any sub-

exponential number of messages). The basic idea is to use

k iterations of Schalkwijk–Kailath coding as inner code to

transform the noisy feedback channel into a standard additive

white Gaussian noise channel without feedback under new

signal-to-noise ratio Pk. Then, by employing the optimal

code for this new channel, we can achieve the error exponent

E(kR; Pk)

k
.

In other words, we are using the concatenated coding with

the k feedback iterations as the innner code and the optimal

Gaussian nonfeedback code as the outer code. The details

follow.

Let

α =

√

1 + P + ε2

1 + ε2

and

β =
P

1 + P + ε2
.

If the transmitter uses the Schalkwijk–Kailath described in

Section III with the noisy output Ỹ in place of the real output

Y , we have

Xi = αi−1(X1 − ˆ̂
X1(Ỹ

i−1))

= α(Xi−1 − βỸi−1)

where
ˆ̂
Xi(Ỹ

i−1) = E(X1|Ỹ i−1). From our analysis of

the Schalkwijk–Kailath coding scheme, it is straightward to

check that

var(X1 − ˆ̂
X1(Ỹ

n)) = P

(

1 + ε2

1 + P + ε2

)n

.

It is also easy to check that

ˆ̂
X1(Ỹ

i−1) = αβ

i−1
∑

j=1

α−j Ỹj .

Now let X̂1(Y
i−1) denote the true receiver’s estimate of

X1. Then,

var
(

X̂1(Y
i−1) − ˆ̂

X1(Ỹ
i−1)

)

≤ var



αβ

i−1
∑

j=1

α−j(Yj − Ỹj)





= var



αβ
i−1
∑

j=1

α−j Z̃j





= (αβ)2
i−1
∑

j=1

α−2jε2

≤ Pε2

1 + P + ε2
.

Therefore,

var(X1 − X̂1(Y
n))

≤ var(X1 − ˆ̂
X1(Y

n) +
ˆ̂
X1(Y

n) − X̂1(Y
n))

≤ var(X1 − ˆ̂
X1(Y

n)) + var(
ˆ̂
X1(Y

n) − X̂1(Y
n))

+ 2 var(X1 − ˆ̂
X1(Y

n))1/2 var(
ˆ̂
X1(Y

n) − X̂1(Y
n))1/2

≤ P

(

1 + ε2

1 + P + ε2

)n

+
Pε2

1 + ε2 + P

+ 2P

√

(

1 + ε2

1 + P + ε2

)n

· ε2

1 + ε2 + P

=: Vn(P, ε2).

Now take

n∗ = n∗(ε2) =

[

− log ε2

log(1 + P + ε2)

]

− 1.

Then, it is easy to check that

Vn∗(P, ε2) ≤ 4Pε2

1 + P + ε2

WIIA.220

369



so that the n iterations of the Schalkwijk–Kailath coding

scheme gives a nonfeedback Gaussian channel with effective

signal-to-noise ratio

Pn∗(P, ε2) =
P

Vn∗(P, ε2)
− 1 ≥ 1 + ε2 + P

4Pε2
− 1.

By concatenating the optimal code for standard Gaussian

nonfeedback channels as the outer code, we thus achieve

EFB(R; P, ε2) ≥ E(n∗R; Pn∗)

n∗ .

Finally, taking R → 0, we have

EFB(0; P, ε2) ≥ E(0; Pn∗)

n∗ = Ω

(

1

ε2 log(1/ε2)

)

.

VII. FRAGILITY OF LINEAR FEEDBACK CODING

In this section, we show that applying the standard

Schalkwijk–Kailath coding scheme or its variants directly

does not achieve any positive rate, not to mention the capac-

ity of the channel. More precisely, we prove the following

result:

Proposition 3. Consider any sequence of (Mn, n) codes,

with average power bounded by P , and the following struc-

ture: the message index W ∈ {1, . . . , enR} is first mapped

to a finite dimensional constellation point as

θ(W ) ∈ R
k

for some finite k independent of n, and then encoded linearly

for each time index i as

Xi(W, Ỹ i−1) = Li(θ(W ), Ỹ i−1)

for some affine map Li. Assume further that the Then,

P (n)
e → 0

imples that
log(Mn)

n
→ 0.

This result is rather surprising, especially because the lin-

ear feedback coding scheme such as the Kailath–Schalkwijk

coding scheme its variants have been very successful in

many communication scenarios under perfect feedback, such

as the Gaussian nonwhite feedback channel [7], Gaussian

multiple access channel [13], [9], writing-on-dirty paper with

feedback [12], to name a few.

Proof. Proof by contradiction. Suppose there exists a se-

quence of linear feedback coding schemes that achieve R >
0. For simplicity, we assume that k = 1. Then according to

the structure of the linear coding scheme, we have

θ = θ(W ) ∈ R,

which, combined with the positive achievable rate, implies

that there exists α > 0 such that

1

n
I(θ; Y n) ≥ α

for all n.

Now from the restriction of linear feedback coding and the

additive nature of the channel, we can represent the channel

as

Yi = αiθ + ξi, i = 1, 2, . . . , n

for a Gaussian random vector (ξ1, . . . , ξn). Since a Gaus-

sian input maximizes the mutual information over Gaussian

channels, we have

1

n
I(θ̃; Y n) ≥ 1

n
I(θ; Y n) ≥ α

where θ̃ ∼ N(E(θ(W )), var(θ(W ))).
Now from joint Gaussianity of (θ̃, Y n), it is easy to check

that there exists a linear function L(Y n) such that

I(θ̃; L(Y n)) = I(θ̃; Y n) > α (56)

and

L(Y n) = θ̃ + ξ

where ξ ∼ N (0, Eξ2) is independent of θ̃. Furthermore,

from (56), we can easily lower bound Eξ2 as

Eξ2 ≤ Eθ2

e2nα − 1
.

But suppose we use the uniform message constellation

for the channel θ → L(Y n), as in the original Schalkwijk–

Kailath coding scheme. Then, we can achieve

P (n)
e ≤̇ exp(−1

2
e2n(α−R))

for any rate R < α. In particular,

EFB(R; P, ε2) = ∞
for R < α, which contradicts our upper bounds stating

EFB(R; P, ε2) < ∞ for all R.

VIII. CONCLUDING REMARKS

We have obtained upper bounds on the reliability of

Gaussian channels with noisy feedback, which show that the

reliability EFB(R; P, ε2) under power constraint P and noisy

feedback with noise variance ε2 is finite for every positive

ε2 and in fact

EFB(R; P, ε2) = E(R; O(1/ε2))

in low ε2 asymptotics. As a matching lower bound, we

presented a feedback coding scheme that achieves

EFB(R = 0; P, ε2) ≥ E(R = 0; O(1/ε2−δ))

for all δ > 0. However, the problem is still open which

feedback coding scheme can achieve the error exponent that

blows up as ε2 → 0 at strictly positive rate, if this is indeed

possible. Linear feedback coding schemes, which are well-

known to be very effective under perfect feedback (and in

many other scenarios), fail to achieve this goal in the strong

sense that they cannot achieve a positive rate of reliable

communication.

Although we have restricted our attention to the Gaussian

channel with noisy feedback, our approach and techniques
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are applicable more generally. One straightforward general-

ization is to the case of non-Gaussian channels. It is readily

verified that the proof of Theorem 1 carries over to the

case where the noise components are generally distributed.

More specifically, if instead of (6) we have Z ∼ f(z) and

Z̃ ∼ f(s) that are independent (and, as before, S = Z + Z̃),

we can take (Z ′, S′) to be a pair of independent variables

where Z ′ can be arbitrarily distributed ∼ f ′(z) and S′ d
= S.

Then, we have

EFB(R; P, f ′) ≤ γ + E(R; P, f ′) (57)

for any γ ≥ D (f ′‖f) for which Λ∗
ε2,σ2(γ) ≥ E(R; P, f ′),

where Λ∗
ε2,σ2 is the Fenchel–Legendre transform of the

random variable log f ′(Z′,S′)
f(Z′,S′) . Note that the restriction S′ d

=
S guarantees that the input constraint P used by the scheme

in the useless feedback setting is the same as in the original

setting. A similar bound can be obtained for finite-alphabet

channels with modulo-additive noise. For this case, in the

absence of power (or cost) constraints, the restriction S′ d
= S

is no longer required. The approach behind the bound of

Section V can also be extended to the non-Gaussian and

discrete cases.

As another direction of extensions, we can allow encoding

of the output signal Y over the backward channel Ỹ = X̃ +
Z̃ under the feedback function X̃i = X̃i(Y

i) with power

constraint P̃ . Thus, we use the Gaussian two-way channel

for one-way information flow. Moreover, instead of block

coding, we may use the variable-length coding. With these

two additional power, we can show that the reliability is

lower-bounded as

EFB(R; P, P̃ , ε2) ≥ E(R; O(1/ε2)).

Unfortunately, our upper bounding techniques are not appli-

cable to the encoded feedback. Also for the variable-length

coding with noisy feedback, the problem formulation in-

volves some subtlety, because the transmitter and the receiver

cannot agree upon the stopping time of communication, due

to the uncertainty stemming from noise in the feedback link.

These and other extensions will be detailed elsewhere.
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