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Abstract— We give a comprehensive discussion on coding
techniques for the primitive relay channel, in which the channel
input X is transmitted to the relay Y1 and the ultimate receiver
Y over a channel p(y, y1|x) and the relay can facilitate the
communication between the transmitter and the receiver by
sending some information to the receiver over a separate
noiseless link of capacity R0. In particular, we compare three
known coding schemes, “decode-and-forward,” “compress-and-
forward,” and “hash-and-forward,” clarify their limitations,
and explore further extensions. Possible unification of these
coding schemes is also discussed, as well as a few open problems
reflecting major difficulties in proving optimality.

I. INTRODUCTION

The relay channel model was introduced by van der
Meulen [23]. In this model, a relay node facilitates the
communication between the transmitter X and the receiver
Y by inferring about the transmitted signal X from its noisy
observation Y1 and by conveying this information with X1.
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Fig. 1. The relay channel.

As the simplest single-source single-destination network
model, the relay channel plays the role of a basic building
block for future wireless networks and thus has received
much attention recently. As shown in the definite work by
Cover and El Gamal [7], previously known coding theorems
provide a showcase of coding techniques in network infor-
mation theory, combining 1) random codebook generation, 2)
superposition coding, 3) successive cancellation, 4) Slepian–
Wolf partitioning (random binning), 5) cooperative multiple
access coding, 6) random covering, 7) list decoding, and
8) block Markov coding. Nonetheless, the capacity of the
general relay channel is not known in general except for
a few special cases such as degraded [7], semideterminis-
tic [12], orthogonal-component [15], and modulo-sum [2]
relay channels. Recent articles by Kramer et al. [17] and
El Gamal et al. [13] give nice surveys of the literature on
single- or multiple-relay channels.

In wireless communication systems, a relay node cannot
simultaneously transmit and receive signals in the same time
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or frequency band (full-duplex), it is natural to consider half-
duplex models called relay channels with orthogonal com-
ponents [18] as described in Figure 2. Half-duplex relaying
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Fig. 2. Gaussian relay channels with orthogonal components.

decouples the transmitter–relay cooperation and the relay–
receiver cooperation, which makes the capacity problem
simpler than the general relay channel. In the first model
(Figure 2, left), the transmitter and the relay communicate
to the ultimate receiver over an additive white Gaussian
multiple access channel Y = XD + X1 + Z . There is
a separate Gaussian channel Y1 = XR + Z1 from the
transmitter to the relay, independent of the main multiple
access channel. Whether the transmitter-to-relay link is noisy
or not is irrelevant to the capacity of this relay channel, so
we can replace the transmitter-to-relay link with a noise-
less channel with the same capacity. This problem can be
shown to be a special case of multiple access channel with
partially cooperating encoders [24], the capacity region of
which is known completely. More recently, the capacity for
general orthogonal-component relay channels of the form
p(y, y1|x1, x) = p(y1|xR, x1)p(y|xD, x1) has been estab-
lished by El Gamal and Zahedi [15].

In the second model (Figure 2, right), the transmitter
communicates to both the relay and the receiver over an
additive white Gaussian noise broadcast channel (Y1 =
X + Z1, YD = X + ZD). The relay-to-receiver link is
another Gaussian channel YR = X + ZR, independent of
the main broadcast channel. As in the first model, the relay-
to-receiver channel can be replaced by a noiseless link of
the same capacity. The capacity of this model is unknown
in general, except for the degenerate case in which only the
transmitter-to-relay link is very strong [17].

Motivated from the wireless relay channel in Figure 2 as
well as hybrid wireless-wireline networks in which base sta-
tions are cooperating over high-speed optical communication
links, this paper focuses on a rather limited class of relay
channels, which we call primitive relay channels, as depicted
in Figure 3. Here the channel input signal X is received by
the relay Y1 and the receiver Y through a channel p(y, y1|x),
and the relay can communicate to the receiver over a separate
noiseless link of rate R0. We wish to communicate a message
index W ∈ [2nR] = {1, 2, . . . , 2nR} reliably over this relay
channel with a noiseless link. We specify a (2nR, 2nR0 , n)

Forty-Fifth Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
September 26-28, 2007

WeB1.2

129



∈ [2nR]
W Xn(W ) Y n

J(Y n

1
) ∈ [2nR0 ]
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Fig. 3. Primitive relay channel.

code with an encoding function Xn : [2nR] → Xn, a
relay function J : Yn

1 → [2nR0 ], and the decoding function
Ŵ : Yn×[2nR0 ] → [2nR]. The probability of error is defined
by P

(n)
e = Pr{W �= Ŵ (Y n, J(Y n

1 ))}, with the message
W distributed uniformly over [2nR]. The capacity C(R0)
is the supremum of all achievable rates R, i.e., the rates R
for which there exists a sequence of (2nR, 2nR0 , n) codes
such that P

(n)
e can be made to tend to zero as n → ∞.

Equivalently, we are interested in the achievable rate region,
defined as the set of all (R, R0) pairs such that there exists
a sequence of (2nR, 2nR0 , n) codes with P

(n)
e → 0.

Compared to the general relay channel p(y, y1|x, x1), the
primitive relay channel model is much simpler, decoupling
the multiple access component p(y|x, x1) from the broad-
cast component p(y, y1|x). Nonetheless, the primitive relay
channel captures most essential features and challenges of
relaying, and thus serves as a good testbed for new relay
coding techniques. In a sense, the primitive relay channel is
the simplest channel coding problem (from the transmitter’s
point of view) with a source coding constraint. At the
same time, it is the simplest source coding problem (from
the relay’s point of view) for a channel code; the relay
wishes to compress Y n

1 to help the receiver decode Xn.
Naturally the following question takes the central attention
for communication over the primitive relay channel:

How should the relay Y1 summarize its noisy
observation of the intended signal X using R0 bits?

To shed some light on this question, this paper reviews
and clarifies three known coding techniques—decode-and-
forward, compress-and-forward, and hash-and-forward. The
main emphasis is on how these coding techniques compare
with each other and how they can be improved and possibly
unified. Several simple examples are presented to illustrate
these points. It is hoped that this paper will bring more
interests in this simple, yet fundamental problem of the
primitive relay channel, leading to new coding and proof
techniques.

The next section presents few known upper bounds on the
capacity C(R0). In Section III, each coding technique along
with the associated achievable rate is extensively discussed.
Section IV concludes the paper with future directions and
important open questions.

II. OUTER BOUNDS ON C(R0)

For the general relay channel, the well-known cutset
bound [9, Section 15.10] for multiterminal networks is given
as follows:

C ≤ max
p(x,x1)

min{I(X, X1; Y ), I(X ; Y, Y1|X1)}. (1)

For the primitive relay channel, it can be easily shown that
the cutset bound (1) reduces to the following upper bound
on the capacity (see Figure 4):

Proposition 1. The capacity C(R0) of the primitive relay
channel is upper bounded by

C(R0) ≤ max
p(x)

min{I(X ; Y ) + R0, I(X ; Y, Y1)}. (2)
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Fig. 4. Cutsets for the primitive relay channel.

Although it has been widely believed that the cutset
bound is loose in general, finding a counterexample has
turned out to be a nontrivial task. In fact, the bounds (1)
and (2) are tight for almost all known capacity theo-
rems for degraded [7], semideterministic [12], orthogonal-
component [15], and semideterministic primitive [8] relay
channels.

In [29], Zhang showed that

C(R0) < C(0) + R0 = max
p(x)

I(X ; Y ) + R0

for
R0 > max

p(x):I(X;Y )=C(0)
I(X ; Y1) − C(0),

provided that 1) Y and Y1 are independent looks of X , i.e.,
p(y, y1|x) = p(y|x)p(y1|x), and 2) Y is stochastically de-
graded from Y1, i.e., there exists q(y|y1) such that p(y|x) =∑

y1
p(y1|x)q(y|y1). This result, in particular, shows that the

cutset bound (2) can be loose with some positive gap.
A more direct example is constructed in a recent work by

Aleksic et al. [2].

Example 1 (Modulo-sum relay). Suppose the channel input
X takes values in {0, 1}. Then X is observed at the receiver
Y = X +Z via a binary symmetric channel, and the channel
noise Z is observed at the relay Y1 = Z + Z1 via another
binary symmetric channel. More specifically, the channel is
given by

Y = X + Z

Y1 = Z + Z1,

where Z ∼ Bern(1/2) and Z1 ∼ Bern(δ), 0 < δ < 1, are
independent of each other and X .

Using Mrs. Gerber’s Lemma by Wyner and Ziv [27], we
can show that

C(R0) ≤ 1 − H(δ ∗ H−1(1 − R0))

for 0 ≤ R0 ≤ 1. Here and henceforth, we use the notation
H(p) for a binary entropy function of a Bernoulli(p) random
variable and p∗ q = p(1− q)+ q(1−p). From the compress-
and-forward coding scheme we will discuss later, we can
show that this rate is in fact achievable. In particular, we
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have C(1−H(δ)) = 1−H(δ ∗ δ), which is strictly less than
the cutset bound 1 − H(δ).

For the details of the analysis along with extensions, refer
to Aleksic et al. [2].

Incidentally, we can get a similar result by switching the
roles of the receiver and the relay.

Example 2. Suppose the channel is given by

Y = Z + Z1

Y1 = X + Z,

where the input X takes binary values, and Z ∼ Bern(1/2)
and Z1 ∼ Bern(δ), 0 < δ < 1 are independent of each
other and X . Then, we have

C(R0) = 1 − H(δ ∗ H−1(1 − R0))

for 0 ≤ R0 ≤ 1.

The above two examples are, however, very special in
that under capacity-achieving input distribution p∗(x), Y1

is independent of Y . In general, the usual converse proof
technique does not give a sharper bound than the cutset
bound.

As a question simpler than fully characterizing C(R0),
one may be interested in finding

R∗
0 =inf{R0 : C(R0)=C(∞)=max

p(x)
I(X ; Y, Y1)}.

In other words, R∗
0 is the smallest rate needed for the relay-

to-receiver communication so that the maximum information
rate C(∞) = maxp(x) I(X ; Y, Y1) can be achieved. The
cutset bound (2) leads to the following lower bound on R∗

0:

R∗
0 ≥ min

p(x):I(X;Y,Y1)=C(∞)
I(X ; Y1|Y ).

Other than this cutset bound, the modulo-sum relay examples
provide the only known (and tight) lower bound on R∗

0.

III. LOWER BOUNDS ON C(R0)

A. Decode-and-Forward

We can easily see that a simple “multi-hop” scheme, in
which the receiver fully decodes the message and forwards
it with R0 bits/symbol, can achieve

RMH(R0) = max
p(x)

min{I(X ; Y1), R0}. (3)

The major drawback of the multi-hop scheme, however, is
that it does not use the receiver’s own information about the
message, inferred from the observation Y n.

The “decode-and-forward” scheme [7, Section II] im-
proves upon the multi-hop by incorporating the receiver Y ’s
information about X with list decoding and random binning.
More specifically, consider a randomly generated codebook
of size 2nR with each codeword Xn(w), w ∈ [2nR] drawn
independently from p(xn) =

∏n

i=1 p(xi), and independently
thrown into 2nR0 bins. The entire codebook and the asso-
ciated bin assignments are revealed to the transmitter, the
relay, and the receiver prior to the actual communication.

To communicate a message index w, the transmitter sends
Xn(w). Upon receiving Y n, the receiver can form a list
L(Y n) of jointly typical codewords {Xn(w)} of size at most
2n(R−I(X;Y ))+ε that contains the true codeword with high
probability. On the other hand, if R < I(X ; Y1), the relay
can decode the correct message w with high probability and
thus recover the associated bin index, which is sent to the
receiver. Finally, if R0 > R−I(X ; Y )+ε, i.e., if the number
of bins is exponentially larger than the receiver’s list size,
then the receiver can correctly figure out the true codeword,
which has the uniquely matching bin index with the one from
the relay. Therefore, we get the following lower bound on
C(R0).

Proposition 2. For the primitive relay channel, we can
achieve

RDF(R0) = max
p(x)

min{I(X ; Y1), I(X ; Y ) + R0}. (4)

Compared to the multi-hop achievable rate (3), the achiev-
able rate (4) has an additional term I(X ; Y ), reflecting the
information about the channel input X provided by the
receiver’s observation Y . On the other hand, compared to
the cutset upper bound

C(R0) ≤ max
p(x)

min{I(X ; Y, Y1), I(X ; Y ) + R0},

the lower bound (4) is tight when the relay is “close” to the
transmitter, i.e.,

1) when the channel p(y, y1|x) is physically degraded as
X → Y1 → Y and thus I(X ; Y1) = I(X ; Y, Y1), or

2) I(X ; Y1) ≥ I(X ; Y ) + R0.

In general, the coding scheme requires the relay to de-
code the whole message and hence the transmitter-to-relay
link becomes the major bottleneck of communication. The
following example illustrates the point.

Example 3. Consider a primitive relay channel with input
X = (X1, X2), X1, X2 ∈ {0, 1}, the relay output Y1 =
X1 and the receiver output Y = X2. Since X2 cannot be
decoded at the relay, it can be easily seen that

RDF(R0) = R0,

although C(R0) = R0 + 1 for 0 ≤ R0 ≤ 1.

To alleviate this problem, we can incorporate Cover’s
superposition coding [5] with the decode-and-forward coding
scheme to get the so-called “partial decode-and-forward”
scheme [7, Theorem 7]. Given p(u, x) on a properly
chosen auxiliary random variable U and the channel in-
put X , we randomly generate a codebook consisting of
Un(w1) ∼

∏n
i=1 p(ui), w1 ∈ [2nR1 ] and Xn(w2|w1) ∼∏n

i=1 p(xi|Ui(w1)), w1 ∈ [2nR1 ], w2 ∈ [2nR2 ]. To send
a message w = (w1, w2) ∈ [2nR1 ] × [2nR2 ] of rate R =
R1+R2, the transmitter sends Xn(w2|w1). By operating the
decode-and-forward scheme with the primitive relay channel
p(y, y1|u) =

∑
x p(x|u)p(y, y1|x) with pseudo-input U ,

we can achieve R1 = min{I(U ; Y1), I(U ; Y ) + R0}. In
addition, with correctly decoded Un(ŵ1) the receiver can
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further deduce Xn(w2|ŵ1) by joint typicality decoding if
R2 < I(X ; Y |U). Combining R1 and R2, we have the
following lower bound on C(R0):

RPDF(R0)

= max
p(x,u)
|U|≤|X |

min{I(U ; Y1)+I(X ; Y |U), I(X ; Y )+R0}. (5)

Here the cardinality bound on U follows easily from the
standard technique; refer to Wolfowitz [26, Section 12.2]
and Salehi [21]. The partial decode-and-forward includes
the original decode-and-forward; by taking U = X , we can
readily see that (5) becomes (4).

Nonetheless, requiring the relay to decode something can
be strictly suboptimal as demonstrated in the next example.

Example 4. Consider a primitive relay channel with the
binary input X ∈ {0, 1}, the receiver output Y = X + Z
through a binary symmetric channel with modulo-additive
noise Z ∼ Bern(1/2) independent of X , and the relay output
Y1 = Z . In other words, the receiver gets a completely
garbled X due to a random noise Z , while the receiver gets
the noise itself. Because Y1 = Z is independent of X (and
thus of U ), the partial decode-and-forward can achieve no
positive rate. In other words,

RPDF(R0) = 0

for every R0 ≥ 0. But by describing Y1 itself with 1 bit and
using time-sharing, it can be easily checked that C(R0) =
R0 for 0 ≤ R0 ≤ 1.

B. Compress-and-Forward

While the relay in the decode-and-forward coding scheme
strives to decode some digital information about X , the relay
in the “compress-and-forward” (sometimes called “quantize-
and-forward”) coding scheme simply treats its signal Y n

1 as a
random outcome generated by nature and strives to describe
it as efficiently as possible. The details are as follows.

As in decode-and-forward, the codebook is generated at
random under the input codebook {Xn(w)} generated from
p(x). For the decoding of Xn, the relay and the receiver
perform two stages of decoding operations. In the first stage,
the relay and the receiver treat (Y n

1 , Y n) as a source–side
information pair, drawn as independent copies of (Y, Y1) ∼
p(y, y1) =

∑
x p(x)p(y, y1|x). By covering Y n

1 space by
Ŷ n

1 compression codewords and using the Wyner–Ziv coding
technique [28] for the source Y1 with side information Y ,
the relay can convey Ŷ n

1 , jointly typical with Y n
1 for a given

p(ŷ1|y1), using R0 = I(Y1; Ŷ1|Y ) bits/symbol. Note that at
this stage, the receiver and the relay do not need to know
the codebook, but only the input distribution p(x).

In the second stage, the receiver decodes the codeword Xn

using its own observation Y n and the relay’s description Ŷ n
1 .

The Markov lemma [3] guarantees that the joint typicality
decoding is correct with high probability if the code rate
R < I(X ; Y, Ŷ1). By choosing the best p(x) and p(ŷ1|y1),
we have the following achievable rate:

Proposition 3. For the primitive relay channel, we can
achieve

RCF(R0) = max
p(x)p(ŷ1|y1)

|Ŷ1|≤|Y1|+1

{I(X ; Y, Ŷ1) : I(Y1; Ŷ1|Y ) ≤ R0}.

(6)

Again the cardinality bound on Ŷ1 follows from the
standard arguments.

Processing the relay signal in blocks, compress-and-
forward can be viewed as a natural extension of the “amplify-
and-forward” coding scheme for Gaussian relay channels,
in which the relay amplifies (or in general processes in a
symbol-by-symbol manner) the observed signal. The achiev-
able rate (6) is tight for a few special cases such as the
modulo-sum relay channel [2] (cf. Examples 1 and 2) and
the semideterministic case in which the relay output Y1 =
f(X, Y ) is a deterministic function of the input X and the
receiver output Y [8].

There are, however, two obvious limitations of compress-
and-forward. First, the achievable rate RCF(R0) is not a
convex function in R0 and thus can be improved by taking
a convex envelope using time-sharing (cf. [14]) as

RCCF(R0)

= max
p(q)p(x|q)p(ŷ1|y1,q)

|Ŷ1|≤|Y1|
|Q|≤2

{I(X ; Y, Ŷ1|Q) : I(Y1; Ŷ1|Y, Q) ≤ R0}.

The second limitation comes from the fact that the re-
lay in the compress-and-forward scheme does not use the
codebook structure at all and simply treats Y n

1 as a random
outcome. This can lead to a strictly suboptimal performance
as illustrated by the next example.

Example 5. As in Example 3, the channel input X =
(X1, X2) consists of a pair of binary components X1 and
X2. Suppose the relay observes the first component X1 via a
binary symmetric channel with crossover probability δ, i.e.,
Y1 = X1 + Z where Z ∼ Bern(δ) is independent of X .
The receiver observes the second component X2 without any
error, i.e., Y = X2.

By decoding X1 and X2 separately (partial decode-and-
forward), we can easily achieve the capacity

C(R0) = 1 + R0

for 0 ≤ R0 ≤ 1 − H(δ). (The optimality follows from the
cutset bound.) Hence, the minimum rate R∗

0 necessary to
achieve C(∞) = 2 − H(δ) is 1 − H(δ).

On the other hand, we have

RCF(R0) ≤ max
p(x)p(ŷ1|y1)

I(X ; Y, Ŷ1)

≤ max
p(x)

I(X ; Y, Y1)

≤ 2 − H(δ),

with equality only if X1 and X2 are independent and
identically distributed according to Bern(1/2). But under this
choice of input distribution p(x), we have

R = I(X ; Y, Ŷ1) = 2 − H(X1|Ŷ1),
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while
R0 = I(Y1; Ŷ1|Y ) = 1 − H(Y1|Ŷ1).

Hence, from the conditional version of Mrs. Gerber’s
Lemma [27, Corollary 4] for the Markov chain Ŷ1 → Y1 →
X1, R = 2 − H(δ) implies that R0 = 1 > 1 − H(δ).

C. Hash-and-Forward

Suppose the relay output Y1 = f(X, Y ) is a deterministic
function of the channel input X and the receiver output Y .
Given a randomly generated codebook under input distribu-
tion p(x), the following decoding strategy achieves the cutset
bound.

The receiver forms a list L(Y n) of 2n(R−I(X;Y )+ε) code-
words that are jointly typical with given Y n. Since Y1 is a
deterministic function of (X, Y ), there is at most one Y n

1 to
each pair of (Xn, Y n). Therefore, given Y n and the corre-
sponding list L(Y n) of 2n(R−I(X;Y )+ε) codewords Xn(w)’s,
the receiver can form a list of at most 2n(R−I(X;Y )+ε) Y n

1 ’s.
Now the relay can use R0 = R− I(X ; Y ) + 2ε bits/symbol
to communicate the hash index of Y n

1 , which is sufficient to
convey Y n

1 asymptotically error-free to the receiver. Finally,
if R < I(X ; Y, Y1) then with high probability there exists a
unique codeword Xn in L(Y n) that is jointly typical with
Y n

1 from the relay. (In other words, the correct codeword is
uniquely jointly typical with (Y n, Y n

1 ).) Thus we can achieve

RHF(R0) = max
p(x)

min{I(X ; Y ) + R0, I(X ; Y, Y1)},

which coincides with the cutset bound (2). The details of
analysis and examples can be found in [8].

Although this coding scheme, called “hash-and-forward,”
uses list decoding at the receiver side and random binning
to transfer the relay’s information just as in the decode-and-
forward scheme, the relay does not decode the message at
all. In fact, the relay does not need to know the codebook
or even p(x).

On the other hand, the hash-and-forward is different from
the compress-and-forward coding scheme described above in
two aspects.

First, the relay output is transferred to the receiver by
hashing only without any quantization with Ŷ n

1 , which
would require H(Y1|Y ) bits/symbol from the Slepian–Wolf
coding theorem [22] if the compress-and-forward scheme
was employed. Indeed, it is worthwhile to note that without
quantization, the compress-and-forward achieves (R, R0)
pairs satisfying

R ≤ I(X ; Y, Y1) (7a)

R0 ≥ H(Y1|Y ) (7b)

given p(x). Note that this region is achievable for any (not
necessarily deterministic) primitive relay channel.

Second and more importantly, the hash-and-forward cod-
ing scheme can be viewed as another two-stage decoding
method, the second stage being exactly the same as in
compress-and-forward, while the first stage differs in that
the receiver now exploits the codebook structure. In fact,
the first stage of hash-and-forward can be reinterpreted as

0 R0

(H(Y1|Y ), I(X; Y, Y1))

I(X; Y ) − H(Y1|X, Y )

Extended
hash-and-forward

Compress-and-forward

Fig. 5. The comparison of compress-and-forward achievable region (half-
open rectangle) and hash-and-forward achievable achievable region (half-
open trapezoid) when the relay transfers Y n

1
faithfully to the receiver.

follows. Upon receiving Y n, the receiver forms a list L(Y n)
of 2n(R−I(X;Y )) Xn codewords. Now using each (Xn, Y n)
pair as side information for describing Y n

1 by Slepian–Wolf
coding, the relay needs to spend the communication rate of
only H(Y1|X, Y ) = 0 since Y1 = f(X, Y ). Since there are
2n(R−I(X;Y )) pairs of (Xn, Y n), the relay can describe Y n

1

faithfully with rate R0 = R − I(X ; Y ).
The idea of employing the list decoding in the first

stage of compress-and-forward by exploiting the codebook
structure leads to a natural extension of hash-and-forward to
a general nondeterministic primitive relay channels. Since
the relay needs to spend the rate H(Y1|X, Y ) for each
(Xn, Y n) pair and there are 2n(R−I(X;Y )) such pairs, the
total rate required to transfer transfer Y n

1 becomes R0 = R−
I(X ; Y )+ H(Y1|X, Y ). Hence for a general primitive relay
channel, the “extended hash-and-forward” (or “codebook-
aware compress-and-forward”) coding scheme can achieve
all (R, R0) pairs satisfying

R ≤ I(X ; Y, Y1) (8a)

R0 ≥ R − I(X ; Y ) + H(Y1|X, Y ) (8b)

for some p(x) (cf. (7)). Figure 5 compares the achievable rate
regions described by (7) and (8) for a fixed p(x). Although
hash-and-forward seems to achieve more than compress-and-
forward, the total achievable regions are in fact identical if we
convexify the compress-and-forward region with no relaying
(R = I(X ; Y ), R0 = 0) by time-sharing. We will comment
more on this shortly.

We can further generalize the idea of codebook-aware
compress-and-forward with random covering. Indeed, the re-
lay requires the rate I(Y1; Ŷ1|X, Y ) to describe Ŷ n

1 for each
(Xn, Y n) side information pair and there are 2n(R−I(X;Y ))

pairs of (Xn, Y n) that the receiver has to deal with, so
R0 = R − I(X ; Y ) + I(Y1; Ŷ1|X, Y ) suffices.

Proposition 4. For the primitive relay channel, we can
achieve

REHF (R0)

= max
p(x)p(ŷ1|y1)

|Ŷ1|≤|Y1|+1

min

{
I(X ; Y, Ŷ1),

I(X ; Y ) − I(Y1; Ŷ1|X, Y ) + R0

}
. (9)

Note that this achievable rate can be further extended
by time-sharing. It is known [8] that for the semideter-
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0 R0

B

A

Fig. 6. The achievable rate region for the codebook-aware compress-and-
forward coding scheme under a fixed p(x).

ministic relay with Y1 = f(X, Y ), both hash-and-forward
and compress-and-forward achieve the capacity for each
R0. A natural question arises whether this coding technique
of exploiting the codebook structure at the receiver side
can strictly improve upon the original compress-and-forward
scheme for a general primitive relay channel. The answer is
somewhat disappointingly negative. To see this, consider the
following diagram describing the achievable (R, R0) pairs
in (9) for a given p(x). The corner point A in Figure 6,
corresponding to

R = I(X ; Y, Ŷ1)

R0 = R − I(X ; Y ) − I(Y1; Ŷ1|X, Y ) = I(Y1; Ŷ1|Y ),

can be achieved also by compress-and-forward; see Propo-
sition 3. On the other hand, the corner point B,

R = I(X ; Y ) − I(Y1; Ŷ1|X, Y ) ≤ I(X ; Y )

R0 = 0,

can be again achieved by not using the relay at all (compress-
and-forward with Ŷ1 = 0). Therefore, by time-sharing these
two operating points, the convexified compress-and-forward
coding scheme can achieve the entire convex envelope of
REHF(R0). (The other direction of inclusion is obvious.) This
implies that there is no performance improvement if only
the receiver uses the codebook structure while the relay still
treats Y n

1 as a random outcome generated by nature.

IV. DISCUSSION

Decode-and-forward and compress-and-forward represent
two extreme methods of summarizing the relay’s noisy
observation about the message. In a sense, decode-and-
forward extracts the digital information by decoding, while
compress-and-forward processes the analog information by
vector quantization with side information. Hash-and-forward,
seemingly augmenting the quantization process with the
receiver’s knowledge about the digital structure, does not
gain from the vanilla compress-and-forward.

That neither of decode-and-forward and compress-and-
forward dominates the other, not to mention neither achieves
the capacity in general, hints that optimal coding for a
general primitive relay channel would require a completely
new technique. To be fair, we can overlay decode-and-
forward and compress-and-forward together to obtain a super

coding scheme (see [7, Theorem 7] and [4]), but there is a
strong indication that this super coding scheme can be strictly
suboptimal [14].

The major conceptual question towards a new relay coding
technique would be “How can the relay exploit the codebook
structure?”. In a sense, (partial) decode-and-forward can be
viewed as compress-and-forward in which the relay uses
the codebook Xn(w) (or Un(w1) in partial decode-and-
forward) instead of Ŷ n

1 as the covering code. Can we extend
this idea to the case in which the relay cannot decode the
codeword and instead transfer a list of codewords that are
compatible with Y n

1 ? This problem seems to require a novel
combinatorial method on joint typicality graphs.

On the other hand, there are channel models in which it is
impossible for the relay to exploit the codebook structure and
thus the vanilla compress-and-forward scheme seems to be
naturally optimal. As a first example, we consider a Gaussian
channel with state.

Question 1. Let the channel output Y is given by X + Z +
S where the input X has average power constraint P , the
additive Gaussian noise Z has variance N , and the additional
additive Gaussian interference S has variance Q. We assume
that Z and S are independent of each other and of X . The
capacity of this channel (without any relay) is

C = C(0) =
1

2
log

(
1 +

P

N + Q

)
.

Now suppose the relay observes Y1 = S and tries to help
the receiver by sending some information at rate R0. What
is the capacity C(R0)?

When N = 0, it is known [8] that C(R0) = C(0) + R0

for every R0. The answer is not known in general.
Ahlswede and Han [1, Section V] considered a general

state-dependent channel p(y|x, s) with rate-limited state in-
formation available at the receiver. By identifying Y1 = S
with the channel state S independent of the channel input
X , this model can be regarded as a special case of primitive
relay channels. Although compress-and-forward is strongly
believed to be optimal as Ahlswede and Han conjectured,
the proof seems to be out of reach at the moment except for
a few special cases considered in [8], [2].

The next example reveals an interesting connection be-
tween the primitive relay channel and coding for distributed
computing.

Question 2. Suppose a binary input X is observed at the
receiver and the relay through two identical and dependent
erasure channels. More specifically,

(Y, Y1) =

⎧⎪⎨
⎪⎩

(X, X), with probability 1/3

(X, e), with probability 1/3

(e, X), with probability 1/3,

where e denotes the erasure symbol. One salient feature of
this primitive relay channel is that X is a deterministic func-
tion of (Y, Y1). Hence, if the receiver is fully aware of Y1 as
well as Y , it can determine X without any error and achieve
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the 1-bit capacity. Obviously, using R0 = H(Y1) = log 3
bits/symbol, the relay can describe Y1 faithfully. Or by using
Slepian–Wolf coding, it suffices to spend R0 = H(Y1|Y ) =
1. What is the minimum R0 to achieve C(R0) = 1, or in
our notation, what is R∗

0?

In [20], Orlitsky and Roche considered the following
interesting problem. Suppose there is a pair of memoryless
sources (Un, V n). Alice observes Un and Bob observes
V n. How many bits would Alice need to describe Un so
that Bob can calculate some symbol-by-symbol function
f(Un, V n) = (f(U1, V1), . . . , f(Un, Vn))? This problem
can be viewed as a special case of the Wyner–Ziv prob-
lem with side-information-dependent distortion measure [10,
Corollary 3.4.6] with side information V and zero Hamming
distortion between the reconstruction Û and the desired
function value f(U, V ). However, Orlitsky and Roche went
further to show that 1) this quantity is identical to the
conditional graph entropy HG(U |V ) of the characteristic
graph G of (U, V ) and f defined by Witsenhausen [25], and
2) Bob can calculate the desired function with asymptotically
vanishing block error probability, instead of symbol error
probability in the usual Wyner–Ziv setup. See Doshi et
al. [11] for a recent development.

Now turning back to our erasure relay problem, evaluating
HG(Y1|Y ) under X ∼ Bern(1/2) shows that

R0 =
2

3
H

(
1

4

)
,

which is less than H(Y1|Y ) = 1, is sufficient to achieve
C = 1. Can we prove the optimality of this rate? In general,
is R∗

0 = HG(Y1|Y ) for deterministic primitive relay channels
with X = f(Y, Y1)? The standard weak converse proof
techniques seem to fail.

We conclude this paper with another example with two
relays, which shows a connection to helper problems [10,
Section 3.1] and thus hints further difficulties in finding an
optimal coding technique.

Example 6. Suppose the receiver Y = X + Z observes
the binary input X over a binary symmetric channel with
crossover probability δ. There are two relays; the first relay
receives Y1 ∼ Bern(1/2), independent of X , and the second
relay receives Y2 = Y1 + Z , again independent of X .
How many bits R1 and R2 should the relays respectively
communicate to the receiver to achieve C = 1 bit?

Under Slepian–Wolf coding for (Y1, Y2) with side infor-
mation Y , which can be easily proved to be the optimal
compress-and-forward scheme to achieve C = 1, we need
R1 + R2 = 1 + H(δ). However, using the Körner–Marton
encoding [16] of binary doubly symmetric sources, R1 =
R2 = H(δ) is sufficient to achieve C = 1 and in fact
optimal, which can be shown from the cutset bound.
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