# Linear Code Duality Between Channel Coding and Slepian–Wolf Coding

Lele Wang and Young-Han Kim Department of Electrical and Computer Engineering University of California, San Diego La Jolla, CA 92093, USA {lew001,yhk}@ucsd.edu

*Abstract*—We study the duality between channel coding and Slepian–Wolf coding in the linear coding framework. We show how a code (both its encoder and decoder) for a *symmetric* channel coding problem can be used to design a code for a general Slepian–Wolf problem. Conversely, we show how a code for a *symmetric* Slepian–Wolf problem can be used to design a code for a general channel coding problem. The exact relations between the rates and the probability of errors of the two codes are established.

## I. INTRODUCTION

#### A. Channel Coding Problem

A binary-input memoryless channel (BMC) p(y|x) consists of an input alphabet  $\mathcal{X} = \{0, 1\}$ , a finite output alphabet  $\mathcal{Y}$ , and a collection of conditional probability mass functions p(y|x) on  $\mathcal{Y}$  for  $x \in \{0, 1\}$ . We say a BMC p(y|x) is *symmetric* if there exists a permutation  $\pi: \mathcal{Y} \to \mathcal{Y}$  such that  $p(y|x) = p(\pi(y)|x \oplus 1)$  for all  $y \in \mathcal{Y}$  and  $x \in \{0, 1\}$ .

A  $(k, n, \epsilon)$  code  $(f, \phi)$  for the BMC p(y|x) consists of

- a codebook  $\mathcal{C} \subseteq \{0,1\}^n$  of size  $|\mathcal{C}| = 2^k$ ,
- an encoder  $f: \mathcal{C} \to \{0,1\}^n$  that maps each codeword  $c^n$  to a channel input  $x^n = f(c^n)$ , and
- a decoder  $\phi: \mathcal{Y}^n \to \mathcal{C}$  that assigns a codeword estimate  $\hat{c}^n = \phi(y^n)$  to each received sequence  $y^n$ .

We assume that  $C^n$  is uniform over the codebook C. The rate of the code is  $R_{ch} = k/n$ . The average probability of error of the code is  $P\{\hat{C}^n \neq C^n\} = \epsilon$ .

We say a channel code is *linear* if the codebook C is such that for any two codewords  $c^n, \tilde{c}^n \in C, c^n \oplus \tilde{c}^n \in C$ . Equivalently, a linear code can be defined by its parity check matrix  $H_{(n-k)\times n}$ . For notational convenience, we introduce the augmented parity check matrix  $\bar{H}_{n\times n} = \begin{bmatrix} 0 \\ H \end{bmatrix}$  so that all vectors in this paper are of length n. Thus, the codebook of a linear code can be written as  $C = \{c^n : \bar{H}c^n = 0^n\}$ . When a  $(k, n, \epsilon)$  code  $(f, \phi)$  is linear with associated augmented parity check matrix  $\bar{H}$  and  $f(c^n) = c^n$ , we say it is a  $(k, n, \epsilon)$ linear code  $(\bar{H}, \phi)$ .

## B. Slepian–Wolf Problem

A Slepian–Wolf problem p(x, y) consists of two finite alphabets  $\mathcal{X} = \{0, 1\}, \mathcal{Y}$ , and a joint pmf p(x, y) over  $\{0, 1\} \times \mathcal{Y}$ . The binary memoryless source X with side information Y generates a jointly i.i.d. random process  $\{(X_i, Y_i)\}$  with  $(X_i, Y_i) \sim p_{X,Y}(x_i, y_i)$ . We say a Slepian–Wolf problem p(x, y) is symmetric if  $X \sim \text{Bern}(1/2)$  and the channel p(y|x) is symmetric.

An  $(l, n, \epsilon)$  code  $(g, \psi)$  for the Slepian–Wolf problem p(x, y) consists of

- an index set  $\mathcal{I} \subseteq \{0,1\}^n$  of size  $|\mathcal{I}| = 2^l$ ,
- an encoder  $g: \{0,1\}^n \to \mathcal{I}$  that maps each source sequence  $x^n$  to an index  $s^n = g(x^n)$ , and
- a decoder ψ: *I* × *Y<sup>n</sup>* → {0,1}<sup>n</sup> that assigns a source estimate *x̂<sup>n</sup>* = ψ(s<sup>n</sup>, y<sup>n</sup>) to each index s<sup>n</sup> and side information sequence y<sup>n</sup>.

The rate of the code is  $R_{sw} = (n - k)/n$ . The average probability of error of the code is  $\mathsf{P}\{\hat{X}^n \neq X^n\} = \epsilon$ .

We say a Slepian–Wolf code is *linear* if for any  $x^n, \tilde{x}^n \in \{0,1\}^n, g(x^n) \oplus g(\tilde{x}^n) = g(x^n \oplus \tilde{x}^n)$ . When an  $(l, n, \epsilon)$  Slepian–Wolf code  $(g, \psi)$  is linear with an encoder defined by matrix multiplication  $g(x^n) = \bar{H}x^n$ , where  $\bar{H}_{n \times n} = \begin{bmatrix} 0 \\ H_{l \times n} \end{bmatrix}$ , we say it is an  $(l, n, \epsilon)$  linear code  $(\bar{H}, \psi)$ .

#### C. Background

The connection between the channel coding problem and the Slepian-Wolf problem has long been observed in the literature. In [1], Wyner showed that a linear  $(k, n, \epsilon)$  code for the binary symmetric channel with crossover probability p (BSC(p)) can be used to construct a linear  $(n - k, n, \epsilon)$ code for the symmetric Slepian–Wolf problem p(x, y) where p(y|x) is a BSC(p). Since then, several attempts have been made to generalize this observation [2]–[11]. In [8], Chen, He, Jagmohan, Lastras-Montano, and Yang related a general Slepian–Wolf problem p(x, y) to a dual channel coding problem  $p_{V|U}(v|u)$ , where  $V = (U \oplus X, Y)$  and  $(X, Y) \sim p(x, y)$ is independent of U. Under the maximum a posteriori decoding, a linear  $(k, n, \epsilon)$  code for the dual channel p(v|u) can be used to design a linear  $(n-k, n, \epsilon)$  code for the Slepian–Wolf problem p(x, y). Miyake [9] studied this duality for sparse matrix codes with minimum-entropy decoding. Such duality were also established for some low-complexity codes, such as LDPC codes with density evolution decoding [10] and polar codes with successive cancellation decoding [11]. In all of these results except [1], the duality was established only for the encoder, i.e., the encoder of one code is treated as a black

## 978-1-5090-1824-6/15/\$31.00 ©2015 IEEE

box in designing another code. However, one has to specify the decoding rule to analyze the probability of error.

## D. Contributions

In this paper, we investigate whether the duality result can be established for a given encoder and decoder pair. Given a linear  $(k, n, \epsilon)$  symmetric channel code  $(\bar{H}, \phi)$ , how can we construct a general Slepian–Wolf code and what can we say about its performance (in terms of rate and probability of error)? Conversely, given a linear  $(l, n, \epsilon)$  symmetric Slepian– Wolf code  $(\bar{H}, \psi)$ , how can we construct a general channel code and what can we say about its performance? The motivation is to translate the performance of commercial offthe-shelf codes that are well studied and simulated in one communication scenario into the performance of codes for another communication scenario. From the theoretical point of view, such a linear code duality will generalize most existing results and will unify the analysis.

The main results of this paper are summarized in Figure 1. We first show how to construct a linear  $(n - k, n, \epsilon)$  symmetric Slepian–Wolf code from a linear  $(k, n, \epsilon)$  symmetric channel code in Section II-A and a general  $(n - k, n, \epsilon)$  Slepian–Wolf code from a linear  $(n - k, n, \epsilon)$  symmetric Slepian–Wolf code in Section II-B. Next we show how to construct a  $(k, n, \epsilon)$  symmetric channel code from a linear  $(n - k, n, \epsilon)$  symmetric channel code from a linear  $(n - k, n, \epsilon)$  symmetric channel code from a linear  $(n - k, n, \epsilon)$  symmetric channel code from a linear  $(n - k, n, \epsilon)$  symmetric channel code from a linear  $(k, n, \epsilon)$  symmetric channel code in Section II-C and a  $(k, n, \epsilon)$  general channel code from a linear  $(k, n, \epsilon)$  symmetric channel code in Section II-D. By combining all four results, we establish the duality between the general Slepian–Wolf problem and the general channel coding problem.



Fig. 1. A summary of the main results. SW is short for Slepian–Wolf coding and CC is short for channel coding.

#### II. LINEAR CODE DUALITY

# A. A Symmetric Slepian–Wolf Code from a Symmetric Channel Code

Suppose that for the symmetric BMC p(y|x) with permutation  $\pi$ , there is a linear  $(k, n, \epsilon)$  code  $(\bar{H}, \phi)$ . Without loss of generality, assume that the augmented parity check matrix is systematic

$$\bar{H} = \begin{bmatrix} 0 & 0\\ A & I_{n-k} \end{bmatrix},$$

where A is an  $(n-k) \times k$  matrix and  $I_{n-k}$  is the  $(n-k) \times (n-k)$  identity matrix. The block diagram for this problem is shown in Figure 2. We have the average probability of error is given by

$$\mathsf{P}\{\phi(\tilde{R}^n) \neq \tilde{C}^n\} = \epsilon.$$



Fig. 2. A channel code for symmetric BMC p(y|x).

To construct a code for the symmetric Slepian–Wolf problem p(x, y) from the above channel code, we first introduce two building blocks.

The first block, termed *codify*, takes two inputs, a binary sequence  $x^n$  and the syndrome  $\overline{H}x^n$  of it, and outputs the element-wise modulo-two sum of the two inputs  $x^n \oplus \overline{H}x^n$ , as depicts in the left part of Figure 3. Intuitively, this operation shifts any binary sequence  $x^n$  to a codeword, as illustrated in the right part of Figure 3. We prove this in Lemma 1.

**Lemma 1.** For any  $x^n \in \{0,1\}^n, x^n \oplus \overline{H}x^n \in \mathcal{C}$ .

*Proof.* For any  $x^n \in \{0,1\}^n$ , we have

$$\bar{H}(x^n \oplus \bar{H}x^n) = \bar{H}x^n \oplus \begin{bmatrix} 0 & 0 \\ A & I \end{bmatrix} \bar{H}x^n$$
$$\stackrel{(a)}{=} \begin{bmatrix} 0 \\ Hx^n \end{bmatrix} \oplus \begin{bmatrix} 0 & 0 \\ A & I \end{bmatrix} \begin{bmatrix} 0 \\ Hx^n \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ Hx^n \end{bmatrix} \oplus \begin{bmatrix} 0 \\ Hx^n \end{bmatrix}$$
$$= 0,$$

where H = [A, I] in (a). Therefore,  $x^n \oplus \overline{H}x^n \in \mathcal{C}$ .



Fig. 3. The codify block. Left: The block diagram. Right: Illustration of a shift by  $\bar{H}X^n$  in  $\{0,1\}^n$  space.



Fig. 4. The noisy codify block. Left: The block diagram. Right: Illustration of a shift by  $\bar{H}X^n$  in  $\mathcal{Y}^n$  space.

The second block, termed *noisy codify*, takes two inputs, the noisy observation  $y^n$  of the binary sequence  $x^n$  and the syndrome  $\bar{H}x^n$ , and outputs  $y^n \odot \bar{H}x^n$ , which is defined as where (c) follows from the symmetry of the channel p(y|x). follows. For  $y \in \mathcal{Y}$  and  $s \in \{0, 1\}$ ,

$$y \odot s = \begin{cases} y & \text{if } s = 0\\ \pi(y) & \text{if } s = 1. \end{cases}$$

Let  $y^n \odot s^n$  be the element-wise  $\odot$  operation. The left part of Figure 4 depicts the block diagram. Similar to the shift in the codify operation, this block takes a corresponding shift in  $\mathcal{Y}^n$  space and outputs a *noisy version* of the output sequence in the codify block, as illustrated in the right part of Figure 4. Lemma 2 makes this statement rigorous.

**Lemma 2.** Let  $(X^n, Y^n)$  be i.i.d. according to p(x, y), where p(x,y) is symmetric under permutation  $\pi$ . Let  $C^n = X^n \oplus$  $\overline{H}X^n$  and  $R^n = Y^n \odot \overline{H}X^n$ . Then,

$$P\{C^{n} = c^{n}, R^{n} = r^{n}\} = \frac{1}{2^{k}} \prod_{i=1}^{n} p_{Y|X}(r_{i}|c_{i})$$

for every  $c^n \in \mathcal{C}$  and  $r^n \in \mathcal{Y}^n$ .

*Proof.* Define  $S = \{s^n \in \{0,1\}^n : s^k = 0^k\}$ . For any  $c^n \in$ С,

$$\begin{split} \mathsf{P}\left\{C^{n}=c^{n}\right\}\\ &=\sum_{s^{n}\in\mathcal{S}}\mathsf{P}\left\{X^{n}\oplus\bar{H}X^{n}=c^{n},\bar{H}X^{n}=s^{n}\right\}\\ &=\sum_{s^{n}\in\mathcal{S}}\mathsf{P}\left\{X^{n}=c^{n}\oplus s^{n}\right\}\mathsf{P}\left\{\bar{H}X^{n}=s^{n}|X^{n}=c^{n}\oplus s^{n}\right\}\\ &\stackrel{(b)}{=}\sum_{s^{n}\in\mathcal{S}}\frac{1}{2^{n}}\\ &=\frac{1}{2^{k}}, \end{split}$$

where (b) follows since  $X^n$  is i.i.d. Bern(1/2) and for any  $c^n \in \mathcal{C} \text{ and } s^n \in \mathcal{S}, \ \bar{H}(c^n \oplus s^n) = 0^n \oplus \begin{bmatrix} 0 & 0 \\ A & I \end{bmatrix}$  $0^k$  $s_{k+1}^n$  $s^n$ . Now, for any  $r^n \in \mathcal{Y}^n$ , consider

$$\begin{split} \mathsf{P} \{ R^{n} &= r^{n} | C^{n} = c^{n} \} \\ &= \sum_{s^{n} \in \mathcal{S}} \mathsf{P} \{ \bar{H}X^{n} = s^{n}, Y^{n} \odot \bar{H}X^{n} = r^{n} | C^{n} = c^{n} \} \\ &= \sum_{s^{n} \in \mathcal{S}} \mathsf{P} \{ \bar{H}X^{n} = s^{n} | C^{n} = c^{n} \} \\ &\cdot \mathsf{P} \{ Y^{n} \odot s^{n} = r^{n} | \bar{H}X^{n} = s^{n}, X^{n} = c^{n} \oplus s^{n} \} \\ &= \sum_{s^{n} \in \mathcal{S}} \mathsf{P} \{ \bar{H}X^{n} = s^{n} | C^{n} = c^{n} \} \\ &\cdot \mathsf{P} \{ Y^{n} = r^{n} \odot s^{n} | X^{n} = c^{n} \oplus s^{n} \} \\ &= \sum_{s^{n} \in \mathcal{S}} \mathsf{P} \{ \bar{H}X^{n} = s^{n} | C^{n} = c^{n} \} \prod_{i=1}^{n} p_{Y|X}(r_{i} \odot s_{i} | c_{i} \oplus s_{i}) \\ &\stackrel{(c)}{=} \sum_{s^{n} \in \mathcal{S}} \mathsf{P} \{ \bar{H}X^{n} = s^{n} | C^{n} = c^{n} \} \prod_{i=1}^{n} p_{Y|X}(r_{i} | c_{i}) \\ &= \prod_{i=1}^{n} p_{Y|X}(r_{i} | c_{i}), \end{split}$$

Lemma 2 implies that if  $Y^n$  is the output of the channel p(y|x) when the channel input is  $X^n$ . Then, the output the noisy codify block,  $R^n$ , distributes as if it is the output of the same channel p(y|x) when the channel input is the codified sequence  $C^n$ . This is illustrated in Figure 5.



Fig. 5. Relations of the random variables  $(X^n, Y^n, C^n, R^n)$ . To recover (the top right)  $X^n$  from (the bottom left)  $Y^n$ , one can go through the path  $Y^n \to \tilde{R^n} \to C^n \to X^n$ . To get an estimate  $\hat{C}^n$  from  $R^n$ , one can apply the decoder of the channel code. This explains the three steps-noisy codify, channel decoder, uncodify-in the Slepian-Wolf decoder in Figure 6. Moreover, since the noisy codify and uncodify blocks are invertible, the essential error in recovering  $X^n$  from  $Y^n$  is the same as the error in recovering  $C^n$  from  $\mathbb{R}^n$ .

Now we are ready to construct a code for the symmetric Slepian–Wolf problem p(x, y). Figure 6 illustrates the block diagram.



Fig. 6. The construction of a symmetric Slepian-Wolf code from a symmetric channel code.

*Encoding.* Upon observing the source sequence  $x^n$ , the sender transmits  $s^n = Hx^n$ .

Decoding. Upon observing  $y^n$  sequence and receiving the index  $s^n$ , the decoder declares

$$\hat{x}^n = \phi(y^n \odot s^n) \oplus s^r$$

as the source estimate.

Analysis of the probability of error. We have

$$\begin{aligned} \mathsf{P}\{\hat{X}^n \neq X^n\} \\ &= \mathsf{P}\{\phi(Y^n \odot \bar{H}X^n) \oplus \bar{H}X^n \neq X^n\} \\ &= \mathsf{P}\{\phi(Y^n \odot \bar{H}X^n) \neq X^n \oplus \bar{H}X^n\} \\ &= \mathsf{P}\{\phi(R^n) \neq C^n\} \\ &\stackrel{(d)}{=} \mathsf{P}\{\phi(\bar{R}^n) \neq \tilde{C}^n\} \\ &= \epsilon, \end{aligned}$$

where (d) follows from Lemma 2.

This code construction leads to the following conclusion.

**Theorem 1.** From each linear  $(k, n, \epsilon)$  code for the symmetric BMC p(y|x), one can construct a linear  $(n-k, n, \epsilon)$  code for the symmetric Slepian–Wolf problem p(x, y).

**Remark 1.** By construction, the rate of the Slepian–Wolf code is  $R_{sw} = (n - k)/n = 1 - R_{ch}$ .

B. A General Slepian–Wolf Code from a Symmetric Slepian– Wolf Code

Now we consider the general Slepian–Wolf problem p(x, y). We show that by introducing common randomness, every general Slepian–Wolf problem can be *symmetrized* by scrambling.

**Lemma 3.** Let  $Z \sim \text{Bern}(1/2)$  be independent of (X, Y). Let  $\tilde{X} = X \oplus Z$  and  $\tilde{Y} = (Y, Z)$ . Then, the Slepian–Wolf problem  $p(\tilde{x}, \tilde{y})$  is symmetric.

*Proof.* First, we note that  $\tilde{X} \sim \text{Bern}(1/2)$ . Moreover, for every  $x, z \in \{0, 1\}$  and  $y \in \mathcal{Y}$ , we have

$$p_{\tilde{Y}|\tilde{X}}(y,z|x\oplus z) = \frac{p_{Y,Z,\tilde{X}}(y,z,x\oplus z)}{p_{\tilde{X}}(x\oplus z)}$$

$$\stackrel{(a)}{=} \frac{p_{Y,Z,X}(y,z,x)}{p_{\tilde{X}}(x\oplus z\oplus 1)}$$

$$\stackrel{(b)}{=} \frac{p_{Y,Z,X}(y,z\oplus 1,x)}{p_{\tilde{X}}(x\oplus z\oplus 1)}$$

$$= \frac{p_{Y,Z,\tilde{X}}(y,z\oplus 1,x\oplus z\oplus 1)}{p_{\tilde{X}}(x\oplus z\oplus 1)}$$

$$= p_{\tilde{Y}|\tilde{X}}(y,z\oplus 1|x\oplus z\oplus 1),$$

where (a) follows since  $\tilde{X} \sim \text{Bern}(1/2)$  and (b) follows since  $Z \sim \text{Bern}(1/2)$  is independent of (X, Y). Thus, the Slepian–Wolf problem  $p(\tilde{x}, \tilde{y})$  is symmetric under permutation

$$\pi(\tilde{y}) = \pi(y, z) = (y, z \oplus 1).$$

In order to design a code for the general Slepian–Wolf problem (X, Y), we utilize a linear  $(n-k, n, \epsilon)$  code  $(\bar{H}, \psi)$ for the symmetrized Slepian–Wolf problem  $(\tilde{X}, \tilde{Y}) = (X \oplus Z, (Y, Z))$ , where  $Z \sim \text{Bern}(1/2)$  is independent of (X, Y). The block diagram of this code is shown in Figure 7. The average probability of error of this code is

$$\mathsf{P}\{\psi(\bar{H}X^n,Y^n)\neq X^n\}=\epsilon$$



Fig. 7. A code for the symmetrized Slepian–Wolf problem  $p(\tilde{x}, \tilde{y})$ .

To construct a code for the general Slepian–Wolf problem p(x, y), we share between the encoder and the decoder a common random sequence  $Z^n$ , which is i.i.d. Bern(1/2) and independent of  $(X^n, Y^n)$ , as shown in Figure 8.



Fig. 8. The construction of a general Slepian–Wolf code from a symmetric Slepian–Wolf code.

*Encoding.* Upon observing  $x^n$  and  $z^n$ , the sender transmits

$$s^n = \bar{H}(x^n \oplus z^n).$$

Decoding. Upon receiving  $s^n$  and  $y^n$ , the decoder declares

$$\hat{x}^n = \psi(s^n, (y^n, z^n)) \oplus z^n$$

as the source estimate.

Analysis of probability of error. The probability of error averaged over  $Z^n$  is

$$P\{\bar{X}^n \neq X^n\}$$
  
=  $P\{\psi(\bar{H}(X^n \oplus Z^n), (Y^n, Z^n)) \oplus Z^n \neq X^n\}$   
=  $P\{\psi(\bar{H}\tilde{X}^n, \tilde{Y}^n) \neq \tilde{X}^n\}$   
=  $\epsilon$ .

This code construction leads to the following conclusion.

**Theorem 2.** From each linear  $(n - k, n, \epsilon)$  code for the symmetric Slepian–Wolf problem  $p(\tilde{x}, \tilde{y})$  as defined above, one can construct an  $(n - k, n, \epsilon)$  code for the general Slepian–Wolf problem p(x, y).

**Remark 2.** By construction, the rate of the general Slepian– Wolf code equals that of the associated symmetric Slepian– Wolf code,  $R_{gsw} = l/n = R_{sw}$ . Moreover, we note that  $H(\tilde{X}|\tilde{Y}) = H(X \oplus Z|Y, Z) = H(X|Y, Z) = H(X|Y)$ .

In the next two sections II-C and II-D, we show how to construct a general channel code from a symmetric Slepian– Wolf code. Again, we take two steps. We construct first a symmetric channel code and then a general channel code.

C. A Symmetric Channel Code from a Symmetric Slepian– Wolf Code

Suppose that for the symmetric Slepian–Wolf problem p(x, y), there is a linear  $(n - k, n, \epsilon)$  code  $(\bar{H}, \psi)$ , as shown in Figure 9. Let  $(\tilde{X}^n, \tilde{Y}^n)$  be i.i.d. according to  $p_{X,Y}(\tilde{x}, \tilde{y})$ . The average probability of error is

$$\mathsf{P}\{\psi(\bar{H}\tilde{X}^n,\tilde{Y}^n)\neq\tilde{X}^n\}=\epsilon$$



Fig. 9. A code for symmetric Slepian–Wolf problem p(x, y).

To construct a channel code for the symmetric BMC p(y|x), we share a common random sequence  $Z^n$ , which is i.i.d. Bern(1/2) and independent of the message  $C^n$ , between the encoder and the decoder. Figure 10 illustrates the block diagram.



Fig. 10. The construction of a symmetric channel coding from a symmetric Sleplian–Wolf code.

*Encoding.* To send  $c^n \in C$ , the sender transmits

$$x^n = c^n \oplus z^n$$

Decoding. Upon receiving  $y^n$ , the decoder declares

$$\hat{c}^n = \psi(\bar{H}z^n, y^n) \oplus z^n$$

as the codeword estimate.

Analysis of probability of error. The probability of error averaged over  $Z^n$  is bounded as

$$\mathsf{P}\{\hat{C}^n \neq C^n\} = \mathsf{P}\{\psi(\bar{H}Z^n, Y^n) \neq C^n \oplus Z^n\}$$
$$\stackrel{(a)}{=} \mathsf{P}\{\psi(\bar{H}X^n, Y^n) \neq X^n\}$$
$$\stackrel{(b)}{=} \mathsf{P}\{\psi(\bar{H}\tilde{X}^n, \tilde{Y}^n) \neq \tilde{X}^n\}$$
$$= \epsilon,$$

where (a) follows since  $C^n \in C$  and thus  $\overline{H}X^n = \overline{H}C^n \oplus \overline{H}Z^n = \overline{H}Z^n$  and (b) since after scrambling with i.i.d. uniform  $Z^n$  sequence,  $(X^n, Y^n)$  are identically distributed

as  $(\tilde{X}^n, \tilde{Y}^n)$  in the Slepian–Wolf problem. Finally, since the probability of error averaged over  $Z^n$  is  $\epsilon$ , there exists a deterministic  $z^n$  sequence such that the probability of error is bounded by  $\epsilon$ .

This code construction leads to the following conclusion.

**Theorem 3.** From each linear  $(n - k, n, \epsilon)$  code for the symmetric Slepian–Wolf problem p(x, y), one can construct a  $(k, n, \epsilon)$  code for the symmetric BMC p(y|x).k

**Remark 3.** By construction, the rate of the channel code  $R_{ch} = k/n = 1 - R_{sw}$ .

**Remark 4.** Throughout the construction, we never use the symmetry of the channel p(y|x). Therefore, the same construction works for designing general channel coding from general Slepian–Wolf codes. Due to the uniform dithering, the channel input X is uniform. Thus, the resulting channel code can only achieve up to the symmetric capacity  $C_{\text{sym}} := I(\text{Bern}(1/2), p(y|x))$  of the BMC p(y|x).

D. A General Channel Code from a Symmetric Channel Code

Now we consider the general channel coding problem p(y|x). Similar to the construction from a symmetric Slepian–Wolf code to a general Slepian–Wolf code, the key technique here is to symmetrize a general channel by scrambling.

**Lemma 4.** Let  $\tilde{Z} \sim \text{Bern}(1/2)$  be independent of (X, Y). Then, the channel

$$p_{\tilde{Y},\tilde{Z}|\tilde{X}}(\tilde{y},\tilde{z}|\tilde{x}) := \frac{1}{2} p_{Y|X}(\tilde{y}|\tilde{x}\oplus\tilde{z})$$

is symmetric.

*Proof.* The channel  $p_{\tilde{Y},\tilde{Z}|\tilde{X}}(\tilde{y},\tilde{z}|\tilde{x})$  is symmetric under permutation  $\pi(\tilde{y},\tilde{z}) = (\tilde{y},\tilde{z}\oplus 1)$  since

$$p_{\tilde{Y},\tilde{Z}|\tilde{X}}(\tilde{y},\tilde{z}|\tilde{x}) = \frac{1}{2} p_{Y|X}(\tilde{y}|\tilde{x}\oplus\tilde{z})$$
$$= \frac{1}{2} p_{Y|X}(\tilde{y}|\tilde{x}\oplus1\oplus\tilde{z}\oplus1)$$
$$= p_{\tilde{Y},\tilde{Z}|\tilde{X}}(\tilde{y},\tilde{z}\oplus1|\tilde{x}\oplus1)$$

for any  $\tilde{x}, \tilde{z} \in \{0, 1\}$  and  $\tilde{y} \in \mathcal{Y}$ .

Suppose that we have a linear  $(k, n, \epsilon)$  code  $(\bar{H}, \phi)$  for the symmetrized channel  $p(\tilde{y}, \tilde{z}|\tilde{x})$  as illustrated in Figure 11. The average probability of error satisfies

$$\mathsf{P}\{\tilde{C}^n \neq \phi(\tilde{Y}^n, \tilde{Z}^n)\} = \epsilon.$$

To construct a code for the general channel p(y|x), we share between the encoder and the decoder an i.i.d. Bern(1/2) sequence  $Z^n$ . The encoding and decoding diagram is shown in Figure 12.

*Encoding.* To send  $c^n \in C$ , the sender transmits

$$x^n = c^n \oplus z^n$$



Fig. 11. Channel coding for symmetric BMC  $p(\tilde{y}, \tilde{z}|\tilde{x})$ .



Fig. 12. The construction of a general channel coding from a symmetric channel code.

Decoding. Upon receiving  $y^n$ , the decoder declares

$$\hat{c}^n = \phi(y^n, z^n)$$

as the message estimate.

Probability of error analysis. By construction, for all  $c^n \in C$ ,  $y^n \in \mathcal{Y}^n$ , and  $z^n \in \{0,1\}^n$ , we have

$$\begin{split} \mathsf{P}\{\tilde{Y}^{n} &= y^{n}, \tilde{Z}^{n} = z^{n} | \tilde{C}^{n} = c^{n} \} \\ &= \frac{1}{2^{n}} \prod_{i=1}^{n} p_{Y|X}(y_{i} | c_{i} \oplus z_{i}) \\ &= \mathsf{P}\{Z^{n} = z^{n}\} \, \mathsf{P}\{Y^{n} = y^{n} | X^{n} = c^{n} \oplus z^{n} \} \\ \stackrel{(a)}{=} \mathsf{P}\{Z^{n} = z^{n} | C^{n} = c^{n} \} \\ &\cdot \mathsf{P}\{Y^{n} = y^{n} | X^{n} = c^{n} \oplus z^{n}, C^{n} = c^{n} \} \\ &\quad \cdot \mathsf{P}\{Y^{n} = z^{n} | C^{n} = c^{n} \} \\ &\quad \cdot \mathsf{P}\{Y^{n} = y^{n} | Z^{n} = z^{n}, C^{n} = c^{n} \} \\ &\quad = \mathsf{P}\{Y^{n} = y^{n}, Z^{n} = z^{n} | C^{n} = c^{n} \}, \end{split}$$

where (a) follows since  $Z^n$  is independent of  $C^n$  and  $C^n \to X^n \to Y^n$  form a Markov chain. Therefore, the triples  $(C^n, Y^n, Z^n)$  and  $(\tilde{C}^n, \tilde{Y}^n, \tilde{Z}^n)$  are identically distributed and the probability of error is

$$\mathsf{P}\{C^n \neq \phi(Y^n, Z^n)\} = \mathsf{P}\{\tilde{C}^n \neq \phi(\tilde{Y}^n, \tilde{Z}^n)\} = \epsilon.$$

This code construction leads to the following conclusion.

**Theorem 4.** From each linear  $(k, n, \epsilon)$  code for the symmetric BMC  $p(\tilde{y}, \tilde{z}|\tilde{x})$  as defined above, one can construct a  $(k, n, \epsilon)$  code for the general BMC p(y|x).

**Remark 5.** By construction, the rate of the general channel code is  $R_{gch} = k/n = R_{ch}$ . We note that

1

$$\begin{split} (\tilde{X}; \tilde{Y}, \tilde{Z}) &= I(\tilde{X}; \tilde{Y} | \tilde{Z}) \\ &= H(\tilde{Y} | \tilde{Z}) - H(\tilde{Y} | \tilde{X}, \tilde{Z}) \\ &\stackrel{(a)}{=} H(\tilde{Y}) - H(\tilde{Y} | \tilde{X} \oplus \tilde{Z}) \\ &= I(\tilde{X} \oplus \tilde{Z}; \tilde{Y}) \\ &= I(\operatorname{Bern}(1/2), p_{Y|X}), \end{split}$$

where (a) follows since  $\tilde{X} \sim \text{Bern}(1/2)$  is independent of  $\tilde{Z}$  and thus  $(\tilde{Y}, \tilde{X} \oplus \tilde{Z})$  is independent of  $\tilde{Z}$ . Therefore, we can construct a code for general channel  $p_{Y|X}(y|x)$  only up to the symmetric capacity  $I(\text{Bern}(1/2), p_{Y|X})$ .

#### REFERENCES

- [1] A. D. Wyner, "Recent results in the Shannon theory," *IEEE Trans. Inf. Theory*, vol. 20, no. 1, pp. 2–10, 1974.
- [2] R. Ahlswede and G. Ducck, "Good codes can be produced by a few permutations," *IEEE Trans. Inf. Theory*, vol. 28, no. 3, pp. 430–443, May 1982.
- [3] S. Pradhan and K. Ramchandran, "Distributed source coding using syndromes (DISCUS): design and construction," *IEEE Trans. Inf. Theory*, vol. 49, no. 3, pp. 626–643, Mar 2003.
- [4] J. Garcia-Frias, "Compression of correlated binary sources using turbo codes," *Communications Letters, IEEE*, vol. 5, no. 10, pp. 417–419, Oct 2001.
- [5] T. Coleman, A. Lee, M. Medard, and M. Effros, "Low-complexity approaches to Slepian–Wolf near-lossless distributed data compression," *IEEE Trans. Inf. Theory*, vol. 52, no. 8, pp. 3546–3561, Aug 2006.
- [6] D. Schonberg, S. Pradhan, and K. Ramchandran, "Distributed code constructions for the entire Slepian–Wolf rate region for arbitrarily correlated sources," in *Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on*, vol. 1, Nov 2003, pp. 835–839 Vol.1.
- [7] V. Stankovic, A. Liveris, Z. Xiong, and C. Georghiades, "On code design for the slepian-wolf problem and lossless multiterminal networks," *IEEE Trans. Inf. Theory*, vol. 52, no. 4, pp. 1495–1507, April 2006.
- [8] J. Chen, D. ke He, A. Jagmohan, L. Lastras-Montano, and E. hui Yang, "On the linear codebook-level duality between Slepian–Wolf coding and channel coding," *IEEE Trans. Inf. Theory*, vol. 55, no. 12, pp. 5575–5590, Dec 2009.
- [9] S. Miyake, "Coding theorems for point-to-point communication systems using sparse matrix codes," Ph.D. Thesis, The University of Tokyo, Tokyo, Japan, 2010.
- [10] J. Chen, D. ke He, and A. Jagmohan, "The equivalence between Slepian–Wolf coding and channel coding under density evolution," *Communications, IEEE Transactions on*, vol. 57, no. 9, pp. 2534–2540, September 2009.
- [11] S. Korada and R. Urbanke, "Polar codes are optimal for lossy source coding," *IEEE Trans. Inf. Theory*, vol. 56, no. 4, pp. 1751–1768, Apr. 2010.