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Abstract— Multiple description coding, in general, requires
separate codebooks for each description. Motivated by the
problem of sparse linear representation, we propose a simple
coding scheme that recursively describes successive description
errors using the same codebook, resulting in a sparse linear
combination of codewords that achieves the Gaussian rate dis-
tortion region. This result, in particular, provides an elementary
proof of successive refinability and additive refinability of white
Gaussian sources.

I. INTRODUCTION

Recently, recovery of sparse signals via linear measure-

ments has drawn much attention in the literature. Most

notably, Candes and Tao [2] and Donoho [5] showed that

sparse signals can be reconstructed efficiently from an un-

derdetermined system of linear equations, opening up the

exciting field of compressed sensing. There have been several

follow-up discussions that connect compressed sensing and

information theory; we refer the reader to [13], [1], [8], [16],

[19], [10] for various aspects of the connection between two

fields.

In this paper, we consider a problem that is, in a sense,

dual to the problem of sparse signal recovery (in particular,

the problem of sparse signal position recovery):

How (well) can one represent a signal as a sparse

linear combination of codewords in an overcom-

plete dictionary?

More formally, let C = {φ1, φ2, . . . ,φM} be a collection

of M vectors in R
n. We call C a dictionary (or a codebook)

of size (M, n) and call φm, m = 1, . . . , M codewords.

For each y ∈ R
n, we define its best k-linear combination

ŷk as

ŷk = x1φm1
+ x2φm2

+ . . . + xkφmk
,

where x1, . . . , xk ∈ R and m1, . . . , mk ∈ {1, 2, . . . , M} are

chosen to minimize the mean squared error distortion

dk(y) = ‖y − x1φm1
+ x2φm2

+ . . . + xkφmk
‖2.

We then define the k-sparse distortion d∗k(C) of the codebook

as

d∗k(C) = sup
y:‖y‖2≤1

dk(y),

where the supremum is taken over all n-vectors y in the

(closed) unit sphere.
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Clearly, if M < n, then d∗k(C) = 1 for any dictionary C
of size (M, n). Hence, we consider the case M ≥ n, that is,

the case in which the dictionary is overcomplete.
The main result of this paper is the following:

Theorem 1. Let Mn be a sequence of integers with

lim inf
n→∞

log Mn

n
>

1
2k

log
(

1
D

)

for some 0 < D < 1. Then there exists a sequence of (Mn, n)
dictionaries Cn such that

lim sup
n→∞

d∗k(Cn) ≤ D.

Note that D ≥ 1 is trivial, for a dictionary with a single

element φ1 = 0 would suffice. Also note that the case

k = 1 is equivalent to the standard Gaussian rate distortion

theorem [14], [4, Section 10.3.2]. Indeed, we will show

that a simple iterative representation method, which is a

special case of successive refinement coding [7], achieves

the desired distortion level. The basic idea is to represent

the signal, the error, the error of the error, etc. recursively.

This representation method, incidentally, gives a very simple

proof of successive refinability [7] and additive successive

refinability [15] of white Gaussian sources under the mean

squared distortion.

II. PROOF SKETCH OF THEOREM 1

Define R(δ) = (1/2) log(1/δ) for 0 < δ < 1 and let

R > R(δ). We recall that a random codebook (dictionary)

C1 of size (2nR, n) with codewords φ
(1)
j independently

generated according to N(0, 1/n) can asymptotically cover

the surface of the unit sphere with expected distortion δ; see,

for example, [12]. In particular, any y in the unit sphere can

be represented as

y = ŷ1 + z1 =
√

(1− δ)||y||2φ(1)
m1

+ z1 (1)

for some φ(1)
m1

∈ C1 and for some z1 with ‖z1‖2 ≤ δ‖y‖2
with high probability. Now consider another codebook C2 =
{φ(2)

1 , . . . , φ
(2)

2nR} generated independently from C1, but in

the exactly same manner. Then by using (1) once again, z1

can be represented as

z1 = ẑ1 + z2 =
√

(1− δ)||z1||2φ(2)
m2

+ z2

for some φ(2)
m2

∈ C2 and for some z2 with ‖z2‖2 ≤ δ‖z2
‖ with

high probability. In general, we can consider a sequence of

randomly generated codebooks C1, C2, . . . , Ck such that the

error zj after stage j, j = 1, . . . , k − 1, can be represented

as

zj = ẑj + zj+1 =
√

(1− δ)||zj ||2φ(j+1)
m2

+ zj+1
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for some φ
(j+1)
mj+1 ∈ Cj+1 and for some zj+1 with ‖zj+1‖2 ≤

δ‖zj‖2 with high probability.

Substituting zj recursively, with high probability

y =
√

(1− δ)||y||2φ(1)
m1

+
√

(1− δ)||z1||2φ(2)
m2

+ . . . +
√

(1− δ)||zk−1||2φ(k)
mk

+ zk

with ‖zk‖2 ≤ δk. Thus, the super-codebook

C = C1 ∪ C2 ∪ · · · ∪ Ck

of size k2nR can represent each y with distortion ≤ δk, with

high probability.

Now the above coding technique can be augmented in

two directions by a result of Wyner [17] on sphere covering,

which states that for n sufficiently large and R > R(δ), there

exists a codebook C∗ of size (2nR, n) such that C∗ uniformly
covers the entire unit sphere with distortion δ. Incorporating

Wyner’s lemma with the above iterative coding scheme, we

see immediately that every y in the unit sphere has the k-

spare linear representation

y = φm1
+
√

1− δφm2

+ . . . +
√

(1− δ)k−1φmk
+ zk

with ‖zk‖2 ≤ δk and φm1
, φm2

, . . . ,φmk
∈ C∗. (Recall that

after stage j, the resulting error is in the sphere of radius

δj/2, allowing recursive application of the same codebook

C∗, scaled by δj/2.) Taking D = δk and noting that

R(δ) =
1
2

log
(

1
δ

)
=

1
2k

log
(

1
D

)
,

we have the desired proof of the theorem.

III. DISCUSSION

The proof in the previous section leads to a simple proof

of successive refinability of white Gaussian sources. Indeed,

because the (expected) distortion after stage j is given by δj ,

while the total description rate is (j/2) log(1/δ), the rate-

distortion tradeoff for each stage traces the Gaussian rate

distortion function R(D) = (1/2) log(1/D). (Recall that

we don’t need to describe the scaling factors 1,
√

1− δ, . . .,
since these are constants independent of n. Furthermore, the

same argument easily extends to the case in which incre-

mental rates R1, R2, . . . , Rk are not necessarily identical;

one can even prove the existence of nested codebooks (up

to scaling) that uniformly cover the unit sphere. Finally, we

can use the law of large numbers to see that lossy source

coding of a white Gaussian source is asymptotically (in

n) equivalent to lossy source coding of a source that is

generated uniformly on the sphere. Hence, we have shown

the successive refinability of white Gaussian sources.

Operationally, the recursive coding scheme for successive

refinement (i.e., describing the error, the error of the error,

. . . ) can be viewed as a dual procedure to succesive cancel-
lation [3], [18] for the Gaussian multiple access channels.

For both cases, one strives to best solve the single-user

source [channel] coding problem at each stage and progresses

recursively by subtracting off the encoded [decoded] part of

the source [channel output] y. This duality can be comple-

mented by an interesting connection between the orthogonal

matching pursuit and the sucessive cancellation [11] and the

duality between signal recovery and signal representation.

Note, however, that the duality here is mostly conceptual

and cannot be made more precise. For example, while we can

use a single codebook for each of k successive descriptions

(again up to scaling) as shown above, one cannot use the

same codebook for all k users in the Gaussian multiple access

channel. If the channel gains are identical among users, it is

impossible to distinguish who sent which message (from the

same codebook), even without any additive noise!

While this paper has studied the case in which every

successive combination of descriptions is good, one can in

general consider the problem of multiple descriptions [6],

in which every (not necessarily successive) combination of

descriptions should be good (with some tradeoff). As a partial

step to solve this problem, one can show that there exists a

multiple description codebook that uniformly covers the unit

sphere under no excess marginal rate case [20].

Finally, Theorem 1 shows that the k-sparse linear repre-

sentation from a dictionary of size (2nR, n) can achieve the

distortion 2−2kR. Is this the best distortion? The answer is

positive and it can be shown by tweaking the converse proof

of the rate distortion theorem. The details will be reported

elsewhere [9].
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