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Abstract—We study the duality between channel coding and
Slepian–Wolf coding in the linear coding framework. We show
how a code (both its encoder and decoder) for a symmetric
channel coding problem can be used to design a code for a
general Slepian–Wolf problem. Conversely, we show how a code
for a symmetric Slepian–Wolf problem can be used to design a
code for a general channel coding problem. The exact relations
between the rates and the probability of errors of the two codes
are established.

I. INTRODUCTION

A. Channel Coding Problem

A binary-input memoryless channel (BMC) p(y|x) con-

sists of an input alphabet X = {0, 1}, a finite output alphabet

Y , and a collection of conditional probability mass functions

p(y|x) on Y for x ∈ {0, 1}. We say a BMC p(y|x) is

symmetric if there exists a permutation π : Y → Y such that

p(y|x) = p(π(y)|x ⊕ 1) for all y ∈ Y and x ∈ {0, 1}.

A (k, n, ǫ) code (f, φ) for the BMC p(y|x) consists of

• a codebook C ⊆ {0, 1}n of size |C| = 2k,

• an encoder f : C → {0, 1}n that maps each codeword

cn to a channel input xn = f(cn), and

• a decoder φ : Yn → C that assigns a codeword estimate

ĉn = φ(yn) to each received sequence yn.

We assume that Cn is uniform over the codebook C. The rate

of the code is Rch = k/n. The average probability of error

of the code is P{Ĉn 6= Cn} = ǫ.
We say a channel code is linear if the codebook C is

such that for any two codewords cn, c̃n ∈ C, cn ⊕ c̃n ∈ C.

Equivalently, a linear code can be defined by its parity check

matrix H(n−k)×n. For notational convenience, we introduce

the augmented parity check matrix H̄n×n = [ 0
H ] so that all

vectors in this paper are of length n. Thus, the codebook of

a linear code can be written as C = {cn : H̄cn = 0n}. When

a (k, n, ǫ) code (f, φ) is linear with associated augmented

parity check matrix H̄ and f(cn) = cn, we say it is a (k, n, ǫ)
linear code (H̄, φ).

B. Slepian–Wolf Problem

A Slepian–Wolf problem p(x, y) consists of two finite

alphabets X = {0, 1},Y , and a joint pmf p(x, y) over

{0, 1} × Y . The binary memoryless source X with side

information Y generates a jointly i.i.d. random process

{(Xi, Yi)} with (Xi, Yi) ∼ pX,Y (xi, yi). We say a Slepian–

Wolf problem p(x, y) is symmetric if X ∼ Bern(1/2) and

the channel p(y|x) is symmetric.

An (l, n, ǫ) code (g, ψ) for the Slepian–Wolf problem

p(x, y) consists of

• an index set I ⊆ {0, 1}n of size |I| = 2l,
• an encoder g : {0, 1}n → I that maps each source

sequence xn to an index sn = g(xn), and

• a decoder ψ : I × Yn → {0, 1}n that assigns a source

estimate x̂n = ψ(sn, yn) to each index sn and side

information sequence yn.

The rate of the code is Rsw = (n − k)/n. The average

probability of error of the code is P{X̂n 6= Xn} = ǫ.
We say a Slepian–Wolf code is linear if for any xn, x̃n ∈

{0, 1}n, g(xn) ⊕ g(x̃n) = g(xn ⊕ x̃n). When an (l, n, ǫ)
Slepian–Wolf code (g, ψ) is linear with an encoder defined

by matrix multiplication g(xn) = H̄xn, where H̄n×n =
[

0
Hl×n

]

, we say it is an (l, n, ǫ) linear code (H̄, ψ).

C. Background

The connection between the channel coding problem and

the Slepian–Wolf problem has long been observed in the

literature. In [1], Wyner showed that a linear (k, n, ǫ) code

for the binary symmetric channel with crossover probability

p (BSC(p)) can be used to construct a linear (n − k, n, ǫ)
code for the symmetric Slepian–Wolf problem p(x, y) where

p(y|x) is a BSC(p). Since then, several attempts have been

made to generalize this observation [2]–[11]. In [8], Chen,

He, Jagmohan, Lastras-Montano, and Yang related a general

Slepian–Wolf problem p(x, y) to a dual channel coding prob-

lem pV |U (v|u), where V = (U⊕X,Y ) and (X,Y ) ∼ p(x, y)
is independent of U . Under the maximum a posteriori decod-

ing, a linear (k, n, ǫ) code for the dual channel p(v|u) can be

used to design a linear (n−k, n, ǫ) code for the Slepian–Wolf

problem p(x, y). Miyake [9] studied this duality for sparse

matrix codes with minimum-entropy decoding. Such duality

were also established for some low-complexity codes, such as

LDPC codes with density evolution decoding [10] and polar

codes with successive cancellation decoding [11]. In all of

these results except [1], the duality was established only for

the encoder, i.e., the encoder of one code is treated as a black
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box in designing another code. However, one has to specify

the decoding rule to analyze the probability of error.

D. Contributions

In this paper, we investigate whether the duality result can

be established for a given encoder and decoder pair. Given

a linear (k, n, ǫ) symmetric channel code (H̄, φ), how can

we construct a general Slepian–Wolf code and what can we

say about its performance (in terms of rate and probability of

error)? Conversely, given a linear (l, n, ǫ) symmetric Slepian–

Wolf code (H̄, ψ), how can we construct a general channel

code and what can we say about its performance? The

motivation is to translate the performance of commercial off-

the-shelf codes that are well studied and simulated in one

communication scenario into the performance of codes for

another communication scenario. From the theoretical point

of view, such a linear code duality will generalize most

existing results and will unify the analysis.

The main results of this paper are summarized in Figure 1.

We first show how to construct a linear (n − k, n, ǫ) sym-

metric Slepian–Wolf code from a linear (k, n, ǫ) symmetric

channel code in Section II-A and a general (n − k, n, ǫ)
Slepian–Wolf code from a linear (n − k, n, ǫ) symmetric

Slepian–Wolf code in Section II-B. Next we show how to

construct a (k, n, ǫ) symmetric channel code from a linear

(n−k, n, ǫ) symmetric Slepian–Wolf code in Section II-C and

a (k, n, ǫ) general channel code from a linear (k, n, ǫ) sym-

metric channel code in Section II-D. By combining all four

results, we establish the duality between the general Slepian–

Wolf problem and the general channel coding problem.

symmetric SW

symmetric CC

general SW

general CC

Thm 1Thm 3

Thm 2

Thm 4

Fig. 1. A summary of the main results. SW is short for Slepian–Wolf coding
and CC is short for channel coding.

II. LINEAR CODE DUALITY

A. A Symmetric Slepian–Wolf Code from a Symmetric Chan-

nel Code

Suppose that for the symmetric BMC p(y|x) with permu-

tation π, there is a linear (k, n, ǫ) code (H̄, φ). Without loss

of generality, assume that the augmented parity check matrix

is systematic

H̄ =

[

0 0
A In−k

]

,

where A is an (n− k)× k matrix and In−k is the (n− k)×
(n− k) identity matrix. The block diagram for this problem

is shown in Figure 2. We have the average probability of

error is given by

P{φ(R̃n) 6= C̃n} = ǫ.

ĈnC̃n

p(y|x)
∼ Unif(C)

φ
R̃n

Fig. 2. A channel code for symmetric BMC p(y|x).

To construct a code for the symmetric Slepian–Wolf prob-

lem p(x, y) from the above channel code, we first introduce

two building blocks.

The first block, termed codify, takes two inputs, a binary

sequence xn and the syndrome H̄xn of it, and outputs the

element-wise modulo-two sum of the two inputs xn ⊕ H̄xn,

as depicts in the left part of Figure 3. Intuitively, this

operation shifts any binary sequence xn to a codeword, as

illustrated in the right part of Figure 3. We prove this in

Lemma 1.

Lemma 1. For any xn ∈ {0, 1}n, xn ⊕ H̄xn ∈ C.

Proof. For any xn ∈ {0, 1}n, we have

H̄(xn ⊕ H̄xn) = H̄xn ⊕

[

0 0
A I

]

H̄xn

(a)
=

[

0
Hxn

]

⊕

[

0 0
A I

] [

0
Hxn

]

=

[

0
Hxn

]

⊕

[

0
Hxn

]

= 0,

where H = [A, I] in (a). Therefore, xn ⊕ H̄xn ∈ C.

H̄Xn

Xn

codify

Cn

Fig. 3. The codify block. Left: The block diagram. Right: Illustration of a
shift by H̄Xn in {0, 1}n space.

H̄Xn

Y n

noisy

codify

Rn

Fig. 4. The noisy codify block. Left: The block diagram. Right: Illustration
of a shift by H̄Xn in Yn space.

The second block, termed noisy codify, takes two inputs,

the noisy observation yn of the binary sequence xn and the
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syndrome H̄xn, and outputs yn ⊙ H̄xn, which is defined as

follows. For y ∈ Y and s ∈ {0, 1},

y ⊙ s =

{

y if s = 0

π(y) if s = 1.

Let yn ⊙ sn be the element-wise ⊙ operation. The left part

of Figure 4 depicts the block diagram. Similar to the shift in

the codify operation, this block takes a corresponding shift in

Yn space and outputs a noisy version of the output sequence

in the codify block, as illustrated in the right part of Figure 4.

Lemma 2 makes this statement rigorous.

Lemma 2. Let (Xn, Y n) be i.i.d. according to p(x, y), where

p(x, y) is symmetric under permutation π. Let Cn = Xn ⊕
H̄Xn and Rn = Y n ⊙ H̄Xn. Then,

P{Cn = cn, Rn = rn} =
1

2k

n
∏

i=1

pY |X(ri |ci)

for every cn ∈ C and rn ∈ Yn.

Proof. Define S = {sn ∈ {0, 1}n : sk = 0k}. For any cn ∈
C,

P {Cn = cn}

=
∑

sn∈S

P
{

Xn ⊕ H̄Xn = cn, H̄Xn = sn
}

=
∑

sn∈S

P {Xn = cn ⊕ sn}P
{

H̄Xn = sn |Xn = cn ⊕ sn
}

(b)
=

∑

sn∈S

1

2n

=
1

2k
,

where (b) follows since Xn is i.i.d. Bern(1/2) and for any

cn ∈ C and sn ∈ S, H̄(cn ⊕ sn) = 0n ⊕

[

0 0
A I

] [

0k

snk+1

]

=

sn. Now, for any rn ∈ Yn, consider

P{Rn = rn |Cn = cn}

=
∑

sn∈S

P
{

H̄Xn = sn, Y n ⊙ H̄Xn = rn |Cn = cn
}

=
∑

sn∈S

P
{

H̄Xn = sn |Cn = cn
}

· P
{

Y n ⊙ sn = rn |H̄Xn = sn, Xn = cn ⊕ sn
}

=
∑

sn∈S

P
{

H̄Xn = sn |Cn = cn
}

· P {Y n = rn ⊙ sn |Xn = cn ⊕ sn}

=
∑

sn∈S

P
{

H̄Xn = sn |Cn = cn
}

n
∏

i=1

pY |X(ri ⊙ si |ci ⊕ si)

(c)
=

∑

sn∈S

P
{

H̄Xn = sn |Cn = cn
}

n
∏

i=1

pY |X(ri |ci)

=

n
∏

i=1

pY |X(ri |ci),

where (c) follows from the symmetry of the channel p(y|x).

Lemma 2 implies that if Y n is the output of the channel

p(y|x) when the channel input is Xn. Then, the output the

noisy codify block, Rn, distributes as if it is the output of the

same channel p(y|x) when the channel input is the codified

sequence Cn. This is illustrated in Figure 5.

H̄Xn

Xn Cn Xn

codify

H̄Xn

uncodify

H̄Xn

Y n Rn Y n

noisy

H̄Xn

p
(y
|x
)

codify

noisy

uncodify

p
(y
|x
)

Fig. 5. Relations of the random variables (Xn, Y n, Cn, Rn). To recover
(the top right) Xn from (the bottom left) Y n, one can go through the path

Y n → Rn → Cn → Xn. To get an estimate Ĉn from Rn, one can
apply the decoder of the channel code. This explains the three steps—noisy
codify, channel decoder, uncodify—in the Slepian–Wolf decoder in Figure 6.
Moreover, since the noisy codify and uncodify blocks are invertible, the
essential error in recovering Xn from Y n is the same as the error in
recovering Cn from Rn.

Now we are ready to construct a code for the symmetric

Slepian–Wolf problem p(x, y). Figure 6 illustrates the block

diagram.

X̂n

uncodify
Y n

Xn

H̄ φ

codifynoisy

Slepian-Wolf decoder

Fig. 6. The construction of a symmetric Slepian–Wolf code from a
symmetric channel code.

Encoding. Upon observing the source sequence xn, the

sender transmits sn = H̄xn.

Decoding. Upon observing yn sequence and receiving the

index sn, the decoder declares

x̂n = φ(yn ⊙ sn)⊕ sn

as the source estimate.
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Analysis of the probability of error. We have

P{X̂n 6= Xn}

= P{φ(Y n ⊙ H̄Xn)⊕ H̄Xn 6= Xn}

= P{φ(Y n ⊙ H̄Xn) 6= Xn ⊕ H̄Xn}

= P{φ(Rn) 6= Cn}

(d)
= P{φ(R̃n) 6= C̃n}

= ǫ,

where (d) follows from Lemma 2.

This code construction leads to the following conclusion.

Theorem 1. From each linear (k, n, ǫ) code for the symmet-

ric BMC p(y|x), one can construct a linear (n−k, n, ǫ) code

for the symmetric Slepian–Wolf problem p(x, y).

Remark 1. By construction, the rate of the Slepian–Wolf

code is Rsw = (n− k)/n = 1−Rch.

B. A General Slepian–Wolf Code from a Symmetric Slepian–

Wolf Code

Now we consider the general Slepian–Wolf problem

p(x, y). We show that by introducing common randomness,

every general Slepian–Wolf problem can be symmetrized by

scrambling.

Lemma 3. Let Z ∼ Bern(1/2) be independent of (X,Y ).
Let X̃ = X ⊕ Z and Ỹ = (Y, Z). Then, the Slepian–Wolf

problem p(x̃, ỹ) is symmetric.

Proof. First, we note that X̃ ∼ Bern(1/2). Moreover, for

every x, z ∈ {0, 1} and y ∈ Y , we have

pỸ |X̃(y, z |x⊕ z) =
pY,Z,X̃(y, z, x⊕ z)

pX̃(x ⊕ z)

(a)
=
pY,Z,X(y, z, x)

pX̃(x⊕ z ⊕ 1)

(b)
=
pY,Z,X(y, z ⊕ 1, x)

pX̃(x⊕ z ⊕ 1)

=
p
Y,Z,X̃

(y, z ⊕ 1, x⊕ z ⊕ 1)

pX̃(x⊕ z ⊕ 1)

= pỸ |X̃(y, z ⊕ 1|x⊕ z ⊕ 1),

where (a) follows since X̃ ∼ Bern(1/2) and (b) follows

since Z ∼ Bern(1/2) is independent of (X,Y ). Thus, the

Slepian–Wolf problem p(x̃, ỹ) is symmetric under permuta-

tion

π(ỹ) = π(y, z) = (y, z ⊕ 1).

In order to design a code for the general Slepian–Wolf

problem (X,Y ), we utilize a linear (n−k, n, ǫ) code (H̄, ψ)
for the symmetrized Slepian–Wolf problem (X̃, Ỹ ) = (X ⊕
Z, (Y, Z)), where Z ∼ Bern(1/2) is independent of (X,Y ).
The block diagram of this code is shown in Figure 7. The

average probability of error of this code is

P{ψ(H̄X̃n, Ỹ n) 6= X̃n} = ǫ.

̂Xn ⊕ Zn

Y n, Zn

Xn ⊕ Zn

H̄ ψ

Fig. 7. A code for the symmetrized Slepian–Wolf problem p(x̃, ỹ).

To construct a code for the general Slepian–Wolf problem

p(x, y), we share between the encoder and the decoder a

common random sequence Zn, which is i.i.d. Bern(1/2) and

independent of (Xn, Y n), as shown in Figure 8.

X̂n

Y n

Xn

H̄ ψ

SW decoder

Zn

SW encoder

Zn

scramble descramble

Fig. 8. The construction of a general Slepian–Wolf code from a symmetric
Slepian–Wolf code.

Encoding. Upon observing xn and zn, the sender transmits

sn = H̄(xn ⊕ zn).

Decoding. Upon receiving sn and yn, the decoder declares

x̂n = ψ(sn, (yn, zn))⊕ zn

as the source estimate.

Analysis of probability of error. The probability of error

averaged over Zn is

P{X̂n 6= Xn}

= P{ψ(H̄(Xn ⊕ Zn), (Y n, Zn))⊕ Zn 6= Xn}

= P{ψ(H̄X̃n, Ỹ n) 6= X̃n}

= ǫ.

This code construction leads to the following conclusion.

Theorem 2. From each linear (n − k, n, ǫ) code for the

symmetric Slepian–Wolf problem p(x̃, ỹ) as defined above,

one can construct an (n − k, n, ǫ) code for the general

Slepian–Wolf problem p(x, y).

Remark 2. By construction, the rate of the general Slepian–

Wolf code equals that of the associated symmetric Slepian–

Wolf code, Rgsw = l/n = Rsw. Moreover, we note that

H(X̃|Ỹ ) = H(X ⊕ Z|Y, Z) = H(X |Y, Z) = H(X |Y ).

In the next two sections II-C and II-D, we show how to

construct a general channel code from a symmetric Slepian–

Wolf code. Again, we take two steps. We construct first a

symmetric channel code and then a general channel code.
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C. A Symmetric Channel Code from a Symmetric Slepian–

Wolf Code

Suppose that for the symmetric Slepian–Wolf problem

p(x, y), there is a linear (n− k, n, ǫ) code (H̄, ψ), as shown

in Figure 9. Let (X̃n, Ỹ n) be i.i.d. according to pX,Y (x̃, ỹ).
The average probability of error is

P{ψ(H̄X̃n, Ỹ n) 6= X̃n} = ǫ.

X̂n

Ỹ n

X̃n

H̄ ψ

Fig. 9. A code for symmetric Slepian–Wolf problem p(x, y).

To construct a channel code for the symmetric BMC

p(y|x), we share a common random sequence Zn, which

is i.i.d. Bern(1/2) and independent of the message Cn,

between the encoder and the decoder. Figure 10 illustrates

the block diagram.

ĈnY nCn

p(y|x) ψ

channel decoder

Zn

Zn

scramble descramble

Xn

H̄

Fig. 10. The construction of a symmetric channel coding from a symmetric
Sleplian–Wolf code.

Encoding. To send cn ∈ C, the sender transmits

xn = cn ⊕ zn.

Decoding. Upon receiving yn, the decoder declares

ĉn = ψ(H̄zn, yn)⊕ zn

as the codeword estimate.

Analysis of probability of error. The probability of error

averaged over Zn is bounded as

P{Ĉn 6= Cn} = P{ψ(H̄Zn, Y n) 6= Cn ⊕ Zn}

(a)
= P{ψ(H̄Xn, Y n) 6= Xn}

(b)
= P{ψ(H̄X̃n, Ỹ n) 6= X̃n}

= ǫ,

where (a) follows since Cn ∈ C and thus H̄Xn = H̄Cn ⊕
H̄Zn = H̄Zn and (b) since after scrambling with i.i.d.

uniform Zn sequence, (Xn, Y n) are identically distributed

as (X̃n, Ỹ n) in the Slepian–Wolf problem. Finally, since the

probability of error averaged over Zn is ǫ, there exists a

deterministic zn sequence such that the probability of error

is bounded by ǫ.
This code construction leads to the following conclusion.

Theorem 3. From each linear (n − k, n, ǫ) code for the

symmetric Slepian–Wolf problem p(x, y), one can construct

a (k, n, ǫ) code for the symmetric BMC p(y|x).k

Remark 3. By construction, the rate of the channel code

Rch = k/n = 1−Rsw.

Remark 4. Throughout the construction, we never use the

symmetry of the channel p(y|x). Therefore, the same con-

struction works for designing general channel coding from

general Slepian–Wolf codes. Due to the uniform dithering,

the channel input X is uniform. Thus, the resulting chan-

nel code can only achieve up to the symmetric capacity

Csym := I(Bern(1/2), p(y|x)) of the BMC p(y|x).

D. A General Channel Code from a Symmetric Channel

Code

Now we consider the general channel coding prob-

lem p(y|x). Similar to the construction from a symmetric

Slepian–Wolf code to a general Slepian–Wolf code, the

key technique here is to symmetrize a general channel by

scrambling.

Lemma 4. Let Z̃ ∼ Bern(1/2) be independent of (X,Y ).
Then, the channel

pỸ ,Z̃|X̃(ỹ, z̃ |x̃) :=
1

2
pY |X(ỹ |x̃⊕ z̃)

is symmetric.

Proof. The channel pỸ ,Z̃|X̃(ỹ, z̃|x̃) is symmetric under per-

mutation π(ỹ, z̃) = (ỹ, z̃ ⊕ 1) since

pỸ ,Z̃|X̃(ỹ, z̃ |x̃) =
1

2
pY |X(ỹ |x̃⊕ z̃)

=
1

2
pY |X(ỹ |x̃⊕ 1⊕ z̃ ⊕ 1)

= pỸ ,Z̃|X̃(ỹ, z̃ ⊕ 1|x̃⊕ 1)

for any x̃, z̃ ∈ {0, 1} and ỹ ∈ Y .

Suppose that we have a linear (k, n, ǫ) code (H̄, φ) for

the symmetrized channel p(ỹ, z̃|x̃) as illustrated in Figure 11.

The average probability of error satisfies

P{C̃n 6= φ(Ỹ n, Z̃n)} = ǫ.

To construct a code for the general channel p(y|x),
we share between the encoder and the decoder an i.i.d.

Bern(1/2) sequence Zn. The encoding and decoding dia-

gram is shown in Figure 12.

Encoding. To send cn ∈ C, the sender transmits

xn = cn ⊕ zn.
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ˆ̃Cn

C̃n

p(y|x)
φỸ n

Z̃n Z̃n

p(ỹ, z̃|x̃)

Fig. 11. Channel coding for symmetric BMC p(ỹ, z̃|x̃).

ĈnCn

p(y|x) φ

Zn

scramble

Zn

Xn Y n

Fig. 12. The construction of a general channel coding from a symmetric
channel code.

Decoding. Upon receiving yn, the decoder declares

ĉn = φ(yn, zn)

as the message estimate.

Probability of error analysis. By construction, for all cn ∈
C, yn ∈ Yn, and zn ∈ {0, 1}n, we have

P{Ỹ n = yn, Z̃n = zn |C̃n = cn}

=
1

2n

n
∏

i=1

pY |X(yi |ci ⊕ zi)

= P{Zn = zn}P{Y n = yn |Xn = cn ⊕ zn}

(a)
= P{Zn = zn |Cn = cn}

· P{Y n = yn |Xn = cn ⊕ zn, Cn = cn}

= P{Zn = zn |Cn = cn}

· P{Y n = yn |Zn = zn, Cn = cn}

= P{Y n = yn, Zn = zn |Cn = cn},

where (a) follows since Zn is independent of Cn and Cn →
Xn → Y n form a Markov chain. Therefore, the triples

(Cn, Y n, Zn) and (C̃n, Ỹ n, Z̃n) are identically distributed

and the probability of error is

P{Cn 6= φ(Y n, Zn)} = P{C̃n 6= φ(Ỹ n, Z̃n)} = ǫ.

This code construction leads to the following conclusion.

Theorem 4. From each linear (k, n, ǫ) code for the sym-

metric BMC p(ỹ, z̃|x̃) as defined above, one can construct a

(k, n, ǫ) code for the general BMC p(y|x).

Remark 5. By construction, the rate of the general channel

code is Rgch = k/n = Rch. We note that

I(X̃; Ỹ , Z̃) = I(X̃; Ỹ |Z̃)

= H(Ỹ |Z̃)−H(Ỹ |X̃, Z̃)

(a)
= H(Ỹ )−H(Ỹ |X̃ ⊕ Z̃)

= I(X̃ ⊕ Z̃; Ỹ )

= I(Bern(1/2), pY |X),

where (a) follows since X̃ ∼ Bern(1/2) is independent of

Z̃ and thus (Ỹ , X̃ ⊕ Z̃) is independent of Z̃. Therefore, we

can construct a code for general channel pY |X(y|x) only up

to the symmetric capacity I(Bern(1/2), pY |X).
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