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Abstract—Linear relaying for the Gaussian diamond network
is studied as a natural extension of the amplify–forward relaying
strategy by Schein and Gallager. A single-letter optimal rate is
characterized, which is shown to be achieved by time sharing
between four amplify–forward strategies at different power levels.
This linear relaying capacity has a bounded gap from the cutset
bound when the network is symmetric, but in general has an
unbounded gap. The main idea of the proof is to transform a
multiletter rate expression into an infinite-dimensional optimiza-
tion problem, the relaxation of which matches the performance of
time-shared amplify–forward. A similar proof technique can be
applied to other relay networks with layered structure such as the
N-relay Gaussian diamond network and the receiver frequency-
division Gaussian relay channel.

I. INTRODUCTION

Amplify–forward (AF) relaying, which was introduced by
Schein and Gallager [1] for 4-node diamond networks and
was later popularized by Laneman, Tse, and Wornell [2] for
3-node relay channels, is one of the basic relaying schemes
for Gaussian relay networks. In this simple “analog-to-analog”
interface, a relay scales the received signal and transmits it
symbol-by-symbol. The performance–complexity tradeoff of
AF is often excellent, making it one of the most practical
relaying schemes. For example, for the single-antenna real
Gaussian relay channel, AF achieves within 1 bit from the cut-
set bound for all signal-to-noise ratios (SNRs). Consequently,
AF has been studied for various relay network models in the
literature; see, for example, [3], [4], [5], [6], [7].

Fig. 1. Gaussian Diamond Network Model.

In this paper we consider the discrete-time Gaussian dia-
mond network depicted in Fig. 1. Here gjk denotes the channel
gain from node k to node j. The relationship between channel

inputs and outputs follows

Y2 = g21X1 + Z2,

Y3 = g31X1 + Z3,

Y4 = g42X2 + g43X3 + Z4,

(1)

where X1, X2, X3 are the inputs at nodes 1, 2, 3, respectively,
Y2, Y3, Y4 are the outputs at nodes 2, 3, 4, respectively, and
Zj ∼ N(0, 1), j ∈ {2, 3, 4}, are independent noise com-
ponents. Node 1 wishes to communicate the message M to
node 4 with help of nodes 2 and 3. For block length n and
rate R, we specify a code (2nR, n) with an encoding function
xn1 (m), m ∈ [1 : 2nR] := {1, ..., 2dnRe}, satisfying the average
power constraint

1

n

n∑
i=1

x21i(m) ≤ P,

relaying functions x2i(yi−12 ) and x3i(y
i−1
3 ) for i ∈ [1 : n],

satisfying the expected average power constraints

1

n

n∑
i=1

E(x22i(Y
i−1
2 )) ≤ P,

1

n

n∑
i=1

E(x23i(Y
i−1
3 )) ≤ P,

and a decoding functions m̂ : Rn → {1, ..., 2nR}. The
probability of error P (n)

e is defined as

P (n)
e := P{m̂(Y n4 ) 6= M},

where M is drawn uniformly from [1 : 2nR]. We say that the
rate R is achievable if there exists a sequence of (2nR, n)

codes such that limn→∞ P
(n)
e = 0. The capacity C is defined

as the supremum of the set of achievable rates R. We some-
times use the notation C(P ) or even C(P ; g21, g31, g42, g43)
to stress the parameters of the given network, and henceforth
follow a similar convention for other rates (upper and lower
bounds on the capacity). We denote by Sjk = g2jkP the
received SNR for the signal from node k to node j.

Expanding the results in [1], Schein [8] studied upper and
lower bounds on the capacity and associated coding schemes.
By relaxing the standard cutset bound [9], it can be readily
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shown that the capacity is upper bounded as

C ≤ RCS

:= min
{

C
(
(g221 + g231)P

)
,

C
(
(g42 + g43)2P

)
,

C(g221P ) + C(g243P ),

C(g231P ) + C(g242P )
}

= min
{

C(S21 + S31),

C
((√

S42 +
√
S43

)2)
,

C(S21) + C(S43),

C(S31) + C(S42)
}
, (2)

where C(x) := (1/2) log(1 + x) is the Gaussian capacity
function.

By setting x2i = c2 y2,i−1 and x3i = c3 y3,i−1, i ∈ [1 : n],
for some constants c2 and c3, AF induces a standard point-to-
point Gaussian channel from X1 to Y4 (with one-unit delay
at the output). Note that using all the available power at both
relays is not optimal in general [8].

Hence we can establish a lower bound on the capacity as

C ≥ RAF := max
0≤P2,P3≤P

RAF(P, P2, P3)

where

RAF(P1, P2, P3)

:= C


(√

g242P2·g221P1

g221P1+1
+
√

g243P3·g231P1

g231P1+1

)2
1 +

g242P2

g221P1+1
+

g243P3

g231P1+1

 , (3)

As a simple example, the symmetric setting is considered,
where it is optimal to use all the available power at both relays
[8]. The rate RAF(P ) achieved by AF as a function of the
power P is convex when P is small and concave when P
is large; see Fig. 2. Consequently, we can improve upon AF
by time sharing between sending nothing (P = 0) and AF
at a larger power. This bursty AF scheme [10], which can
be also viewed as linear relaying (with time-varying scaling
coefficients), outperforms the pure AF for small P .

Thus motivated, we study linear relaying, that is, general
linear operations (with memory) at the relays, as a natural
extension of AF and bursty AF. More precisely, the relay
encoders are assumed to be of the form

x2i =

i−1∑
j=1

b
(2)
ij y2j , i ∈ [1 : n],

x3i =

i−1∑
j=1

b
(3)
ij y3j , i ∈ [1 : n],

or in vector notation
xn2 = B2 y

n
2 ,

xn3 = B3 y
n
3 ,

(4)

where B2 and B3 are n×n strictly lower triangular matrices.
The linear relaying capacity CL of the Gaussian diamond
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Fig. 2. The plot of RAF(P ) (solid black) and its convex envelope (dashed
blue) when g21 = g31 = g42 = g43 = 1. The two curves merge at point
(0.8, 0.4049) as P increases.

network is defined as the supremum of achievable rates with
linear relaying.

We are now ready to state our main result.

Theorem 1. The linear relaying capacity of the Gaussian
diamond network is

CL = max
4∑
k=1

αkRAF(P1k, P2k, P3k), (5)

where αk ≥ 0, Pjk ≥ 0, j ∈ [1 : 3], k ∈ [1 : 4], such that∑4
k=1 αk = 1 and

∑4
k=1 αkPjk ≤ P , j ∈ [1 : 3].

In other words, the optimal linear relaying scheme is
equivalent to time sharing among four AF schemes at different
power levels.

II. PERFORMANCE OF LINEAR RELAYING SCHEME

We compare CL with the cutset bound RCS under various
channel configurations.

A. Symmetric Channel Gains

Assume that g21 = g31 := g and g42 = g43 := h. Niesen
and Diggavi [10] considered this symmetric setting and studied
the bursty AF scheme, whereby the nodes communicate for a
fraction α of time at power P/α using AF and stay silent for
the remaining time; recall Fig. 2. The rate achieved by bursty
AF can be expressed as

RBAF = max
0<α≤1

αC
(

(2ghP/α)2

1 + g2P/α+ 2h2P/α

)
.

and satisfies the following performance guarantees in terms of
the cutset bound RCS.
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Proposition 1 ([10, Corollary 3]).

sup
g,h,P

[
RCS(P ; g, g, h, h)−RBAF(P ; g, g, h, h)

]
≤ 1.8,

sup
g,h,P

RCS(P ; g, g, h, h)

RBAF(P ; g, g, h, h)
≤ 14.

We now show that bursty AF is actually the best linear
relaying scheme.

Proposition 2.

CL(P ; g, g, h, h) = RBAF(P ; g, g, h, h). (6)

Consequently, for the symmetric setting, Proposition 1 also
provides performance guarantees for linear relaying in general.

Proof of Proposition 2: . We first note that by symmetry

RAF(P1,
P2 + P3

2
,
P2 + P3

2
) ≥ RAF(P1, P2, P3)

with equality iff P2 = P3. It implies that P2k = P3k for
k = [1 : 4] is a necessary condition for optimal solutions of
(5). Hence (5) reduces to

CL = max
4∑
k=1

αkRAF(P1k, P2k, P2k), (7)

where αk ≥ 0, Pjk ≥ 0, j ∈ [1 : 2], k ∈ [1 : 4] such that∑4
k=1 αk = 1 and

∑4
k=1 αkPjk = P , j ∈ [1 : 2].

The following lemma, whose proof is deferred to the
Appendix, further simplifies (7).

Lemma 1. The maximum in (7) is attained by P1k = P2k = 0
for k = [2 : 4] and P11 = P21 = P/α1 for some α1 ∈ (0, 1].

This completes the proof of Proposition 2.

B. General Channel Gains

In general, linear relaying outperforms bursty AF, and the
gap between is bounded. On the other hand, the linear relaying
capacity has an unbounded gap from the cutset bound. To see
these, we first establish the following.

Denote R̄AF(P1, P2, P3) as the achievable rate of AF
when the power constraints are P1, P2, and P3. And
denote R̄

(conc)
AF (P1, P2, P3) as the concave envelope of

R̄AF(P1, P2, P3). We now have the following result.

Proposition 3. Given any channel gains g21, g31, g42, and
g43, there exists P0(g21, g31, g42, g43) such that

CL(P ) ≤ R̄(conc)
AF (4P )

for all P ≥ P0(g21, g31, g42, g43).

Thus we actually have

R̄AF(P ) ≤ RBAF(P ) ≤ CL(P ) ≤ R̄(conc)
AF (4P )

asymptotically in P , which means that AF performs as well
as the bursty AF and also optimal linear relaying scheme (up
to 2 bits asymptotically).

Proof of Proposition 3: We first note that each term in
the summation of (5) satisfies

R̄
(conc)
AF (P1k, P2k, P3k) ≤ R̄(conc)

AF (P/αk, P/αk, P/αk)

for each k. In addition, for P sufficiently large, R̄(conc)′′
AF (P ) <

0. Hence, for P > P0(g21, g31, g42, g43),

CL(P ) = max

4∑
k=1

αkRAF(P1k, P2k, P3k)

≤ max

4∑
k=1

αkR̄
(conc)
AF (P1k, P2k, P3k)

≤ max
4∑
k=1

αkR̄
(conc)
AF (P/αk, P/αk, P/αk)

≤ max R̄
(conc)
AF

( 4∑
k=1

αkPk

)
= R̄

(conc)
AF (4P ).

This completes the proof of Proposition 3.
For a general Gaussian diamond network, AF performs

rather poorly, and R̄
(conc)
AF (P ) (and consequently CL(P )) has

an unbounded gap from RCS(P ). To see this, suppose that
g221 = g243 = g and g231 = g242 = g2. On one hand, the cutset
upper bound in (2) behaves as

RCS(P ) ∼ 1

2
log(g2P )

as g → ∞. On the other hand, the amplify–forward lower
bound reduces to

RAF(P ) = C


(√

gg2P 2

gP+1 +
√

g2gP 2

g2P+1

)2
1 + g2P

gP+1 + gP
g2P+1

 ,

and hence R̄(conc)
AF (4P ) ∼ 1

2
log(gP ) as g →∞.

Combining this observation with Proposition 3 establishes
the following.

Proposition 4.

sup
P,g

[
RCS(P ;

√
g, g, g,

√
g)− CL(P ;

√
g, g, g,

√
g)
]

=∞.

III. PROOF OF THEOREM 1

We prove Theorem 1 in four steps.

Step 1. Multiletter Characterization

The linear relaying capacity can be characterized as

CL = lim
n→∞

R
(n)
L (8)

:= lim
n→∞

sup
1

n
I(Xn

1 ;Y n4 ), (9)

where the supremum is over all F (xn1 ) and strictly lower
triangular matrices B2 and B3 such that

∑n
i=1 E(X2

ji) ≤ nP ,
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j ∈ [1 : 3]. Here the output sequence at node 4 is

Y n4

= g42X
n
2 + g43X

n
3 + Zn4

= g42B2(g21X
n
1 + Zn2 ) + g43B3(g31X

n
1 + Zn3 ) + Zn4

= (g42g21B2 + g43g31B3)Xn
1 + g42B2Z

n
2 + g43B3Z

n
3 + Zn4 .

It can be easily shown that the supremum in (9) is attained
by Gaussian distributions. Denoting the covariance matrix of
Xn

1 by K1, we can simplify (9) as (11), where the maximum
is over all K1 � 0 and strictly lower triangular B2 and B3

such that tr(K1) ≤ nP and tr(Bj(g
2
j1K1 + 1)BTj ) ≤ nP ,

j = 2, 3.
This is a nonconvex optimization problem. One potential

approach to solving this problem is to adapt the technique by
El Gamal, Mohseni, and Zahedi [4] for the linear relaying
capacity of the receiver-frequency-division (RFD) Gaussian
relay channel. Here we take an alternative route and study
a variational version of the problem as in [11].

Step 2. Variational Characterization

We can establish the following.

Lemma 2. CL can be expressed as (12), where the supremum
is over all power spectral densities K1(eiθ) and strictly causal
filters Bj(eiθ) =

∑∞
k=1 b

(j)
k ekiθ, j = 2, 3, satisfying

1

2π

∫ π

−π
K1(eiθ) dθ ≤ P,

1

2π

∫ π

−π
|Bj(eiθ)|2(g2j1K1(eiθ) + 1) dθ ≤ P, j = 2, 3.

The proof of the lemma, which is quite technical and follows
similar lines as in [11], is omitted.

Step 3. Time-Shared Amplify–Forward

By the triangle inequality, we have∣∣g42g21B2(eiθ) + g43g31B3(eiθ)
∣∣

≤ g42g21
∣∣B2(eiθ)

∣∣+ g43g31
∣∣B3(eiθ)

∣∣

and hence the upper bounded in (13). Denoting

Kj(e
iθ) := |Bj(eiθ)|2(g2j1K1(eiθ) + 1), j = 2, 3,

relaxing the causality constraint on B2(eiθ) and B3(eiθ), and
substituting K2(eiθ) and K3(eiθ) in (13), we can further upper
bound CL as (14), where the supremum is over all power
spectral densities K1(eiθ), K2(eiθ), and K3(eiθ) satisfying

1

2π

∫ π

−π
Kj(e

iθ) dθ ≤ P, j = 1, 2, 3.

Noting the similarity to (3), we can express this upper bound
equivalently as

CL ≤ R∗L

:= sup
K1,K2,K3

1

2π

∫ π

−π
RAF(K1(eiθ),K2(eiθ),K3(eiθ)) dθ.

(15)

Now this bound, although expressed in the frequency do-
main, matches exactly the rate achieved when we use AF at
frequency θ ∈ [−π, π] with power constraints on K1(eiθ),
K2(eiθ), and K3(eiθ). Thus, the CL = R∗L.

Step 4. Cardinality Reduction

To further simplify (15), we observe that the point
(P, P, P,R∗L) lies on the convex hull of the four-
dimensional region R with the boundary characterized
by (P1, P2, P3, RAF(P1, P2, P3)). Thus, by the Fenchel–
Eggleston–Carathéodory theorem [12], the point can be repre-
sented as a convex combination of at most four points on the
boundary. Thus, the upper bound R∗L can be written as (5),
which completes the proof of Theorem 1.

IV. DISCUSSION

Our results can be extended in a straightforward manner
to the N -relay Gaussian diamond network, in which nodes
2 through N + 1 relay communication between nodes 1 and
N + 2. Let R(N)

AF (P1, P2, ..., PN+1) be the rate achieved by
AF with powers P1, . . . , PN+1 at nodes 1, . . . , N + 1. We
characterize the linear relaying capacity as follows.

R
(n)
L = max

1

2n

(
log

∣∣I + g242B2B
T
2 + g243B3B

T
3 + (g42g21B2 + g43g31B3)K1(g42g21B2 + g43g31B3)T

∣∣∣∣I + g242B2BT2 + g243B3BT3
∣∣

)
(11)

CL = sup
1

2π

∫ π

−π
C

(∣∣g42g21B2(eiθ) + g43g31B3(eiθ)
∣∣2K1(eiθ)

1 + g242|B2(eiθ)|2 + g243|B3(eiθ)|2

)
dθ (12)

≤ sup
1

2π

∫ π

−π
C

((
g42g21

∣∣B2(eiθ)
∣∣+ g43g31

∣∣B3(eiθ)
∣∣)2K1(eiθ)

1 + g242|B2(eiθ)|2 + g243|B3(eiθ)|2

)
dθ (13)

≤ sup
1

2π

∫ π

−π
C


(√

g242K2(eiθ)·g221K1(eiθ)

g221K1(eiθ)+1
+
√

g243K3(eiθ)·g231K1(eiθ)

g231K1(eiθ)+1

)2
1 +

g242K2(eiθ)

g221K1(eiθ)+1
+

g243K3(eiθ)

g231K1(eiθ)+1

 dθ (14)
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Theorem 2. The linear relaying capacity of the N-relay
Gaussian diamond network with power constraint P on each
node is

C
(N)
L = max

N+2∑
k=1

αkR
(N)
AF (P1k, P2k, ..., P(N+1)k),

where the maximum is over all αk ≥ 0 and Pjk ≥ 0, j ∈
[1 : N + 1], k ∈ [1 : N + 2] such that

∑N+2
k=1 αk = 1 and∑N+2

k=1 αkPjk ≤ P , j ∈ [1 :N + 1].

When the channel is symmetric, i.e., gj1 ≡ g and gN+2,j ≡
h for all j, bursty AF achieves the linear relaying capacity.

Proposition 5.

C
(N)
L (P ; g, . . . , g, h, . . . , h)

= max
0<α≤1

αC
(

1 +
(NghP/α)2

1 + (N + 1)h2P/α

)
.

In general, linear relaying does not improve much upon AF.

Proposition 6. There exists P0 = P0(g21, . . . , gN+2,N+1)
such that

C
(N)
L (P ) ≤ R(N)

AF ((N + 2)P )

for all P ≥ P0.

The techniques developed in this paper are applicable to
other classes of relay networks with layered structure in
showing that the optimal linear relaying scheme simplifies
as time-shared AF. For instance, consider the RFD Gaussian
relay channel studied by El Gamal, Mohseni, and Zahedi [4].
Following the same four steps in the previous section, we can
establish the linear relaying capacity of RFD Gaussian relay
channel as

CRFD
L = max

3∑
k=1

αkR
RFD
AF (P1k, P2k), (16)

where αk ≥ 0, Pjk ≥ 0, j ∈ [1 : 2], k ∈ [1 : 3] such that∑3
k=1 αk = 1 and

∑3
k=1 αkPjk = P , j ∈ [1 : 2], and

RRFD
AF (P1, P2) is the achievable rate of AF with powers P1

and P2 at the nodes 1 and 2 of the channel. Incidentally, this
result slightly simplifies the characterization of CL in [4].

APPENDIX

Let
r(α, P1, P2) := αRAF(P1, P2)

where RAF(P1, P2) := RAF(P1, P2, P2). It is the rate of AF
with power P1 > 0 at node 1 and P2 > 0 at nodes 2 and 3
over a fraction α ∈ (0, 1] of time.

If we slightly increase the power P1 and P2 to P1 + dP1

and P2 + dP2 respectively, and, in order to keep the amount
of power used unchanged, slightly decrease the duty period α
to α− dα with

dα =
α

P1
dP1 =

α

P2
dP2 (17)

we can then characterize the increment of the rate by

dr(α, P1, P2) := α
∂RAF

∂P1
(P1, P2)dP1+

α
∂RAF

∂P2
(P1, P2)dP2 −RAF(P1, P2)dα

with (17) satisfied.
Now let P ?jk and α?k, j ∈ [1 : 2], k ∈ [1 : 4] be a optimal

solution.
Let index k0 be such that P ?1k0 = P ?2k0 = 0 and α?k0 > 0,

and without loss of generality we assume that P ?1k > 0, P ?2k >
0 and α?k > 0 for all k 6= k0.

If such k0 exists, then we have

dr(α?k, P
?
1k, P

?
2k) = 0

for all k 6= k0.
Otherwise

dr(α?k, P
?
1k, P

?
2k) < 0

for all k ∈ [1 : 4].
Combining both cases, we actually have

dr(α?k, P
?
1k, P

?
2k) ≤ 0

which, by (17) plugged in, leads to
∂RAF

∂P1
(P ?1k, P

?
2k)P1k+

∂RAF

∂P2
(P ?1k, P

?
2k)P2k ≤ RAF(P ?1k, P

?
2k)

for all k 6= k0.
Assume g = h = 1 for simplicity. By plugging in

the expressions of ∂RAF

∂P1
, ∂RAF

∂P2
and RAF, and after some

simplifications along with the inequality log(1 + x) ≤ x for
x ≥ 0, we can obtain

4P ?1kP
?
2k > 1 (18)

for all k 6= k0, which is a necessary condition of the optimality
of P ?1k and P ?2k.

Now define A? as the convex hull of points (P ?1k, P
?
2k), k 6=

k0. It is easy to show that 4uv > 1 for ∀ (u, v) ∈ A? (since
{(x, y) : 4xy > 1, x > 0, y > 0} is a convex set).

Now we show the concavity of function RAF(·, ·) in A?.
We have

∂2RAF(x, y)

∂x2
= −8y(2y + 1)(x+ 4y + 4xy + 4y2 + 1)

(x+ 2y + 1)2(x+ 2y + 4xy + 1)2
< 0,

∂2RAF(x, y)

∂y2
= −16x(x+ 1)(2x+ 2y + 4xy + x2 + 1)

(x+ 2y + 1)2(x+ 2y + 4xy + 1)2
< 0,

and
∂2RAF(x, y)

∂x∂y
=

2

(x+ 2y + 1)2
+

2

(x+ 2y + 4xy + 1)2

thus
∂2RAF(x, y)

∂x2
∂2RAF(x, y)

∂y2
− (

∂2RAF(x, y)

∂x∂y
)2

=
64xy(4xy + 4y + 2x+ 1)− 32y − 16x− 16

(x+ 2y + 1)2(x+ 2y + 4xy + 1)3

=
64xy(4xy + 2y + x) + 16(2y + x+ 1)(4xy − 1)

(x+ 2y + 1)2(x+ 2y + 4xy + 1)3

>0
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if 4xy > 1.
Therefore RAF(·, ·) is concave in A?. Consequently, we

have ∑
k 6=k0

α?kRAF(P ?1k, P
?
2k)

≤(
∑
k 6=k0

α?k)RAF

(∑
k 6=k0 α

?
kP

?
1k∑

k 6=k0 α
?
k

,

∑
k 6=k0 α

?
kP

?
2k∑

k 6=k0 α
?
k

)

=α?RAF

(
P

α?
,
P

α?

)
where α? :=

∑
k 6=k0 α

?
k. Note that α? = 1 means that there

does not exist k0 ∈ [1 : 4] such that P ?1k0 = P ?2k0 = 0 and
α?k0 > 0.

It implies that the pair (P ?1k, P
?
2k) is either (0,0) or ( Pα? ,

P
α? )

for some α? optimally chosen, which completes the proof of
the Lemma.
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