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Abstract—A problem of state information transmission over
a state-dependent discrete memoryless channel (DMC) with
independent and identically distributed (i.i.d.) states, known
strictly causally at the transmitter is investigated. It is shown
that block-Markov encoding coupled with channel state estima-
tion conditioned on treating the decoded message and received
channel output as side information at the decoder yields the
minimum state estimation error. This same channel can also
be used to send additional independent information at the
expense of a higher channel state estimation error. The optimal
tradeoff between the rate of the independent information that
can be reliably transmitted and the state estimation error is
characterized via the capacity-distortion function. It is shown
that any optimal tradeoff pair can be achieved via a simple
rate-splitting technique, whereby the transmitter appropriately
allocates its rate between pure information transmission and state
estimation.

I. INTRODUCTION

In many communication scenarios, the communicating par-
ties have some knowledge about the environment or the chan-
nel over which the communication takes place. For instance,
the transmitter and the receiver may be able to monitor the
interference level in the channel and only carry out com-
munication when the interference level is low. In particular,
we are interested in the study of data transmission over
state-dependent channels. The case where state information is
available at the transmitter has received considerable attention
with prior work by Shannon [1], Kusnetsov and Tsybakov
[2], Gel’fand and Pinsker [3], and Heegard and El Gamal
[4]. Applications of this model include multimedia information
hiding [5], digital watermarking [6], data storage over memory
with defects [2], [4], secret communication systems [7], dy-
namic spectrum access systems [8], underwater acoustic/sonar
applications [9] etc.

Most of the existing literature has focused on determining
the channel capacity or devising practical capacity-achieving
coding techniques [3], [4]. In certain communication scenarios,
however, rather than communicating pure information across
the channel, the transmitter may instead wish to help reveal the
channel state to the receiver. An example of the above com-
munication scenario is an analog-digital hybrid radio system
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[10]. Here, digital refinement information is overlaid on the
existing legacy analog transmission in order to help improve
the detection and reconstruction of the original analog signal,
which must be kept intact due to backward compatibility
requirements. In this example, the existing analog transmission
can be viewed as the channel state that the transmitter has
access to and wishes to help reveal to the receiver. A key
observation here is that the presence of the analog signal
affects the channel over which the digital information is
transmitted. At the same time, the digital transmission may
itself interfere with the existing analog transmission, thereby
degrading the quality of the original analog signal - the very
thing that the digital information is designed to help improve.

In this paper, we study this problem of state information
transmission over a state-dependent discrete memoryless chan-
nel. In this setup, the transmitter has access to the channel
state in a strictly causal manner and wishes to help reveal
it to the receiver with some fidelity criteria. We show that
block-Markov encoding coupled with channel state estimation
conditioned on treating the decoded message and received
channel output as side information at the decoder is optimal
for state information transmission.

This same channel can also be used to send additional
independent information. This is, however, accomplished at
the expense of a higher channel state estimation error. We
characterize the tradeoff between the amount of independent
information that can be reliably transmitted and the accuracy
at which the receiver can estimate the channel state. There
is a natural tension between sending pure information and
revealing the channel state. Pure information transmission
usually corrupts (or may even obliterate) the channel state,
making it more difficult for the receiver to ascertain the
channel state. Similarly, state information transmission takes
away resources that may be used in transmitting pure in-
formation. We quantitatively characterize such a fundamental
tension in this paper via the capacity-distortion function (first
introduced in [11]). There is a fundamental difference between
the capacity-distortion function and the rate-distortion function
in lossy source coding [15]. The capacity-distortion function
is defined with respect to a state-dependent channel, seeking
to characterize the fundamental tradeoff between the rate of
information transmission and the distortion of state estimation.
In contrast, the rate-distortion function is defined with respect
to a source distribution, seeking to characterize the funda-
mental tradeoff between the rate of its lossy description and
the achievable distortion due to the description. We show that
any optimal tradeoff pair can be achieved via a simple rate-
splitting technique, whereby the transmitter is appropriately
allocated its rate between pure information transmission and
state estimation.

The problem formulation in [11] bears similarity to that
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we consider: the destination is interested in both information
transmission and channel state estimation. However, a critical
distinction that differentiates our work from [11], is the fact
that in [11], the transmitter and the receiver are assumed to be
oblivious of the channel state realization. In our formulation,
the source has a strictly causal knowledge of the channel
state. In fact, we show that the results of [11] are a special
case of our results. Similarly [12], [13] consider the rate-
distortion trade-off for the state-dependent additive Gaussian
channel, where the channel state is assumed to be non-causally
known at the source. Along the same lines, [14] considered the
problem of transmitting data over a state-dependent channel
with state information available both non-causally and causally
at the sender and at the same time conveying the information
about the channel state itself to the receiver. The optimal
tradeoff is characterized between the information transmission
rate and the state uncertainty reduction rate, in which the
decoder forms a list of possible state-sequences. There is a
fundamental difference between the state uncertainty reduction
rate and distortion, as under some distortion measure, it may
so happen that a state sequence not in the list of decoder may
yield a lower distortion.

The rest of this paper is organized as follows. Section II
defines the notation used in the paper. Section III describes
the basic channel model with discrete alphabets, and formu-
lates the problem of characterizing the minimum achievable
distortion at zero information rate. Section IV determines the
minimum distortion, and Section V establishes its achievabil-
ity. Section VI proves the converse part of the theorem. Section
VII extends the results to the information rate-distortion trade-
off setting, wherein we define and evaluate the capacity-
distortion function. Section VIII illustrates the application of
the capacity-distortion function through the examples of an
additive state dependent Gaussian channel and an additive state
dependent binary channel. Finally, Section IX concludes the
paper.

II. NOTATION

Before formulating the problem, we define notation that will
be used throughout the paper. Capital letters are used to denote
random variables and small letters are reserved for a particular
realization of the random variable. x

b
a denotes a sequence

(xa, xa+1, · · · , xb), whose elements are drawn from the same
distribution. When a = 1, we usually omit the subscript. For
X∼P (x) and � ∈ (0, 1), we define the set T (n)

� (X) of typical
sequences x

n as

T (n)
� (X) :=

�
x
n :

����
|{j : xj = x}|

n
− P (x)

���� ≤ �P (x),

for all x ∈ X} . (1)

Jointly typical sequences can be defined similarly. Consider
the random variables A,B,C. If A and C are conditionally
independent given B, we say they form a Markov chain. We
denote this statistical relationship by A−B − C.

III. BASIC PROBLEM FORMULATION

In this section, we formulate the channel state estimation
problem, where the receiver only wants to estimate the channel

state with minimum distortion, with the channel state is
available strictly causally at the transmitter.
Channel input: A symbol x taken from a finite input alphabet
X =

�
a
(1)

, a
(2)

, · · · , a(|X |)�.
Channel output: A symbol y taken from a finite output
alphabet Y =

�
b
(1)

, b
(2)

, · · · , b(|Y|)�.
Channel state: A symbol s taken from a finite state alphabet
S =

�
c
(1)

, c
(2)

, · · · , c(|S|)�. For each channel use, the state
is a random variable S which has a probability mass function
(PMF) PS(s). Over any n consecutive channel uses, the chan-
nel state sequence S

n is memoryless, P (sn) =
�n

j=1 PS(sj).
Channel: A collection of probability transition matrices each
of which specifies the conditional probability distribution
under a fixed channel state; that is, P (b(j)|a(i), c(k)) represents
the probability of output y = b

(j) ∈ Y occurring given
input x = a

(i) ∈ X and state s = c
(k) ∈ S , for any

1 ≤ i ≤ |X |, 1 ≤ j ≤ |Y| and 1 ≤ k ≤ |S|. With n

consecutive channel uses, the channel transitions are mutually
independent, characterized by

P (yn|xn
, s

n) =
n�

j=1

P (yj |xj , sj). (2)

Distortion: For any two channel states, the distortion is a
deterministic function, d : S × Ŝ �→ �+

�
{0}. It is further

assumed that d(., .) is bounded, i.e., d(c(i), c(j)) ≤ dmax ≤ ∞
for any 1 ≤ i, j ≤ |S|. For any two length-n state sequences
(s1, ..., sn) ∈ Sn

, (ŝ1, ..., ŝn) ∈ Ŝn, the distortion is defined to
be the average of the pairwise distortions, 1

n

�n
j=1 d(sj , ŝj).

Coding: A (fj , hj), 1 ≤ j ≤ n code for the channel is defined
as:

• Encoder: A deterministic function fj : Sj−1 �→ X for
each 1 ≤ j ≤ n. Note that the state sequence is available
at the encoder in a strictly causal manner.

• State Estimator: A deterministic function, hj : Yn �→ Ŝj .
We denote Ŝj = hj(Y n) as the estimated channel states.

Distortion for channel state estimation: We consider the
average distortion, which is defined as

D̄
(n) = E



 1

n

n�

j=1

d(Sj , Ŝj)



 , (3)

where the expectation is over the conditional joint distribution
of (Sn

, Y
n), noting that Ŝn is determined by Y

n.
In this paper, we wish to characterize Dmin defined as

Dmin = lim inf
n→∞

min
fj ,hj ,1≤j≤n

E



 1

n

n�

j=1

d(Sj , Ŝj(Y
n))



 ,

(4)

which is the minimum distortion achievable for the channel
model.

IV. MAIN RESULT

To characterize the minimum distortion, we will need the
following definition.
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Definition 1: For a joint distribution PSUXY , define the
minimum possible estimation error of S given (U,X, Y ) by

ξ(S|U,X, Y ) = min
g:U×X×Y�→Ŝ

E [d(S, g(U,X, Y ))] , (5)

where d(., .) is a distortion measure.
Since by definition, Xj is independent of Sj , for all 1 ≤

j ≤ n, one possible coding strategy (see [11]) would be to
send a deterministic Xj that facilitates state estimation at the
decoder and use a function of (Xj , Yj) to estimate Sj . In that
case, the minimum distortion Dmin is given by,

Dmin = min
x∈X ,g(·)

E[d(S, g(x, Y ))]. (6)

This strategy, although optimal for the case of channel-state
oblivious receiver (RX) and transmitter (TX) as shown in [11],
is found to be suboptimal when we have some channel state
information (CSI) at the TX as we can perform better by
applying a block-Markov coding scheme, where at block i,
the transmitter can use its knowledge of the state sequence of
block i− 1 to select a code that can be employed to estimate
the state sequence of block i−1 at the decoder after receiving
the channel output of block i. We could implement this by
compressing the channel state of block i−1 and then sending
the compression index through the channel. This strategy can
further be improved as the compression index can be sent at
a much lower rate by realizing that the receiver has a side
information of (Xn(i − 1), Y n(i − 1)). We implement this
coding scheme to achieve the minimum distortion, which is
given by the following theorem.

Theorem 1: The minimum achievable distortion for the
problem considered in last section is

dmin = min
P

ξ(S|U,X, Y ), (7)

where

P =
�
PX , PU |X,S : I(U,X;Y )− I(U,X;S) ≥ 0

�
.(8)

and U is an auxiliary random variable of finite alphabet size.
Remark: These results hold for all possible finite delays, the

key is the need for strict causality. In fact, our results hold as
long as the delay is sub-linear in the codeword length n.

V. PROOF OF ACHIEVABILITY

In this section, we will prove achievability for Theorem 1.
We fix the distributions PX , PU |X,S and ŝ(u, x, y) that

achieve a distortion of Dmin/(1 + �).
Codebook generation:

• Choose 2nR̂ i.i.d x
n each with probability P (xn) =�n

j=1 P (xj). Label these as x
n(w), w ∈

�
1 : 2nR̂

�
.

• Choose, for each x
n(w), 2nR

�
i.i.d. un each with prob-

ability P (un|xn(w)) =
�n

j=1 P (uj |xj(w)), where for
x ∈ X , u ∈ U , we define

P (u|x) =
�

s∈S
P (s)p(u|x, s).

Label these as u
n(l|w), l ∈

�
1 : 2nR

�
�
, w ∈

�
1 : 2nR̂

�
.

• Partition the set of indices l ∈
�
1 : 2nR

�
�

into equal-size subsets B(w) :=�
(m− 1)2n(R

�−R̂) + 1 : m2n(R
�−R̂)

�
, w ∈

�
1 : 2nR̂

�
.

• The codebook is revealed to the both encoder and de-
coder.

Encoding: Let, xn(wi−1) ∈ T (n)
� (X) be the codeword sent

in block i− 1.
• Knowing s

n(i − 1) at the beginning of block i, the
encoder looks for an index li ∈

�
1 : 2nR

�
�

such that

(un(li|wi−1), sn(i − 1), xn(wi−1)) ∈ T (n)
� (S,X,U). If

there is more than one such li, the smallest index is
selected. If there is no such li, select li = 1.

• Determine the wi such that li ∈ B(wi). Codeword x
n(wi)

is transmitted in block i.
Analysis of probability of error for encoding: We define the

following error events:

E11i :=
�
S
n(i− 1) /∈ T (n)

�1 (S)
�
,

E12i := {(Un(l|wi−1), S
n(i− 1), Xn(wi−1))

/∈ T (n)
�2 (S,X,U) for all l ∈

�
1 : 2nR

�
��

.

The total probability of error for the encoding step is then
upper bounded as

P (E1i) ≤ P (E11i) + P (Ec
11i ∩ E12i). (9)

We now bound each term:
• P (E11i) goes to 0 as n → ∞ by the Law of Large

Numbers (LLN).
• As given X

n(wi−1), U
n(l|wi−1), l ∈

�
1 : 2nR

�
�

is
generated independently of S

n(i − 1), by the Covering
Lemma (see [16]), P (Ec

11i ∩ E12i) → 0 if �2 is small, n
is large and

R
�

> I(U ;S|X)
(a)
= I(U,X;S), (10)

where (a) follows from the independence of X and S.
• Combining the results, we can conclude that P (E1i) → 0

as n → ∞ if R�
> I(U,X;S).

Decoding and analysis of probability of error: At the end
of the block i the decoder does the following:

• The receiver declares ŵi was sent by looking for the
uniquely typical x

n(wi) with y
n(i). Without loss of

generality, let Wi = 1 be the chosen index in block i.
The decoder makes an error iff

E21i :=
�
X

n(1) /∈ T (n)
�3 (X)

�
,

E22i :=
�
S
n(i) /∈ T (n)

�4 (S)
�
,

E23i :=
�
(Xn(1), Y n(i)) /∈ T (n)

�5 (X,Y )
�
,

E24i :=
�
(Xn(w), Y n(i)) ∈ T (n)

�5 (X,Y ) for some w �= 1
�
.

Thus, by the union of events bound, we have

P (E2i) = P (E2i|Wi = 1) ≤ P (E21i) + P (E22i)
+P (Ec

21i ∩ Ec
22i ∩ E23i) + P (Ec

21i ∩ Ec
22i ∩ E24i).

(11)
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We next bound each term:
– P (E21i) and P (E22i) go to 0 as n → ∞ by LLN.
– Since Ec

21i :=
�
X

n(1) ∈ T (n)
�3 (X)

�
and

Ec
22i :=

�
S
n(i) ∈ T (n)

�4 (S)
�

, it implies that

(Xn(1), Sn(i)) ∈ T (n)
�5 (S,X) (as they are

independent of each other) and thus by the
Conditional Typicality Lemma, (see [16])
P (Ec

21i ∩ Ec
22i ∩ E23i) → 0 due to the fact

that (Xn(1), Sn(i), Y n(i)) ∈ T n
�5 (S,X, Y ).

– By the Packing Lemma (see [16]) P (Ec
21i ∩ Ec

22i ∩
E24i) → 0 if �5 is small, n is large and

R̂ < I(X;Y ). (12)

– Thus by (11), P (E2i) vanishes as n → ∞ if R̂ <

I(X;Y ).
• The receiver then declares that l̂i is sent if it is the unique

message such that (un(l̂i|ŵi−1), yn(i−1), xn(ŵi−1)) are
jointly �-typical and l̂i ∈ B(ŵi); otherwise it declares an
error. Assume that (Wi−1,Wi, Li) is sent in block i and
let (Ŵi−1, Ŵi) be the receiver’s estimate of (Wi−1,Wi).
Consider the following error events for the receiver,

E31i :=
�
(Un(Li|Ŵi−1), Y

n(i− 1), Xn(Ŵi−1))

/∈ T (n)
�6 (U, Y,X)

�
,

E32i :=
�
(Un(l|Ŵi−1), Y

n(i− 1), Xn(Ŵi−1))

∈ T (n)
�6 (U, Y,X) for some l �= Li, l ∈ B(Ŵi)

�
.

The probability of decoding error at this step is upper
bounded as

P (E3i) ≤ P

�
E31i ∪ E32i ∪

�
Ŵi−1 �= Wi−1

�
∪ E1i

�

≤ P (Ŵi−1 �= Wi−1) + P (E1i) + P (E32i)
+P

�
E31i ∩

�
Ŵi−1 = Wi−1

�
∩ Ec

1i

�
. (13)

– The first two terms → 0 as n → ∞ if R̂ < I(X;Y )
and R

�
> I(U,X;S).

– Since
�
Ŵi−1 = Wi−1

�
∩ Ec

1i :=
�
(Un(Li|Ŵi−1), Sn(i− 1), Xn(Ŵi−1))

∈ T (n)
�2 (S,X,U)

�
and since U − [S,X] − Y ,

by the Markov Lemma (see [17])
P

�
E31i ∩

�
Ŵi−1 = Wi−1

�
∩ Ec

1i

�
goes to 0

as n → ∞.
– To bound P (E32i), we first bound it above by

P (E32i) = P

�
(Un(l|Ŵi−1), Y

n(i− 1), Xn(Ŵi−1))

∈ T (n)
�6 (U, Y,X) for some l �= Li, l ∈ B(Ŵi)

�

≤ P

�
(Un(l|Ŵi−1), Y

n(i− 1), Xn(Ŵi−1))

∈ T (n)
�6 (U, Y,X) for some l ∈ B(1)

�
.

The proof of this inequality is provided in [16]. Now,
by the independence of the codebooks and by the

packing lemma P (E32i) goes to 0 as n → ∞, if

R̂ > R
� − I(U ;Y |X), (14)

as there are 2n(R
�−R̂) codewords

U
n(L̂i|Ŵi−1), L̂i ∈ B(Ŵi).

• The total probability of error is then upper bounded by
adding (9),(11) and (13) and is given by

P (Ei) ≤ P (E1i) + P (E2i) + P (E3i). (15)

Combining the bounds in (10),(12) and (14) and perform-
ing Fourier-Motzkin elimination (see [16]) to remove R̂

and R
�, we have shown that P (Ei) goes to 0 as n → ∞

if

I(U,X;Y ) > I(U,X;S) (16)

• The reconstructed state sequence of block i − 1 is then
given by,

ŝj(i− 1) = f(uj(li|wi−1), xj(wi−1), yj(i− 1)),

∀1 ≤ j ≤ n. (17)

Analysis of the expected distortion: When there is no
error, (Sn(i − 1), Xn(Wi−1), Un(Li|Wi−1), Y n(i − 1)) ∈
T (n)
� (S,X,U, Y ). Thus the asymptotic distortion averaged

over the random code and over (Sn
, U

n
, X

n
, Y

n) is bounded
as,

D ≤ lim sup
n→∞

E

�
d(Sn(i− 1), Ŝn(i− 1))

�

(a)
= lim sup

n→∞

n�

j=1

E

�
d(Sj(i− 1), Ŝj(i− 1))

�

(b)
= lim sup

n→∞

n�

j=1

E [d(Sj(i− 1), f(Uj , Xj , Yj))]

(c)
≤ lim sup

n→∞
P (Ei)Dmax + (1 + �)P (Ec

i )E [d(S, f(U,X, Y ))]

= Dmin + �, (18)

where (a) follows from the definition of distortion and linearity
of the expectation operator, (b) follows from the coding
strategy and (c) follows from the Law of Total Expectation
and Typical Average Lemma (see [16]).

This completes the proof of achievability for Theorem 1.

VI. PROOF OF THE CONVERSE

In this section, we prove that for every code, the achieved
distortion D ≥ Dmin. Before proving the converse, we
introduce one key Lemma.

Lemma 1: For any three arbitrary random variables Z ∈ Z ,
V ∈ V and T ∈ T , where Z − T − V form a Markov chain
and for a distortion function d : Z ×Z �→ �+

�
{0}, we have

E [d(Z, f(V ))] ≥ min
g:T �→Z

E [d(Z, g(T ))] , (19)

for some arbitrary function f : V �→ Z .
This Lemma can be interpreted as the data-processing

inequality for estimation theory.
Proof:
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Using the law of iterated expectation, we have

E [d(Z, f(V ))] = ET [E [d(Z, f(V ))|T ]] . (20)

Now, for each t ∈ T ,

E [d(Z, f(V ))|T = t] =
�

z∈Z,v∈V
P (z|t)P (v|t)d(z, f(v))

=
�

v∈V
P (v|t)

�

z∈Z
P (z|t)d(z, f(v))

≥ min
v∈V

�

z∈Z
P (z|t)d(z, f(v)) (21)

=
�

z∈Z
P (z|t)d(z, f(v∗(t))),

where v∗(t) attains the minimum in (21) for the given t. Define
g(t) = f(v∗(t)). Then (20) becomes

E [d(Z, f(V ))] = ET [E [d(Z, f(V ))|T ]]

≥ ET

�
�

z∈Z
P (z|t)d(z, g(t))

�

= E [d(Z, g(T )]

≥ min
g̃:T �→Z

E [d(Z, g̃(T ))] ,

which completes the proof.
Now, consider a (fj , hj , n), 1 ≤ j ≤ n-code with

distortion D. We have to show that D ≥ Dmin. We define
Uj := (Sj−1

, Y
n
j+1), with (S0, Yn+1) = (∅, ∅). Note that as

desired, Uj − [Xj , Sj ]− Yj , 1 ≤ j ≤ n form a Markov chain.
Thus,

n�

j=1

I(Uj , Xj ;Sj) =
n�

j=1

I(Sj−1
, Y

n
j+1, Xj ;Sj)

(a)
=

n�

j=1

I(Sj−1
, Y

n
j+1;Sj)

=
n�

j=1

I(Sj−1;Sj) + I(Y n
j+1;Sj |Sj−1)

(b)
=

n�

j=1

I(Y n
j+1;Sj |Sj−1)

(c)
=

n�

j=1

I(Sj−1;Yj |Y n
j+1)

≤
n�

i=1

I(Sj−1
, Y

n
j+1, Xj ;Yj)

=
n�

j=1

I(Uj , Xj ;Yj), (22)

where (a) is true because Xj is a function of Sj−1, (b) follows
from the fact that the channel state sequence is memoryless,
and (c) follows from the Csisźar sum identity (see [16]). Let Q
be a uniform random variable with PQ(q) = 1/n, 1 ≤ q ≤ n

that is independent of (Sn
, X

n
, Y

n). Now,
n�

j=1

I(Uj , Xj ;Sj)
(a)
= nI(UQ, XQ;SQ|Q)

(b)
= nI(UQ, Q,XQ;SQ)
(c)
≤

n�

j=1

I(Uj , Xj ;Yj)

= nI(UQ, XQ;YQ|Q)
(d)
≤ nI(UQ, Q,XQ;YQ), (23)

where (a) follows from the definition of conditional mutual
information, (b) follows from the fact that Q is independent
of SQ, (c) follows from (22) and (d) follows from the chain
rule. Now the distortion D can be bounded below as,

D = E

�
d(Sn

, Ŝ
n)
�

(a)
=

n�

j=1

1

n
E

�
d(Sj , Ŝj(Y

n))
�

(b)
≥

n�

j=1

1

n
min
gj

E [d(Sj , gj(Uj , Xj , Yj))]

(c)
≥ min

g
E [d(SQ, g(UQ, Q,XQ, YQ))] , (24)

where (a) follows from the definition of distortion and the
linearity of expectation operator and for (b) we apply Lemma
1. We recognize Si as Z, Y n as V , and (Uj , Xj(Sj−1), Yj) as
T , and it is easy to verify that with (Uj , Xj(Sj−1), Yj) given,
Y

n is independent of Sj due to the fact that input codeword
is a strictly causal function of the state sequence and also
because of the memoryless property of the channel. Therefore
Lemma 1 yields (b). The inequality in (c) follows from the
definition of conditional expectation.

Now by defining (UQ, Q) = U, SQ = S,XQ = X and
YQ = Y we have the proof of the converse of Theorem 1.

VII. CAPACITY-DISTORTION TRADE-OFF

In this section, we consider a scenario where, in addition
to assisting the receiver in estimating the channel state, the
transmitter also wishes to send additional pure information,
independent of the state, over the discrete memoryless channel.
Formally, based on the message index m ∈

�
1, 2nR

�
and the

channel state S
j−1, the transmitter chooses Xj(m,S

j−1), 1 ≤
j ≤ n and transmits it over the channel. After receiving Y

n,
the receiver decodes m̂ ∈

�
1, 2nR

�
, and forms an estimate

Ŝ
n(Y n) of the channel state S

n.
The probability of a message decoding error and the state

estimation error are given by

λ
(n) = max

m∈M
Pr [gn(Y n) �= m|m is transmiited] (25)

and

D̄
(n) =

1

|M|
�

m∈M
E

�
1

n

n�

i=1

d(Si, Ŝi)|m is transmitted

�
,

(26)
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where the expectation is over the conditional joint distribution
of (Sn

, Y
n) conditioned on the message m ∈ M.

A pair (R,D), denoting a transmission rate and a state
estimation distortion is said to be achievable if there exists
a sequence of (

�
2nR

�
, n)-codes, indexed by n = 1, 2, · · · ,

such that limn→∞ λ
(n) = 0, and limn→∞ D̄

(n) ≤ D.
Capacity-distortion function [11]: For every D ≥ 0, the
capacity-distortion function CSC(D) is the supremum of rates
R such that (R,D) is an achievable transmission-state estima-
tion tradeoff. The results of the last section can be utilised to
characterize CSC(D).

Theorem 2: The capacity-distortion function for the prob-
lem considered is

CSC(D) = max
PD

I(U,X;Y )− I(U,X;S), (27)

where

PD =
�
PX , PU |X,S : ξ(S|U,X, Y ) ≤ D

�
. (28)

where U is an auxiliary random variable of finite alphabet
size.

Note that by choosing U = ∅, we can recover the capacity-
distortion function results of [11], where it is assumed that
both the transmitter and receiver have no knowledge of the
channel state-sequence.

Theorem 2 can be shown by splitting the rate between pure
information transmission and channel state estimation. The
proof is omitted for brevity.

We summarize a few properties of CSC(D) in Corollary 1
without proof.

Corollary 1: The capacity-distortion function CSC(D) in
Theorem 2 has the following properties:
1) CSC(D) is a non-decreasing concave function of D for all
D ≥ Dmin.
2) CSC(D) is a continuous function of D for all D > Dmin.
3) CSC(Dmin) = 0 if Dmin �= 0 and CSC(Dmin) ≥ 0 when
Dmin = 0.
4) CSC(∞) is the unconstrained channel capacity and is given
by,

CSC(∞) = max
PX

I(X;Y ). (29)

5) The condition for zero distortion at zero information rate
is given by, maxPX I(X,S;Y ) ≥ H(S).

Remark: The characterization in Theorem 2, albeit very
compact, does not bring out the intrinsic tension between pure
information transmission and state information transmission.
Here, without proof, we provide a different, but equivalent,
characterization of the region, which reveals more explicitly
the capacity-distortion trade-off:

CSC(D) = max
PX

�
I(X;Y )− EX

�
R

(x)
WZ (D)

��
, (30)

where

R
(x)
WZ(D) = min

PU|x,S :ξ(S|U,x,Y )≤D
I(U ;S|x, Y ),

where x ∈ X , (31)

is the Wyner-Ziv rate-distortion function for a given x ∈ X .
We observe the following:

• Eqn (30) states that the transmitter pays a rate penalty of
R

(x)
WZ(D) to estimate the channel state at the receiver by

transmitting x. Alternatively, R(x)
WZ(D) can be viewed as

the estimation cost due to signaling with x.
• Combining Property 3) of Corollary 1 and Equation (30),

we can have an alternate characterization of the minimum
achievable distortion, when Dmin �= 0 and it is given by
the solution of the following equation.

max
PX

�
I(X;Y )− EX

�
R

(x)
WZ (Dmin)

��
= 0, (32)

where R
(x)
WZ (Dmin) is as defined in (31).

VIII. ILLUSTRATIVE EXAMPLES

A. State dependent Gaussian channel
Consider the state-dependent Gaussian channel:

Yj = Xj(m,S
j−1) + Sj + Zj , 1 ≤ j ≤ n, (33)

where Sj∼N (0, Q), Zj∼N (0, N), the transmitted signal has
a power constraint of P and the channel input codeword
is a strictly causal function of state S and the message
m ∈

�
1, 2nR

�
. The receiver wants to decode the message with

vanishing probability of error for large n and also estimate
the channel state in some distortion D. We consider the
mean-squared Error (MSE) distortion measure. We wish to
characterize the capacity-distortion (R,D) trade-off region.

The capacity-distortion function CSC(D) of the state-
dependent Gaussian channel with strictly causal state infor-
mation at the transmitter is given by:

CSC(D) =






1
2 log

(P+Q+N)D
QN ,

QN
P+Q+N ≤ D ≤ QN

Q+N

0, 0 ≤ D ≤ QN
P+Q+N

1
2 log

�
1 + P

Q+N

�
, D ≥ QN

Q+N .

(34)

Equation (34) can be proved using the alternative charac-
terization of the capacity-distortion function provided in the
last Section. If R(x)

WZ (D) is independent of x or same for all
x, then it is easy to see that the alternative characterization of
CSC(D) reduces to,

CSC(D) = CSC(∞)−RWZ(D). (35)

We will use this observation to characterize CSC(D) in this
and the subsequent example. It is a well-known result that
for additive Gaussian channel, R(x)

WZ (D) is same as the rate-
distortion function when both transmitter and receiver has the
side information (see [19]). Thus R

(x)
WZ (D) is independent

of x as by knowing x at both the transmitter and receiver,
it can form an equivalent channel which is independent of
x. Thus CSC(D) for the Gaussian example is given by (35),
where CSC(∞) and RWZ(D) can be evaluated using standard
results (for details see [16]).

Discussion: (1) It is obvious from Equation (34) that
Dmin = QN

P+Q+N and unconstrained capacity of the channel

is given by C(∞) = 1
2 log

�
1 + P

Q+N

�
, which is achieved by

treating the interfering channel state as noise.
(2)Dmin < D

∗ = QN/(Q+N), where D∗ is the minimum
distortion achievable when the transmitter has no knowledge of
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the state and it is achieved by first decoding the transmitted
message X

n in a ”non-coherent” fashion, then utilizing the
reconstructed channel inputs along with the channel outputs
Y

n to estimate the channel states as seen in [11].
Fig. 1 plots the rate-distortion region of the state-dependent

additive Gaussian channel as we vary different channel pa-
rameters. As we increase the variance N of the additive
Gaussian noise or the variance Q of the additive channel state
sequence, the rate-distortion region decreases since, to achieve
a distortion level D for the channel state, we need to allocate
more rates to describe the channel state in the presence of
high noise. If we increase the source power P , by keeping
all the other parameters constant, the rate-distortion region
increases as source has more power to describe the channel
state. Note that the saturated part of each of the rate-distortion
plot quantifies the unconstrained capacity of the channel.

B. State dependent additive binary Channel
We next consider the example of a state-dependent additive

binary channel given by,

Yj = Xj ⊕ Sj ⊕ Zj , 1 ≤ j ≤ n, (36)

where ⊕ is the binary addition,
Sj∼Ber(p), Zj∼Ber(q), (p, q) ∈ [0, 1/2] and Xj is a
binary random variable, which is a function of the message m

and the state-sequence S
j−1. We note the following regarding

the computation of the capacity-distortion function:
• p = 0 is a trivial case as under this condition, S = 0

with probability 1.
• When q = 0, we can achieve zero distortion (Dmin = 0)

by decoding Xj at the decoder and then cancelling its
effect from the received Yj , and the capacity distortion
function in this case is constant and is given by the un-
constrained capacity CSC(D) = CSC(∞) = 1−H2(p).

• When either of p or q = 1/2, then the capacity-distortion
function is zero as the unconstrained capacity is zero
in this case. Under this condition, it is easy to see that
Dmin = min{p, q}.

For all other values of (p, q), the capacity-distortion function
CSC(D) for the state-dependent additive binary channel with
(p, q) ∈ (0, 1/2) is given by,

CSC(D) = 1−H2(p ∗ q)−RWZ(D), (37)

where

RWZ(D) = min
µ,β:µβ+(1−µ)min{p,q}≤D

µ[H2(p)−H2(β)

−H2(p ∗ q) +H2(β ∗ q)], (38)

is the Wyner-Ziv rate-distortion function and H2(.) is a binary
entropy function.

We will again use the alternate characterization to evalu-
ate the capacity-distortion function of state-dependent binary
channel. Using [19], R(x)

WZ (D) for x = 0 can be determined
to be

R
(x=0)
WZ (D) = min

µ,β:µβ+(1−µ)min{p,q}≤D
µ [H2(p)−H2(β)

−H2(p ∗ q) +H2(β ∗ q)] .

(a) Capacity-distortion regions with P = 1, N = 1 and Q varying from 0.5
to 2.

(b) Capacity-distortion regions with Q = 1, N = 1 and P varying from
0.5 to 2.

(c) Capacity-distortion regions with P = 1, Q = 1 and N varying from
0.5 to 2.

(d) Minimum achievable distortion with P = 1, Q = 1.2 and N varying from
1 to 100

Fig. 1. Capacity-distortion region for various channel parameter values
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For x = 1, the Wyner-Ziv rate-distortion function can be
similarly calculated and is given by

R
(x=1)
WZ (D) = min

µ,β:µβ+(1−µ)min{p,q}≤D
µ [H2(p)−H2(β)

−H2(p ∗ (1− q)) +H2(β ∗ (1− q))] .

It is easy to see that R(x)
WZ (D) is same for both x = 0 and

x = 1 because of fact that H2(r) = H2(1− r), ∀ r ∈ [0, 1].
Now if R(x)

WZ (D) is same for all x, then by (35), the capacity
distortion function for the binary channel can be achieved by
choosing X∼Ber(1/2).

Discussion: (1) When (p, q) ∈ (0, 1/2), it can be easily
shown that if H2(p) +H2(q) < 1, then Dmin = 0, otherwise
Dmin is given by the solution of the following equation:

1−H2(p ∗ q) = RWZ(Dmin). (39)

(2) When D ≥ min{p, q}, the capacity-distortion function
is the unconstrained capacity 1−H2(p ∗ q).

IX. CONCLUDING REMARKS

The joint information transmission and channel state estima-
tion problem for state-dependent channels was studied in [11],
[13]. In [11], the case where the transmitter is oblivious of the
channel state information was investigated and [13] studied
state-dependent additive Gaussian channel with states available
non-causally at the transmitter. In this paper, we bridge the gap
between these two results by considering the joint communica-
tion and state estimation problem when the transmitter knows
the channel state in a strictly causal manner. We showed that
when the goal is to minimize the state estimation error at the
receiver, the optimal transmission technique is to use block
coding coupled with channel state estimation conditioned on
treating the decoded message and received channel output as
side information at the receiver. Pure information transmission
obscures the receiver’s view of the channel state, thereby
increasing the state estimation error. For this intrinsic conflict,
a simple rate-splitting technique achieves the optimal tradeoff.
We also showed that the capacity-distortion function when
transmitter is oblivious of the state information is a special
case of our result.
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