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Abstract—A randomized decoder that generates the message
estimate according to the posterior distribution is known to
achieve the reliability comparable to that of the maximum
a posteriori probability decoder. With a goal of practical
implementations of such a randomized decoder, several Monte
Carlo techniques, such as rejection sampling, Gibbs sampling,
and the Metropolis algorithm, are adapted to the problem of ef-
ficient sampling from the posterior distribution. Analytical and
experimental results compare the complexity and performance
of these Monte Carlo decoders for simple linear codes and the
binary symmetric channel.

I. INTRODUCTION

Consider a communication channel p(y|x) with input
x = (x1, . . . , xn) ∈ Xn and output y = (y1, . . . , yn) ∈ Yn.
For example, p(y|x) = ∏n

i=1 pY |X(yi|xi) corresponds to n
transmissions over a discrete memoryless channel pY |X(y|x)
with input x ∈ X and output y ∈ Y . Suppose that we wish to
communicate a k-bit message m ∈ {0, 1}k over this channel
by encoding the message m into x(m) and decoding the
received output y into m̂(y) ∈ {0, 1}k. The encoder mapping
x : {0, 1}k → Xn is referred to as an (n, k) code for
the communication channel p(y|x). Together with a given
decoder mapping m̂ : Yn → {0, 1}k, the performance of
the (n, k) code is measured by the average probability of
decoding error

pe = P(M 6= m̂(Y)),

where M is drawn randomly according to the uniform
distribution over {0, 1}k.

A. Optimal Decoding

Let
py(m) = p(m|y) = 1

2k
p(y|x(m))

p(y)
(1)

denote the posterior distribution of M given Y = y. For any
fixed encoder of an (n, k) code, the probability of decoding
error is minimized by the maximum a posteriori probability
(MAP) decoding rule

m̂MAP(y) = argmax
m

py(m). (2)

By (1), the MAP decoding rule can be expressed equivalently
as the maximum likelihood (ML) decoding rule

m̂ML(y) = argmax
m

p(y|x(m)). (3)

In a straightforward implementation, the MAP (ML) decod-
ing involves 2k evaluations of the posterior (likelihood).

Suppose now that the channel is the binary symmetric
channel

p(y |x) =
{
1− p, y = x,

p, otherwise

with X = Y = F2 for some p ∈ [0, 1/2]. Equivalently,
the channel output is y = x ⊕ Z, where the binary additive
noise Z ∼ Bern(p) is independent of the input x. Then the
likelihood can be written as

p(y|x(m)) =
∏

i:yi=xi(m)

(1− p) ·
∏

i:yi 6=xi(m)

p,

and the ML decoding rule simplifies as the minimum distance
decoding rule

m̂MD(y) = argmin
m

dH(x(m),y), (4)

where dH(x,y) = |{i : yi 6= xi}| denotes the Hamming
distance between x and y. Instead of evaluating the distances
between y and the 2k codewords, one can perform minimum
distance decoding by searching over the neighborhood of y
step by step, first checking whether y is a codeword, then
checking whether each of the

(
n
1

)
1-bit neighbors of y is

a codeword, then checking whether each of the
(
n
2

)
2-bit

neighbors of y is a codeword, and so on. Enumeration of all
l-bit neighbors of y can be implemented efficiently using a
technique of Cover [1]. On average, this approach requires
roughly 2nH(p) neighbors of y to be checked.

When the encoder is linear as

x(m) = mG

for some generator matrix G ∈ Fk×n2 and a corresponding
parity check matrix H ∈ F(n−k)×n

2 such that GHT = 0, then
x ∈ Fn2 is a codeword if and only if (iff) HxT = 0. The MAP
decoding rule in this case can be simplified as the syndrome
decoding rule that computes the (n− k)-bit syndrome

s = HyT = H(y ⊕ x(m))T (5a)

and maps it to the most likely error vector

z(s) = arg max
z:HzT=s

∏
i:zi=0

(1− p) ·
∏
i:zi=1

p. (5b)

The MAP estimate (or more precisely, the corresponding
codeword) can then be found as

x(m) = y ⊕ z(s).
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Syndrome decoding can be performed by precomputing and
storing the mapping z(s) for 2n−k syndromes.

All these approaches to optimal decoding discussed so far
require time or space complexity that is exponential in k
(assuming that k and n are linearly related). This is a rather
fundamental limitation and the problem of optimal decoding
of a general linear code is NP complete [2].

B. Randomized Likelihood Decoding

In [3], Yassaee, Aref, and Gohari proposed a suboptimal,
randomized decoding rule as a theoretical alternative to
MAP decoding so as to simplify the average error prob-
ability analysis of random code ensembles in the finite-
blocklength regime and establish the desired second-order
behavior (cf. [4]). In this randomized likelihood (RL) decod-
ing rule, the message estimate is randomly chosen from the
posterior distribution as

M̂RL(y) ∼ p(m|y). (6)

In a sense, it plays the role of joint typicality decoding
(see, for example, [5]) that is widely used to analyze the
asymptotic first-order behavior of random codes.

Although quite simple, randomized likelihood decoding
can achieve the decoding error probability comparable to that
of optimal decoding. By the LCV lemma [6]–[8], for any
channel p(y|x) and any code x(m),

P(M 6= M̂RL(Y)) ≤ 2P(M 6= m̂MAP(Y)) := 2p∗e. (7)

If an even closer proxy is needed, it can be shown that the
empirical mode from three random samples from p(m|y)
achieves the multiplicative factor of ≤ 1.58 from MAP
decoding, and that this factor converges to 1 exponentially
as the number of samples increases [8]. Since most good
codes operate at p∗e � 1, the factor of two here is essentially
negligible. In particular, RL decoding achieves the same
asymptotic metrics such as error exponent and finite-length
scaling as MAP decoding.

C. Monte Carlo Decoding

With the performance guarantee of RL decoding in (7),
we now ask how one can generate a single sample from
the posterior distribution py(m) efficiently. Our fundamental
premise is that although py(m) is rather difficult to compute
(due to the normalization factor p(y) in (1)), it may be far
easier to sample from. In fact, most Monte Carlo sampling
algorithms rely only on the proportional quantity of likeli-
hood p(y|x(m)), which is straightforward to compute for
most channels.

Thus motivated, we investigate in this paper several ap-
proaches to Monte Carlo sampling from the posterior dis-
tribution py(m). We first study rejection sampling (Section
II) for generating an exact sample from py(m). We develop
a decoding technique for the binary symmetric channel
based on rejection sampling, which replaces the (exponential)
space complexity of syndrome decoding in (5) by time
complexity. With a goal of achieving polynomial decoding

complexity, we then study two classical Markov chain Monte
Carlo (MCMC) methods—Gibbs sampling (Section III) and
Metropolis sampling (Section IV). We develop correspond-
ing decoding techniques, tweaking them with heuristic and
disciplined variations such as simulated annealing and par-
allelization. The performance of these Monte Carlo decod-
ing techniques are illustrated through experimental results
for simple toy examples. Although there is no conclusive
evidence that these techniques would become feasible in
practice, our simulation results demonstrate some potential of
Monte Carlo decoding for augmenting conventional decoding
techniques for certain communication applications.

On a historical note, the use of Monte Carlo methods
for decoding traces to a 2001 talk by Radford Neal [9],
who developed a decoding algorithm for LDPC codes based
on Gibbs sampling (cf. Section III), but concluded that
Gibbs decoding is too slow to be used in practice. A
similar decoding method based on Gibbs sampling was also
presented in the textbook [10], in which the asymptotic
decoding performance of the Gibbs decoder was compared
to that of a belief propagation decoder. Other than these
two earlier investigations, Monte Carlo methods for decoding
have hardly been studied in the literature, and the asymptotic
performance guarantee has not been noted. The current paper
seems to be the first to study various Monte Carlo methods
for decoding.

Beyond decoding of error correction codes, Monte Carlo
methods, especially those based on Markov chains, have
found numerous applications. For example, MCMC-based
algorithms have been developed for difficult combinatorial
optimization problems (see [11] and the references therein),
which reduce the computational complexity of (approximate)
counting from exponential to polynomial, a feat not replicated
by any other approach. As yet another example, Monte
Carlo (especially MCMC) methods have been applied to
several signal processing problems [12]. The most relevant
to our problem is the MCMC-based detection method for
multiple-input multiple-output (MIMO) systems [13], [14],
whereby multiple samples are generated by Gibbs sampling.
We remark that our Monte Carlo approach to decoding
can be applied to MIMO (or any) detection problems with
performance guarantee in (7), which appears to be previously
unknown.

II. DECODING BASED ON REJECTION SAMPLING

We start with a general description of rejection sampling
and then discuss the randomized likelihood decoding based
on rejection sampling. Let p(v) = p∗(v)/Zp denote the target
pmf we wish to sample from where Zp is the normalization
constant. Let q(v) = q∗(v)/Zq be another pmf we can easily
sample from. Suppose that for every v with q∗(v) > 0, the
ratio satisfies

p∗(v)

q∗(v)
≤ 1 (8)

and can be computed efficiently. In rejection sampling [15],
a sample v from q(v) and a sample u from Unif([0, 1]) are
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generated randomly and independently from each other. If
u ≤ p∗(v)

q∗(v) , the sample v is accepted; otherwise, v is rejected
and the steps are repeated from the beginning.

At every step in the rejection sampling, the points
(v, q∗(v) · u) are generated independently from the previous
steps and uniformly random over the region under the curve
q∗(v) as illustrated in Fig 1. Since all the points (v, q∗(v) ·u)
above q∗(v) are rejected, the accepted point is generated
uniformly random over the region under the curve p∗(v).
Therefore, the accepted sample v is generated from the
distribution p(v).

p∗(v)

v

q∗(v)

q∗(v) · u

Fig. 1. Illustration for rejection sampling

We now consider the time complexity of rejection sam-
pling. Let N denote the number of samples drawn from
q(v) until the first sample is accepted, i.e., the number of
iterations. N is a geometric random variable with success
probability δ, where

δ = P
(
U ≤ p∗(V )

q∗(V )

)
(a)
=
∑
v

q(V = v)P
(
U ≤ p∗(v)

q∗(v)

)
(b)
=
∑
v

q(V = v)
p∗(v)

q∗(v)

=
∑
v

p∗(v)

Zq
.

Here (a) follows since U and V are independent, and (b) fol-
lows since U ∼ Unif([0, 1]). Therefore, the expected number
of iterations for rejection sampling is 1/δ, or equivalently

E[N ] = Zq/Zp. (9)

We are now ready to discuss how one can use rejection
sampling for RL decoding of an error correction code. A
rejection sampling based RL decoder draws a sample from
py(m) by setting

p∗(m) = p(y|x(m)) (10)

with a proper choice of qy(m) = q∗(m)/Zq(y) such that
q∗(m) satisfies the condition in (8). The following lemma
describes the expected number of iterations required by this
class of decoders.

Lemma 1. The expected number of iterations for a rejection
sampling based RL decoder is 2−k

∑
y∈Yn Zq(y), where Yn

denotes the set of y such that p(y|m) > 0 for some m.

Proof: The expected number of iterations is written as

E[N ]
(a)
= E[E[N |x(M),Y]]

=
∑
m

∑
y

2−kp(y|x(m))E[N |x(m),y]

(b)
=
∑
m

∑
y

2−kp(y|x(m))
Zq(y)

Zp(y)

(c)
=
∑
m

∑
y

2−kp(y|x(m))
Zq(y)∑

m′ p(y|x(m′))

= 2−k
∑
y

Zq(y)

∑
m p(y|x(m))∑
m′ p(y|x(m′))

= 2−k
∑
y

Zq(y),

where (a) follows by the iterated expectation theorem, (b)
follows by (9), and (c) follows by (10).

The following presents a concrete example of a rejection
sampling based RL decoder.

Example 1. We consider decoding of a systematic linear code
over the binary symmetric channel with cross over probability
p ∈ (0, 0.5]. For this channel, (10) is simplified to

p∗(m) = (p/p)dH(x(m),y)pn,

where p := 1 − p. We use the rejection sampling based RL
decoder specified by

qy(m) =

(
p

p

)dH(m,y1)

pk,

and
Zq = p(n−k),

where y1 denote the first k bits of the received sequence y.
Note that the requirement in (8) is satisfied. Let y2 denote
the last (n−k) bits of y. Upon receiving y, this RL decoder
executes the following steps.
1. Draw m from qy(m) by passing y1 through a binary

symmetric channel with cross over probability of p.
2. Compute parity bits (z(m)) for the sample m.
3. Draw u from Unif([0, 1]).
4. If u ≤ (p/p)d(z(m),y2), accept m and declare as an

estimate; otherwise, reject m and return to step 1.

Corollary 1. The expected number of iterations for the
rejection sampling based RL decoder described in Example 1
is (2p)n−k.

Proof: It follows by incorporating Zq = p(n−k), and
|Yn| = 2n in Lemma 1.

Within Example 1, we consider a (23, 12) Golay code
and the binary symmetric channel with cross over probability
p = 0.06. By Corollary 1, the expected number of iterations
for this case is computed as (2 · 0.94)11 ≈ 1037. One way
to improve the block error rate (BLER) of the decoder in
Example 1 at any iteration step is to output the most likely
sample among the ones that were drawn from qy(m) until
the current step. The performance of this decoder is shown
in Fig. 2.
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Fig. 2. Performance of the RL decoder in Example 1 for a (23, 12) Golay
code over BSC(0.06)

Remark 1. The RL decoder given in Example 1 replaces
the space complexity of syndrome decoding by the time
complexity. This time/space substitution may be particularly
handy when different random codes are used per session (for
example, for secrecy, anti-jamming, or robustness applica-
tions) and hence table lookup becomes infeasible. Moreover,
this RL decoder is particularly favorable over syndrome
decoding when p is large, the condition of which is typically
consistent with large n− k.

Remark 2. We also visit two other (out of infinitely many)
rejection sampling decoders for the binary symmetric chan-
nel. The first one looks at the output of the same binary
symmetric channel with y as the input, and accepts this
output if and only if it is a codeword. It is easy to see
that expected number of iterations is 2n−k. The second
decoder draws m from {0, 1}k uniformly at random and
finds the corresponding codeword x(m). It then generates
a sample u from Unif([0, 1]), and accepts m if and only if
u < (p/p)dH(x(m),y). For this decoder, the expected number
of iterations is (2p)n.

It is surprising to see that even with such a simple Monte
Carlo method, it is possible to construct a decoder that is
comparable (even more favorable for large values of p) with
the well-known syndrome decoder in terms of the perfor-
mance and decoding complexity. In search of polynomial-
complexity RL decoders, we next investigate more advanced
MCMC methods.

III. GIBBS DECODING

MCMC [16] is a collection of Monte Carlo methods in
which samples are taken from an ergodic Markov chain that
is easy to run. It is typically assumed that the distribution of
the process converges to the unique stationary distribution
asymptotically and thus that after a sufficient number of
iterations, samples are distributed approximately according to
the target stationary distribution. Most Monte Carlo methods
are inexact and result in some mismatch between the nominal
distribution and the actual distribution of the sample. This
should be only a minor concern to us, however. If a Monte
Carlo method generates a sample from p′(m|y) within total

variation distance δ from the desired posterior distribution
p(m|y), then the probability error of the inexact Monte Carlo
decoder

M̂RL(y) ∼ p′(m|y) (11)

is upper bounded as

P(M 6= M̂RL(Y)) ≤ 2p∗e + δ, (12)

which is once again comparable to the MAP decoding
performance, provided that δ is sufficiently small. The key
here is the speed of convergence (mixing time) [17] of the
Markov chain which can be exponentially faster than non-
MCMC methods such as rejection sampling. We now study
the use of two of the most classical and popular MCMC
techniques, Gibbs sampling and Metropolis sampling, for the
decoding problem.

Consider a d-variate probability density function p(v),
d ≥ 2, from which we wish to take a sample. Suppose
that sampling each variable from the conditional marginal
distribution is easier than sampling all variables from the
joint distribution. Gibbs sampling algorithm can then be
summarized in the following steps.
1. Initialize a starting point v(0) = (v

(0)
1 , v

(0)
2 , . . . , v

(0)
d ).

2. On the t-th iteration (t = 1, 2, . . .),
(a) randomly pick a coordinate i ∼ Unif[d].
(b) sample the i-th coordinate from the conditional dis-

tribution V (t)
i ∼ p(vi|v(t−1)

¬i ), where

v
(t−1)
¬i = (v

(t−1)
1 , . . . , v

(t−1)
i−1 , v

(t−1)
i+1 , . . . , v

(t−1)
d ).

(c) fix the remaining coordinates v(t)j = v
(t−1)
j for all

j ∈ [d]\{i}.
It can be proven that the distribution of the Markov chain
generated by the above algorithm converges to the target
distribution p(v).

The multivariate structure of Gibbs sampling fits our de-
coding problem very well—in order to sample from posterior
distribution p(m|y), our Gibbs decoder performs a random
walk on the state space of 2k messages by generating the
i-th bit M (t)

i ∼ p(mi|y,m(t−1)
¬i ), keeping all other positions

the same and iterating over the k bits.

Fig. 3. A Tanner graph for a code with 4 message bits and 3 parity bits.

We note that there is some intriguing connection between
Gibbs decoding and conventional BP decoding. Both involve
iterative “message passing” between the check nodes and
the variable nodes. The main difference is that, while the
update rule for BP is deterministic, the one for parallel Gibbs
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is random. Fig. 3 illustrates a typical Tanner graph of a
linear block code with the parity-check matrix chosen to be
systematic so that the variable nodes are divided into message
nodes and parity nodes. Suppose that, for example, the Gibbs
decoder wishes to update the first message node. The Gibbs
message-passing algorithm takes the following steps.
1. Every message node j other than node 1 sends its current

estimate m(t)
j , and every parity node i sends the channel

output bit yi to the check nodes.
2. From each check node i to which information node 1

is connected, a soft likelihood p(m1|yi,m(t)
¬1) is sent to

message node 1.
3. Message node 1 generates a new estimate

M
(t+1)
1 ∼ p(m1 |y,m(t)

¬1)

∝ p(m1 |y1)
∏
i∈I1

p(m1 |yi,m(t)
¬1), (13)

where I1 = {i : parity bit i in which message bit 1 participates}.
A recent paper [18] presents a hybrid approach of MCMC
and BP decoding.
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Fig. 4. Performance of the Gibbs decoder for a (23, 12) Golay code over
BSC(0.06)

Fig. 4 shows the performance of the Gibbs decoder for a
(23, 12) Golay code over a BSC with crossover probability
0.06. The generator matrix is chosen to be systematic so that
the starting point of the chain can be set as the message bits
of the channel output, which are the bitwise MAP estimates
given those output bits. As seen in this plot, the convergence
time is not satisfactory. So in its naive form, Gibbs sampling
is not practical due to slow dynamics.

To speed up Gibbs sampling certain methods have previ-
ously been shown to be effective. The first one is simulated
annealing [19], a popular technique used for avoiding local
extrema in random walks (getting trapped in which leads
to slow convergence). Instead of generating sample from
p(m|y), we run a Markov chain that generates a sample
form pα(m|y), where α > 0. As α tends to infinity, the
behavior of the Markov chain becomes more like finding the
steepest ascent in a lazy manner – if flipping a bit yields
higher likelihood, then it flips that bit; otherwise, it stays
at the current state. On the contrary, as α goes to 0, the

Markov chain behaves more like a lazy simple random walk.
Fig. 5 compares the performance of annealed Gibbs decoders
with various temperature parameters for a (40, 20) irregular
LDPC code over a BSC with crossover probability 0.04. The
parameter k = 20 is chosen to allow accurate simulation of
the MAP decoding error probability. While smaller α (higher
temperature) makes the Markov chain move more freely, it
also flattens the distribution we sample from. Among the
values considered, α = 0.25 is the optimal in terms of the
speed of convergence.
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Fig. 5. Performance of annealed Gibbs decoders for a (40, 20) irregular
LDPC code over BSC(0.04)

In [9], Neal considered a different Gibbs decoder in which
a random walk is performed over Fn2 , i.e. the codeword
space (as opposed to the message space Fk2), and a non-
codeword state is penalized depending on how many parity-
check equations are dissatisfied by it. Neal also used sim-
ulated annealing. The resulting doubly annealed posterior
distribution has the form

pα,β(x|y) ∝ pα(x|y)
n−k∏
i=1

rβ([Hx]i),

where rβ(y) = (1− y)β+(1−β)/2, α is the heuristic tem-
perature control parameter, and β is the soft-parity annealing
parameter. The performance of the soft-parity Gibbs decoder
is plotted in Fig. 6. For each simulation, β is increased
linearly with the number of iterations from 0.01 to 1, which
is annealing schedule used in [9].

Another favorable technique is using Gibbs sampling with
block updates. Instead of updating one coordinate per it-
eration, for block Gibbs a set B of multiple coordinates
is randomly chosen and updated according to the condi-
tional marginal distribution p(mB |y,m(t−1)

¬B ). As long as the
blocksize is not too large so that the conditional marginal
distribution is easy to sample from, empirically the block
Gibbs algorithm can substantially improve the speed of
convergence, which can be seen in Fig. 7. Compared to the
belief propagation (BP) decoder, Gibbs decoders have slower
convergence speed. However, while there is a gap between
BP decoding and MAP decoding, the error probability of
Gibbs decoders converges to the MAP error probability after
sufficient iterations. For α = 0.25 and blocksize = 3,
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Fig. 6. Performance of soft-parity Gibbs decoders for a (40, 20) irregular
LDPC code over BSC(0.04)
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Fig. 7. Performance of annealed block Gibbs decoders for a (40, 20)
irregular LDPC code over BSC(0.04)

the error probability of the annealed block Gibbs decoder
achieves twice the MAP error probability within about 103

iterations, which is exponentially better than 220, the time
complexity of MAP/ML decoding (or the space complexity
of syndrome decoding, or the time complexity of the rejection
sampling based RL decoder).

Remark 3. Due to the resemblance between Gibbs and BP
decoders, it is natural to consider parallel Gibbs sampling, in
which some of all the coordinates are updated simultaneously.
In our setting, parallel Gibbs updates become

M
(t)
i ∼ p(mi |y,m(t−1)

¬i ), i = 1, 2, . . . , k.

Nevertheless, the correctness is lost through the parallelism
and the algorithm is not guaranteed to converge to the target
distribution. Analysis can be found in [20], [21].

IV. METROPOLIS DECODING

Let Q(v, v′) be a symmetric transition matrix of a Markov
chain and p(v) be an unrelated, target distribution one
wishes to sample from. The Metropolis algorithm modifies
the underlying Markov chain Q suitably to obtain a new
“Metropolized” chain P with stationary distribution p. The
algorithm works as follows. Given the current state Vi = vi, a
new state Vi+1 is generated as per the distribution Q(vi, ·). If
p(vi+1) ≥ p(vi), then the new state Vi+1 = vi+1 is accepted.

Otherwise, it is accepted with probability p(vi+1)/p(vi). In
summary, the Metropolized chain has the transition matrix

P (v, v′) =


Q(v, v′)min

{
1, p(v

′)
p(v)

}
, v′ 6= v,

1− ∑
v′:v′ 6=v

Q(v, v′)min
{
1, p(v

′)
p(v)

}
, v′ = v,

(14)
which can be shown to have p(v) as its stationary distribution.
When the underlying Markov chain Q is asymmetric, a
straightforward generalization of (14) called the Metropolis–
Hastings algorithm is used to alter Q, so that the final
stationary distribution is p(v). Note that Gibbs sampling
discussed in Section III is a special case of the Metropolis–
Hastings algorithm (see, for example, Exercise 29.2 of [15]).

For the decoding problem, the target stationary distribution
would be chosen to be p(m|y). Note that the knowledge
of the target distribution is necessary only up to a constant
multiplicative factor in the accept/reject step and hence that
the Metropolis decoder only needs to compute the likelihood
p(y|x(m)). Upon fixing the target stationary distribution, to
design a Metropolis decoder a suitable Q needs to be chosen.
This design choice is critical since the underlying Markov
chain in the Metropolis algorithm has a major role in the
speed of convergence of the Metropolized chain.

Apart from a good choice of Q, another heuristic method
shown to be effective in speeding up convergence is the
use of temperature control. At a high level, temperature
control entails changing the target stationary distribution
p as the algorithm progresses. Typically, the time-varying
stationary distribution of the Markov chain is altered as pαt .
Here, αt is referred to as the “inverse temperature” and
gradually increases from 0 to 1 with t. This method is known
as simulated annealing. While inexact, it has been shown
to be effective for a variety of combinatorial optimization
problems, and there have been several proposals on the
optimal pattern of varying αt [22], [23].

Theoretical analyses of most Metropolis algorithms are
elusive, and one of the reasons for this difficulty is that the
mixing time of the Metropolized chain P does not appear
to be directly related to the mixing time of the underlying
Q. However, there have been some analytical studies on
MCMC methods (see [11] and the references therein). One
study in particular that is pertinent to our scenario is the
analysis by Diaconis and Hanlon [24]. They considered the
underlying Markov chain to be the symmetric random walk
on the n-dimensional hypercube (see below) and the target
stationary distribution to be

p(x) =
θwt(x)

(1 + θ)n

for 0 < θ < 1, where wt(x) denotes the Hamming weight
of x. For θ ≤ 1

2 , this is the chain that is formed when we
wish to decode the output over a BSC with parameter θ,
assuming the all-zero codeword is transmitted and the trivial
rate-1 code is employed. Interestingly, in this case the mixing
time is O(n log n), which is also the mixing time of the
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symmetric random walk on the hypercube. The analysis relies
on calculation of the spectral gap of the Metropolized chain,
and the corresponding mixing time bound in terms of the
spectral gap [17].

We now report empirical results of three methods used to
reach the goal of designing a Metropolis decoder competitive
in terms of the tradeoff between high performance and low-
complexity: 1) to vary the underlying chain Q, 2) to employ
temperature-control, and 3) to parallelize the sampling pro-
cess to replace time complexity by space complexity.

To study the effect of the underlying Q on convergence,
we start with one of the simplest chains, the symmetric
random walk on the hypercube. In the symmetric random
walk, a new state m′ is generated by flipping one of the
k bits in m at random and accepting/rejecting based on
the ratio of the likelihoods p(y|x(m)) and p(y|x(m′)). In
order to avoid periodicity of the Markov chain, we make
the random walk lazy and add some positive probability of
staying in the same state. Fig. 8 shows the performance of
this Hypercube Metropolis decoder for a (23, 12) systematic
Golay code over a BSC with crossover probability 0.06. The
chain has “laziness” probability 0.01. The straight dash/dot
line at the bottom of the plot is twice the MAP decoding
error probability.
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Fig. 8. Performance of Metropolis decoders for a (23, 12) Golay code over
BSC(0.06)

To study a slightly larger code, we consider again the irreg-
ular (40, 20) LDPC code. The performance of the Metropolis
decoders is shown in Fig. 9. The dashed curve shows the
error probability of this Metropolis decoder for a BSC with
p = 0.04. The convergence is slow and it is still far off from
the theoretical guarantee when the number of iterations is
limited at 220. This is in contrast to the mixing time of the
lazy random walk on the hypercube, despite its exponentially
large state space, is O(k log k) [17].

As an alternative for the underlying Markov chain, we
considered Q to be a variant of random walk on the
nearest-neighbor graph. This is the random walk in which
a codeword jumps to one of its closest neighbor (in terms
of Hamming distance). For example, the (15, 11) Hamming
code has 35 codewords of Hamming weight 3; hence each
codeword jumps to one of its 35 neighbors uniformly at
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Fig. 9. Performance of Metropolis decoders for a (40, 20) irregular LDPC
code over BSC(0.04)

random (with laziness parameter 0.01). The performance
of this nearest-neighbor walk can be seen to significantly
outperform the hypercube random walk in Fig.s 8 and 9,
and especially so for the LDPC code. The solid curve in
Fig. 9 shows the error probability of the Metropolis decoder
that runs over the third-level nearest-neighbor random walk,
with beginning state chosen as the first k bits of the output.
The error probability converges to the target of twice the
MAP error probability very fast and even approaches the
MAP error probability. This decoder is exponentially better
than both the naive hypercube Metropolis decoder and the
rejection sampling decoder in Section II.

If the underlying distribution in a Markov chain is highly
concentrated on a few values (i.e. is highly non-uniform), the
chain tends to get stuck in states which are local optima, lead-
ing to many rejections of proposed states and subsequently a
prohibitively large mixing time. Temperature control methods
counter this by making the accept/reject decision at each step
based on the likelihood ratio pαt(y|m) where 0 ≤ αt < 1.
Typically, αt is gradually increased to 1. Thus, in the initial
steps of the Markov chain, there is a higher probability of
acceptance and more of the solution space can be explored,
thereby helping avoid local optima. Another approach which
was used for example in [14] was to fix an optimal α and use
it throughout the algorithm—so αt = α for all t. Out of the
α values considered, α = 0.25 appeared to be the optimal in
terms of speed of convergence, as seen in Fig. 10

Another method to decrease the number of iterations is at
each iteration to take L > 1 samples from the underlying
Markov chain Q, and keep the most likely one among those
samples as the new state m′. The standard accept/reject step
is then performed for the new state m′. This process, which
is referred to as the parallel-Metropolis, can be viewed as
running Metropolis sampling on a new chain Q̃ derived from
Q, where

Q̃(m,m1)

=
∑

m2,...,mL

L∏
i=1

Q(m,mi)
P(p(m1|y) ≥ p(mk|y), k ∈ [2 : L])

| argmaxj p(mj |y)|
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Fig. 10. Effect of temperature control on hypercube Metropolis decoder for
a (40, 20) irregular LDPC code over BSC(0.04)

and argmaxj p(mj |y) := {j : p(mj |y) ≥ p(mk|y), k ∈
[1 : L]}. Since Q̃ is not necessarily symmetric, Metropolis-
Hasting update should be used in the accept/reject step to
have the convergence guarantee. Even when Q is fixed to
the nearest neighbor random walk, however, Q̃ simplifies up
to a constant to

Q̃(m,m1) ∝
∑

m2,...,mL
∈N(m)

P(p(m1|y) ≥ p(mk|y), k ∈ [2 : L])

| argmaxj p(mj |y)|
,

which is still difficult to compute, where N (m) is the set
of nearest neighbors of the codeword x(m). For the (40, 20)
LDPC code and BSC with p = 0.04, we consider the third
level nearest neighbor random walk as the chain Q, and par-
allelize Metropolis decoding by using L samples at each step.
It is experimentally shown that using Metropolis update in
the accept/reject step under the symmetric Q̃ assumption has
the same performance as using the ideal Metropolis-Hasting
update. So, we continue with this assumption to obtain
the BLER performance of the parallel-Metropolis decoder
for different L values shown in Fig. 11. For comparison,
the performance of the belief propagation (BP) and MAP
decoders are included. The results have several implications.
First, parallel Metropolis can replace time complexity by
space complexity. Second, the Metropolis decoders built upon
the nearest neighbor walk outperform the BP decoder, which
is not be able to achieve the BLER of the MAP decoder.
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