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Abstract—This paper studies the problem of broadcasting a
common message over a relay network as the canonical platform
to investigate the utilities and limitations of traditional relay
coding schemes. For a few special classes of networks, such as
the 3-node relay channel and the 4-node diamond network, the
decode–forward coding scheme by Cover and El Gamal, and
its generalization to networks by Xie and Kumar, and Kramer,
Gastpar, and Gupta achieve the cutset bound, establishing the
capacity. When the network has cycles, however, decode–forward
is suboptimal in general and is outperformed by partial decode–
forward, compress–forward, or more generally, interactive re-
laying built upon these ∗–forward coding schemes. In particular,
it is demonstrated via a simple example that a coding scheme
based on interactive computing by Orlitsky and Roche, and
its infinite-round generalization by Ma and Ishwar can strictly
outperform existing noninteractive or finite-round interactive
coding schemes. Roughly speaking, when the network is to be
flooded with information, it is more efficient for the relays to
spray tiny droplets of the information back and forth than to
splash a huge amount at a time.

I. INTRODUCTION

Consider the discrete memoryless network (DMN) model
(X1 × X2 × · · · × XN , p(yN |xN ), Y1 × Y2 × · · · × YN )
that consists of N sender-receiver alphabet pairs (Xk,Yk),
k ∈ [1 : N ] := {1, 2 . . . , N}, and a collection of channel
conditional pmfs (probability mass functions) p(yN |xN ) :=
p(y1, y2, . . . , yN |x1, x2, . . . , xN ). Suppose that source node 1
wishes to communicate a common message M to the rest
of the network, as depicted in Figure 1. Compared to the
unicast (one node wishes to recover M ) or multicast (some
nodes wishes to recover M ), this problem is relatively simpler
since every node in the network has the symmetric goal of
recovering the same message.

When the nodes in the network cannot adapt their transmis-
sions based on its received sequence (that is, no relaying or
feedback is allowed), then the problem reduces to common
message communication over a broadcast channel and the
capacity is

CBC = max
p(x1),x2,...,xN

min
k∈[2:N ]

I(X1;Yk).

Now suppose that each node in the network can adapt its
transmission based on the received sequence (that is, relaying
is allowed) and thus help other nodes recover the message as
well. Despite its relative simplicity, this problem still captures
the essential richness of relaying over networks. This paper
attempts to demonstrate the inherent complexity in relaying
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Fig. 1. Common message broadcasting over a noisy network.

by studying the information flow questions on broadcasting:
• What is the capacity?
• What is the optimal relaying coding scheme that achieves

the capacity?
Throughout this paper, we closely follow the notation in [1].

In particular, a random variable is denoted by an upper case
letter (e.g., X,Y, Z) and its realization is denoted by a lower
case letter (e.g., x, y, z). The shorthand notation Xn

j is used to
denote a tuple of random variables (Xj1, . . . , Xjn), and xnj is
used to denote their realizations. Given be a tuple of random
variables (X1, . . . , XN ) and A ⊆ [1 : N ], the subtuple of
random variables with indices from A is denoted by X(A) :=
(Xj : j ∈ A). For every positive real number m, the short-
hand notation [1 : 2m] is used to denote the set of integers
{1, . . . , 2�m�}.
We are now ready to define the common-message broad-

casting problem formally. A (2nR, n) broadcast code for the
DMN p(yN |xN ) consists of

• a message set [1 : 2nR],
• a source encoder that assigns a symbol x1i(m, yi−1

1 ) to
each message m ∈ [1 : 2nR] and received sequence yi−1

1

for i ∈ [1 : n],
• a set of relay encoders, where encoder k ∈ [2 :N ] assigns

a symbol xki(yi−1
k ) to every received sequence yi−1

k for
i ∈ [1 : n], and

• a set of decoders, where decoder k ∈ [2 :N ] assigns m̂k

to each ynk .
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We assume that the message M is uniformly distributed over
the message set. The average probability of error is defined
as P

(n)
e = P{M̂k �= M for some k ∈ [2 : N ]}. A rate R is

said to be achievable if there exists a sequence of (2nR, n)
broadcast codes such that limn→∞ P

(n)
e = 0. The broadcast

capacity of the DMN is the supremum of all achievable rates.
El Gamal [2] established the cutset upper bound on the

capacity:

C ≤ max
p(xN )

min
k∈[2:N ]

min
S: 1∈S, k∈Sc

I(X(S);Y (Sc) | X(Sc)). (1)

Xie and Kumar [3] and Kramer, Gastpar, and Gupta [4]
generalized the decode–forward coding scheme for the relay
channel by Cover and El Gamal [5] and established the
network decode–forward lower bound on the capacity:

C ≥ max
p(xN )

min
k∈[1:N−1]

I(Xk;Yk+1 |XN
k+1). (2)

These two bounds coincide and establish the broadcast capac-
ity when the network is degraded, i.e.,

p(yNk+2 |xN , yk+1) = p(yNk+2 |xNk+1, yk+1) (3)

for k ∈ [1 :N − 2] (up to relabeling of nodes).
In Section II, we discuss two other special cases—

3-node relay channels and layered networks—for which the
decode–forward lower bound is tight. Decode–forward, how-
ever, is suboptimal for general networks. In Sections III
through VI, we demonstrate gradually through simple exam-
ples that optimal relaying can be more sophisticated than
simple decode–forward and require partial decode–forward,
compress–forward, or interactive relaying built upon these
∗–forward coding schemes. Our discussion will culminate
with the binary broadcast relay channel example for which
not only interactive communication between relays strictly
outperforms the existing noninteractive coding schemes, but
also the number of communication rounds needs to go to
infinity to fully enjoy the benefit of interaction.

II. DECODE–FORWARD IS SOMETIMES OPTIMAL

It is already mentioned that the decode–forward coding
scheme is optimal when the network is degraded; see (3).
Another case in which decode–forward is natural is when the
network is acyclic, i.e.,

p(yN |xN ) =
N
�

k=1

p(yk |xk, yk−1)

(up to relabeling of nodes). For this case, node k does not
receive any signal from its downstream (nodes j ∈ [k+1 :N ]).
Thus it is natural to decode its received signal at once and
forward the recovered message downstream. In the following,
we revisit a few special classes of acyclic networks for which
this decode–forward coding scheme is optimal.

A. Relay Channel

We first consider the relay channel p(y2, y3|x1, x2) [6], [5]
depicted in Figure 2. It is well known that decode–forward is
optimal and the capacity is

C = max
p(x1,x2)

min
�

I(X1;Y2 |X2), I(X1, X2;Y3)
�

.
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Fig. 2. Relay channel.

B. Layered Network

Consider the diamond network p(y2, y3|x1)p(y4|x2, x3) [7]
depicted in Figure 3. Again, decode–forward is optimal and
the capacity is

C = max
p(x1)p(x2,x3)

min
�

I(X1;Y2), I(X1, Y3), I(X2, X3;Y4)
�

.

To prove the converse, simplify the cutset bound in (1) as

C ≤ max
p(x3)

min
�

I(X1, X3;Y2 |X2), I(X1, X2;Y3 |X3),

I(X1, X2, X3;Y4)
�

(a)

≤ max
p(x3)

min
�

I(X1;Y2), I(X1;Y3), I(X2, X3;Y4)
�

(b)
= max

p(x1)p(x2,x3)
min

�

I(X1;Y2), I(X1;Y3), I(X2, X3;Y4)
�

,

where (a) follows since (X2, X3) → X1 → Y2, (X2, X3) →
X1 → Y3, and X1 → (X2, X3) → Y4, respectively, form
Markov chains, and (b) follows since the mutual information
terms I(X1;Y2), I(X1;Y3), and I(X2, X3;Y4) depend on the
channel input pmf p(x1, x2, x3) only through the marginals
p(x1) and p(x2, x3). The achievability follows by simplifying
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Fig. 3. Diamond network.
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the decode-forward lower bound in (2) as

C ≥ max
p(x3)

min
�

I(X1;Y2 |X2, X3), I(X1, X2;Y3 |X3),

I(X1, X2, X3;Y4)
�

(a)

≥ max
p(x1)p(x2,x3)

min{I(X1;Y2 |X2, X3), I(X1;Y3 |X3),

I(X2, X3;Y4)}
(b)

≥ max
p(x1)p(x2,x3)

min
�

I(X1;Y2), I(X1;Y3), I(X2, X3;Y4)
�

,

where (a) follows since the maximum is over a smaller set
and (b) follows since X1 is independent of (X2, X3).

This result can be easily generalized to layered network

p(yN |xN ) =

λ
�

l=1

p(y(Ll)|x(Ll−1))

depicted in Figure 4, where the layers of nodes L0 = {1} and
Lj , j ∈ [1 : λ] partition the network, i.e.,

L0 � L1 � · · · � Lλ = [1 :N ].

The capacity of the layered network is

C = max�
λ
l=1

p(x(Ll−1))
min
l∈[1:λ]

min
j∈Ll

I(X(Ll−1);Yj).

1
M

L0 L1 Lλ

Fig. 4. Layered network.

C. Diamond Network with Direct Link
Now we consider the variant of the diamond network

depicted in Figure 5, which is defined as

p(y2, y3, y4 |x1, x2, x3) = p(y2, y3 |x1)p(y4 |x1, x2, x3).

For this case, the cutset bound simplifies to

C ≤ max
p(x3)

min
�

I(X1;Y2 |X2), I(X1;Y3 |X3),

I(X1, X2, X3;Y4), I(X1;Y2, Y3 |X2, X3)
�

,

while the decode–forward lower bound simplifies to

C ≥ max
p(x3)

min
�

I(X1;Y2 |X2, X3), I(X1;Y3 |X3),

I(X1, X2, X3;Y4)
�

.

Thus, it is not known whether decode–forward is optimal for
acyclic networks in general, even though it seems to be the
only reasonable coding scheme when there is no cycle in the
information flow.
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Fig. 5. Diamond network with direct link.

III. PARTIAL DECODING IS SOMETIMES NECESSARY

In general, when the network has cycles, it is more advan-
tageous to recover only part of the message at the beginning
and recover the rest with the help of other nodes. This idea is
best explained by a 3-node cyclic graphical network example
depicted in Figure 6. Here the network is modeled by a
weighted directed cyclic graph G = (N , E), where N =
{1, 2, 3} is the set of nodes, E = {(1, 2), (1, 3), (2, 3), (3, 2)}
is the set of edges, each of which models an orthogonal
communication link that can carry 1 bit per transmission. Note
that the corresponding conditional pmf p(y3|x3) is given by
X1 = (X12, X13), Y2 = (X12, X3) and Y3 = (X13, X2),
where X12, X13, X2, and X3 are binary.
It can be easily verified that the cutset bound simplifies to

C ≤ 2 and the decode–forward lower bound simplifies to C ≥
1. But by simply routing one bit along the path 1 → 2 → 3
and another bit along the path 1 → 3 → 2, we can easily
achieve 2 bits per transmission.

This observation can be readily generalized to any graphical
networks, for which the capacity is achieved by routing as
in the unicast case [8], [9]. Note that unlike the multicast
case, network coding [10] is unnecessary for broadcasting.
When the network suffers noise, the partial decode–forward
coding scheme by Cover and El Gamal [5] and its extension
to networks by Aref [11] provide a means of splitting the
message into independent parts and forwarding them along
multiple paths.
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Fig. 6. Cyclic graphical network example.
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IV. INITIAL DECODING IS SOMETIMES IMPOSSIBLE

In some cases, decoding is actually impossible at the begin-
ning and more sophisticated coding schemes are necessary.
To illustrate the depth of this problem, throughout the rest
of the paper we focus on a simple 3-node cyclic network
model depicted in Figure 7, which is commonly referred to
as the broadcast relay channel. Here the message is sent over
a broadcast channel p(y2, y3|x1). In addition, nodes 2 and 3
are connected via two noiseless links of rates R2 and R3,
respectively, that are orthogonal to the main broadcast channel.
Let C(R) be the broadcast capacity as a function of the sum
R = R2 +R3 of the link capacities between nodes 2 and 3.

M Encoder
Xn

1 p(y2, y3|x1)

Y n
2

Y n
3

Decoder 2

Decoder 3

R2 R3

M̂2

M̂3

Fig. 7. Broadcast relay channel.

To be more specific, we consider the Gaussian broadcast
relay channel depicted in Figure 8. The channel outputs
corresponding to the input X1 are

Y2 = X1 + Z2,

Y3 = X1 + Z3,
(4)

where Z2 are Z3 are jointly Gaussian with zero mean, equal
variance E(Z2

2 ) = E(Z2
3 ) = 1, and correlation coefficient ρ =

E(Z2Z3). Note that the capacity without the two noiseless
links between the two receivers is

C(0) =
1

2
log(1 + P ).

In the following, we focus on the case of ρ = 0.

X1

Z2 ∼ N(0, 1)

Z3 ∼ N(0, 1)

Y2

Y3

R2 R3

Fig. 8. Gaussian broadcast relay channel.

By the cutset bound, the capacity is upper bounded as

C(R) ≤ C(0) +
R

2
, (5)

where the optimal R2 = R3 = R/2 by symmetry. In compar-
ison, since both receivers are symmetric, i.e., FY2|X1

(y|x) =
FY3|X1

(y|x), one recovers exactly what the other can re-
cover about the message. Thus, any decoding-based re-
laying scheme (decode–forward, partial decode–forward, or
compute–forward [12]) cannot achieve more than C(0), which
tends to zero as P → 0.

Now we consider the compress–forward coding scheme for
the relay channel by Cover and El Gamal [5], which can
be readily extended to the current setup. It can be easily
shown [13] that the corresponding lower bound (with the
optimal rate splitting R2 = R3 = R/2) simplifies to

C(R) ≥ max
F (x1)F (ŷ2|y2)F (ŷ3|y3)

min{I1, I2, I3, I4}, (6)

where

I1 = I(X1;Y2, Ŷ3),

I2 = I(X1; Ŷ2, Y3),

I3 = I(X1;Y2)− I(Y3; Ŷ3 |X1, Y2) +R/2,

I4 = I(X1;Y3)− I(Y2; Ŷ2 |X1, Y3) +R/2.

Evaluated with the Gaussian input distribution and test chan-
nels, this lower bound simplifies to

C(R) ≥ 1

2
log

�

1 +
2P (P + 1)(2R − 1) + P (2P + 1)

(P + 1)(2R − 1) + (2P + 1)

�

,

which is strictly larger than C(0) for every R > 0. Thus,
compress–forward strictly improves upon decoding-based re-
laying schemes. Note that when ρ = −1, the correspond-
ing compress–forward lower bound coincides with the cutset
bound in (5). This lower bound can be also achieved by the
hash–forward coding scheme [14], [15].

V. INTERACTION IS SOMETIMES NECESSARY

In the relay coding schemes we have discussed so
far—(partial) decode–forward, compress–forward, compute–
forward, hash–forward, each node summarizes its received
signal and forwards it to other nodes. It turns out, however,
that interactive cooperation between nodes can achieve higher
rates, as demonstrated by Draper, Frey, and Kschschang [16]
for the broadcast relay channel consisting of two binary
erasure channels.

In this section, we adapt their interactive relaying scheme
to the Gaussian broadcast relay channel in (4) studied in the
previous section. Suppose that node 2 first uses compress–
forward to help node 3 recover the message and node 3 then
uses decode–forward to help node 2 recover the message. It
can be easily shown that this “compress–forward-followed-by-
decode–forward” coding scheme yields the following lower
bound on the capacity:

C(R) ≥ max
F (x1)F (ŷ2|y2)

min{I2, I �3}, (7)
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where

I2 = I(X1; Ŷ2, Y3),

I �3 = I(X1;Y2)− I(Y2; Ŷ2 |Y3) +R.

By symmetry, it can be shown that this lower bound strictly
improves upon the compress–forward lower bound in (6).
Thus, two-round interactive relaying is sometimes better than
noninteractive relaying. When evaluated with the Gaussian
input distribution and test channels, the lower bound in (7)
simplifies to

C(R) ≥ max
σ2

min

�

1

2
log

�

1 +
2P + Pσ2

1 + σ2

�

,

R+
1

2
log(1 + P )− 1

2
log

�

1 +
2P + 1

(P + 1)σ2

��

.

Figure 9 compares the cutset bound and the (partial) decode–
forward, compress–forward, and compress–forward decode–
forward lower bounds.
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Fig. 9. Comparison of the capacity bounds for the Gaussian broadcast relay
channel when P = 10.

VI. INFINITE INTERACTION IS SOMETIMES NECESSARY

As shown in the previous section, interactive relaying can
outperform noninteractive ∗–forward coding schemes. It is
natural to ask the following:
• Would more than two rounds of interactive relaying

further outperform two rounds of interactive relaying?
• If so, how many rounds would be necessary?

In this section, we study a simple binary broadcast relay
channel that consists of two correlated Z channels as depicted
in Figure 10, and show that infinite rounds of interactive
relaying can strictly outperform known finite-round coding
schemes.

As before, we focus on the capacity C(R) as a function of
the sum-rate R of communication between two receivers. In
particular, we will focus on the optimal rate of interaction

R∗ = min{R : C(R) = 1}.
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Fig. 10. Two correlated Z channels.

It is easy to see that C(0) = 0.3941, which is the capacity
of the Z channel, while C(R) = 1 for R ≥ 2, which is the
capacity of the DMC from X1 to (Y2, Y3). In other words,
R∗ ≤ 2. Note further that X1 = Y2 · Y3 and that when
X ∼ Bern(1/2), Y2 and Y3 are independent and identically
distributed Bern(1/

√
2).

We now compare the existing bounds on the capacity. First,
the cutset bound simplifies (under the optimal choice R2 =
R3 = R/2) to

C(R)

≤ max
p(x1)

min{I(X1;Y2) +R/2, I(X1;Y2, Y3)}

= max
α∈[0:1]

min{H((2−
√
2)α)− αH(

√
2− 1) +R/2, H(α)}.

In particular, C(R) < 1 for R < 1.2338; in other words,
R∗ ≥ 1.2338.

Since the channel is symmetric as in the Gaussian case,
decoding-based coding schemes are useless and the (partial)
decode–forward lower bound simplifies as

C(R) ≥ C(0) = 0.3941.

The capacity C(R) lies between two simple bounds as plotted
in Figure 11.

While the compress–forward lower bound in (6) can be
evaluated only numerically, one extreme point can be cal-
culated analytically. Let R∗

CF be the minimum R such that
the compress–forward lower bound CCF(R) = 1. Then, the
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Fig. 11. Optimal C(R) curve.

inverse problem of finding R∗
CF is equivalent to finding the

minimum sum-rate of noninteractive communication between
nodes 2 and 3 so that each of the nodes can losslessly compute
X1 = Y2 · Y3 ∼ Bern(1/2). Thus, we can apply Orlitsky and
Roche’s result on coding for computing [17] and conclude that

R∗
CF = HG(Y2 |Y3) +HG(Y3 |Y2)

= H(Y2) +H(Y3)

= 2H

�

1√
2

�

= 1.7449,

where HG(Y2|Y3) and HG(Y3|Y2) denote the conditional graph
entropies that characterize the minimum rates to compute
X1 at node 3 and node 2, respectively. In other words,
C(R) = 1 for R ≥ 1.7449. Note that noninteractive extensions
of compress–forward including hash–forward [14], [15], noisy
network coding [18], and hybrid coding [19] do not perform
better than compress–forward.

Compress–forward can be improved instead by making
communication between nodes 2 and 3 interactive. Suppose
that node 2 first uses the regular compress–forward to help
node 3 recover the message and then node 3 uses a modified
version of compress–forward that incorporates the signal from
node 2 as side information to help node 2 recover the message;
see Kaspi [20] for the origin of this idea in two-way lossy
source coding. While this modification does not improve upon
the noninteractive compress–forward lower bound in (6) for
the Gaussian case (since the quadratic Gaussian rate–distortion
function is the same with or without side information at the
encoder [21]), it provides strict improvements in general, for
example, in the current setup of the binary broadcast relay
channel. As before, the inverse problem of finding the corre-
sponding minimum sum-rate R∗

CF2 of this coding scheme can
be recast into the problem of finding the minimum sum-rate for
computing X1 at nodes 2 and 3 via two-round communication.
Following the results on interactive coding for computing by
Orlitsky and Roche [17], and Ma and Ishwar [22], it can be

shown that

R∗
CF2 = H(Y2) +H(X1 |Y3)

= H

�

1√
2

�

+
1√
2
H

�

1√
2

�

= 1.4893.

In other words, C(R) = 1 for R ≥ 1.4893.
As for the Gaussian case in Section V, we can adapt the

coding scheme by Draper, Frey, and Kschischan [16], in which
compress–forward is followed by decode–forward. This inter-
active relaying scheme in general yields a tighter lower bound
than the two-round interactive compress–forward lower bound,
since it is more efficient to use full knowledge of the message
(decode–forward) for the second-round communication. At the
extreme point of the 1-bit message, however, there is no gain
since computing X1 is equivalent to decoding the message
itself. Hence, compress–forward followed by decode–forward
yields the same upper bound on the minimum sum-rate R∗ as

R∗ ≤ 1− I(X1;Y2) +HG(Y2 |Y3)
= H(Y2) +H(X1 |Y3)
= 1.4893.

Now we further generalize the idea of interactive relaying
to q-round interactive compress–forward. Again at the extreme
point of the 1-bit message, the inverse problem of finding the
minimum sum-rate R∗

CFq is equivalent to q-round interactive
coding for computing, in which nodes 2 and 3 exchange
messages in q rounds of communication to losslessly recover
X1. While the exact characterization of this minimum sum-rate
for q-round computing seems to be intractable, using ingenious
techniques Ma and Ishwar [22], [23] characterized its limiting
behavior as

lim
q→∞

R∗
CFq = (1 + p)H(p) + p log(pe1−p)

�

�

p=1/
√
2

= 1.4346.

They further showed that for the natural coding scheme that
achieves this limiting behavior, the corresponding sum-rate
RCFq is strictly larger than R∗

CF∞ = limq→∞R∗
CFq . Thus,

C(R) = 1 for R ≥ 1.4346, and among all known relay
coding schemes this can be achieved only by infinite rounds
of interactive relaying! Finally, note that as in the two-round
case, the infinite-round compress–forward coding scheme can
be further improved for rates less than 1 by replacing the last-
round compress–forward by decode–forward.
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