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M X" Y" M
— " Encoder > p(ylx) » Decoder —P>
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e “Baseband” picture of communication
* Tradeoff between R = k/n, P, = P(M #+ M), and n

e Capacity C: maximum R such that P, — 0as»n — oo

Channel coding theorem (Shannon 1948)

C=maxI(X;Y)
p(x)
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Gaussian channel
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e Simple model for wireless, wired, and optical communication
* Average power constraint Y, x;(m) < nP

e Channel quality measured by SNR = g*P

Channel coding theorem (Shannon 1948)

C= % log(1 + SNR)




Capacity of the Gaussian channel (Forney-Ungerboeck '98)
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How to achieve the capacity?

e Random coding and joint typicality decoding
(Shannon 1948, Forney 1972, Cover 1975)

e Find a unique m such that (x" (m), y") is jointly typical w.r.t. p(x, y)

e Successful w.h.p.if R < I(X; Y)
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The other half of the story

e Average performance of randomly generate codes is good
» Probabilistic method: there exists a good code
» Most codes are good
» Works for any alphabet

» “All codes are good, except those that we know of”
(Wozencraft-Reiffen 1961, Forney 1995)

e Coding theory
» Algebraic: Hamming, Reed-Solomon, BCH, Reed-Muller, polar codes

» Probabilistic: LDPC, turbo, raptor, spatially coupled codes

¢ Coding practice
» 4G LTE: Turbo and convolutional codes
» 5G NR: LDPC and polar codes
» Everything is binary
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M Binary cy .| Coded X"
ok ! ECC modulation !
X Encoder E
L . k N k
e Communication rate: R = (code rate) x (modulation rate) = N n =—
n n
e BPSK: X = {-VP,+VP}and N = n
0+— +VP
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¢ Sometimes multiple, independent (binary) codewords are modulated together

¢ We decompose coded modulation into two operations
» Symbol-level mapping: X = ¢(U,, U,, ..., U;), U, € {£1}
» Block-level mapping: U} = w(C),1=1,...,L
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Multiple layers and symbol-level mapping

U,
b, 1 0
X
¢ > %%
10 1 01 00 b,b,
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e Natural mapping: X = a(U, +2U,)
e Gray mapping: X = a(U, U, + 2U,)

¢ Similar mapping ¢ exists for higher-order PAM, QPSK, QAM, PSK, MIMO, ...

u,u, +2U
Xapsk = N/I_Jexp<i7ﬂ( ! 1 2)>

e Can be many-to-one (still information-lossless) m

. . 01
¢ Caninduce nonuniform X (Gallager 1968)
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¢ Broadcast channels (Cover 1972), fading channels (Shamai-Steiner 2003)

e Successive cancellation decoding:
» Find a unique m, such that (1, (m,), y") is jointly typical: R, < I(U,; Y)
» Find a unique m, such that (u; (m,), u, (m,), y") is jointly typical: R, < I(U}; U,, Y)
» Combined rate:
R +R, < I(U;Y,U,) +I(Uy; Y)
=I(U,, U,; Y) = I(X; Y)

» Regardless of ¢ or the decoding order

e Multi-level coding (MLC): Wachsmann-Fischer-Huber (1999)
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Vertical superposition coding

U,

Uy

* Single codeword of length 2n: C*" = (C", C2"))

C"w Ul c Uy

n+l

¢ Treating the other layer as noise:

» Find a unique m, such that
(u]'(m),y") is jointly typical and (u;(m),y") is jointly typical
» Successful w.h.p. if
R<I(UsY)+I(Uy; Y) < (U, Uy Y) = I(X; Y)

e Bit-interleaved coded modulation (BICM): Caire-Taricco-Biglieri (1998)
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Think outside the block: Sequence of messages M(j) mapped to C*"(j)

Block 1 2 3 4 5 6 7
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Sliding-window decoding: R < I(U;; U,, Y) + I(U,; Y) = I(X; Y)

Block Markov coding: Used extensively in relay and feedback communication

Sliding-window coded modulation (SWCM): Kim et al. (2016), Wang et al. (2017)
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Multiple-antenna transmission

Consider the signal layers U, and U, as antenna ports: X = (U,, U,)

Bell Laboratories Layered Space-Time (BLAST) architectures:

» Horizontal: H-BLAST (Foschini et al. 1999/2003), also known as V-BLAST

» Diagonal: D-BLAST (Foschini 1996)

» Vertical: Single-outer code (Foschini et al. 2003), but shouldn’t this be “V-BLAST"?

Signal layers can be far more general than antenna ports

Coded modulation can encompass MIMO transmission

U, (((o)))
Us
o (i)
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R, < I(Uy Y)
R <I(U; U,,Y)

Short, nonuniversal

Vertical

M
M

Bit-interleaved coded
modulation (BICM)

R<I(U;Y) +1(Uy; Y)

Other layers as noise

Diagonal

M

| oM

Sliding-window coded
modulation (SWCM)

R<I(U;U,,Y)+1(Uy Y)
=1(X;Y)

Error prop., rate loss
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Application: Interference channels
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Low-complexity (implementable) alternatives

Pl x,)

X, PO,lx, %)

e P2P decoding
» Treating interference as (Gaussian) noise: R, < I(X;; ;)

» Successive cancellation decoding: R, < I(X,; Y;), R, < I(X;; Y,|X,)
e + rate splitting (Zhao et al. 2011, Wang et al. 2014)

¢ Novel codes
» Spatially coupled codes (Yedla, Nguyen, Pfister, and Narayanan 2011)

» Polar codes (Wang and Sasoglu 2014)
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Sliding-window superposition coding (Wang et al. 2014)
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e Sliding-window coded modulation for sender 1 (without alphabet constraints)



Sliding-window superposition coding (Wang et al. 2014)
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e Sliding-window decoding
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e Sliding-window decoding
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e Successive cancellation decoding



Sliding-window superposition coding (Wang et al. 2014)
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e Sliding-window decoding
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e Successive cancellation decoding
R, <I(Xy; Yj|U2)



Sliding-window superposition coding (Wang et al. 2014)
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e Sliding-window decoding
e Successive cancellation decoding
R, <I(Xy; Yj|U2)
R, < I(Uy Y)) + I(Uy; Y;| U,, X,)
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e Every corner point: different decoding orders

e Every point: time sharing or more superposition layers




Sliding-window superposition coding (Wang et al. 2014)

M(G-1) 04
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e Every corner point: different decoding orders
e Every point: time sharing or more superposition layers

e Extension to Han—-Kobayashi (Wang et al. 2017)




Gaussian channel performance (Park-Kim-Wang 2014)
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System-level performance (Kim et al. 2016)
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Cooper’s Law

“Cooper’s law”
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* Gain over the past 45 years = 10° o nw.

sysNBS

» Spectral efficiency #: x 25
» System bandwidth W .:x 25

» # of base stations Ny: x 1600 (spatial reuse of frequency)
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¢ Coded modulation as superposition coding

» Simple and unifying picture

» Framework for new coded modulation schemes
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e Open problems

» Finer analysis: Single-shot method (Verdu 2018)
» Shaping and dependence (a la Marton): CCDM (Bocherer et al. 2015)

e To learn more

» Kramer and Kim (2018), “Network information theory for cellular wireless,” in Information
Theoretic Perspectives on 5G Systems and Beyond, eds. Shamai, Simeone, and Maric

» Wang et al. (2017), “Sliding-window superposition coding: Two-user interference
channels,” arXiv:1701.02345

» Kim et al. (2016), “Interference management via sliding-window coded modulation for

n

5G cellular networks,” IEEE Commun. Mag.



