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Abstract- We derive bounds on the error exponent of the
AWGN channel with AWGN-corrupted feedback. The bounds
appear to be new even for transmission at zero rate. Our
approach is applicable to the derivation of upper bounds on the
error exponents in various other scenarios involving channels
with feedback.

I. INTRODUCTION

The fact that noise-free feedback can dramatically improve
the reliability of a memoryless channel was pointed out by
Shannon in [7]. For the AWGN channel this fact was shown
in [6] to be true in the strong sense that noise-free feedback
allows for schemes under which the probability of error
diminishes not only super-exponentially (i.e., infinite error
exponent) but, in fact, double-exponentially with block length
(at any rate below capacity). Zigangirov in [8] subsequently
showed that, in fact, the error can be made to diminish at a
rate of any number of exponential levels.
Much less explored and understood is the way in which

noise in the feedback link affects the achievable reliability
(cf. [4], [5] for recent exceptions). In this extended abstract
we restrict attention, for concreteness, to the AWGN channel
with AWGN-corrupted feedback, and derive bounds on its
error exponent. After describing the channel in Section II,
we present a family of upper bounds on its error exponent
in Section III. The bounds are obtained via a change of
measure argument. The idea is to change the joint law of the
noises in the forward and the backward links into one under
which the noisy feedback is useless. An upper bound on the
error exponent of interest is then given by the error exponent
under the latter law (which is a classical channel coding error
exponent) plus an additional 'penalty' term stemming from the
change of measure. Section IV presents another upper bound
on the same exponent via a 'genie-aided' scheme. In Section V
we discuss the zero-rate and small feedback noise regime. We
close in Section VI with a description of the way our bounds
extend to the non-Gaussian and to the discrete settings.

Throughout log will denote the natural logarithm, and
capacity and rate will be in nats per channel use.

II. THE CHANNEL

Except in Section VI, we assume an AWGN channel

where Xi, Yi are, respectively, the channel input and output,
and Ni is the noise in the forward link. Let further Zi denote
a noisy version of Yi,

zi = Yi + wi, (2)
where Wi is the noise in the backward link. Encoding here is
of the form

(3)

where m C {, ... 2nR} is the message. In other words, the
encoder has noisy feedback. Note that, equivalently, we can
consider the encoding to be of the form

Xi(Tn, Vi-1),

where

(4)

Vi = Ni + Wi, (5)

since, given Xt, there is a one-to-one transformation from Zt
to Vi. The forward and backward noise processes, {Ni} and
{Wi}, are independent and white, with variances

(6)
Let ENoisyFB (P, 2, R) denote the error exponent associated
with this setting (where the first argument stands for the power
constraint).

III. UPPER BOUNDS ON ENOISYFB (P, £2, R) VIA CHANGE
OF MEASURE

Let ENOFB (s, R) denote the regular error exponent of the
AWGN channel (in the absence of feedback) at SNR level s.
To state the main result of this section, we let (N, V) be a
generic pair of random variables distributed as the pair (Ni, Vi)
of (5) and (6), and we let (N', V') be a pair of independent
Gaussians with N' - JV(O, a2) and V' - JV(O, 1 + c2). Let
further fN,v and fN',v' denote the respective densities of
(N, V) and (N', V'). Finally, let A*2, 2 denote the Fenchel-
Legendre transform (cf., e.g., [3]) of the random variable
log fvN',V( V') We can now present the main result of this
section. The proof involves changing the law of the noise

d
components in the original channel from (Ni, Vi) (N, V) to
(Ni, Vi)=(N', V'). The feedback in the latter case is useless,
so the associated error exponent is ENOFB.

Theorem 1: For every or2 > 0,

Yi = Xi + Ni, (1) ENoisyFB (P, E2,R) < -y + ENOFB (P/ur2, R)
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(7)

Xi = Xi (Tn , Z'-') .

N, ,V(O. 1) . W, , V(O. E2).
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for the (unique) ai solving

A2 2 (7) = ENOFB(P/I2,R)
in the region ai > D (fN',v'f/JN,v) where

D (fN', V' ffN,V) =
1 [uJ2 _ £2+ ,J2£2 + 1

2 L 2
-log[r2 2(1 + £2)] (8)

this end, let RNOFB (S, e) denote the "rate-reliability" function
of the AWGN channel in the absence of feedback, i.e.

RNOFB (S, e)

IR solving ENOFB(S, R) = e for 0 < e < ENOFB(S,O)
lo for e > ENOFB (S, O)

(15)

Note, in particular, that

Note that the theorem gives a family of bounds, indexed by
(J2, which should be viewed as a parameter to be optimized
over for a given value of R.
The Fenchel-Legendre transform A*2 2 can be explicitly

obtained. Towards this end note that

fN,v(nr v) y exp{ (12+2>) 2nv+v2 (9)

and

RNOFB (S, 0) =
I

log(1 + s).
2

(16)

Theorem 1 can be stated equivalently as follows.
Theorem 2: For every or2 > 0, we have that

ENOiSYFB (P, E2, R) is upper bounded by the following
curve, which is given in parametric form by

[RNOFB (P/u2, A*2,,2 (p)) A *2,2 (7) + -0]
where a is varied in the range

(17)

1 ~~~~-/2 /2
-

21r2J2(+£2 exp {- -

J + 1+2 }2wV-2(1 +~2) ~ L+1+ j10
(10)

- log[2 2(1 + £2)]+2
2 2 _2 2 2

E2

2u1r + V2N V' V >2 1
2 (7 VI1+2+ 2 2]

Since both N- and V are standard Normal random

ables, it is evident from (11) that

A2, 2(2Y)2,u2 (2'y + log[2£2(1 + £2)]),

where 2, 2 is the Fenchel-Legendre transform of

(72 + ,J2£2 _ £22

,2

2 JAB+B £2
A~~~~~~~~, (13)

1 [au2 _2 + F +12(1 + c2)]<
2 E~2 log[or 2(1 <

(18)
and Ymax,o2 is the value of y for which A*2 2(2)
ENOFB (P/uI, 0).
Though the functions ENOFB and RNOFB are unfortunately
unknown, known bounds on these functions can be combined
with the theorems above to obtain concrete bounds, as illus-
trated in the following corollaries.

Corollary 1: For every or2 > 0, the following curve,
(11) in parametric form, is an upper bound to the curve of

ENoisyFB (P, 2E)

varn-

(12)

(13)

2A 2 ~2Q

1 log(l + (P/u2)), A*2u2 (a) +a

(19)
where a is varied in the range given in (18) and '- max2 iS
the value of T for which A*2 2 (27)2u2.

Proof: The corollary follows by further bounding the bound
in Theorem 2 using

A and B being independent standard normal random variables.
Fortunately A2 72 can be derived in closed form

Ag2,92 (a)= (-2-a(1+2+ 2(21))

+14+a2(E4(uJ2 1)2 + (,J2 + 1)2+ 2£2(1+ (J4))) + Ix

-2 +V4 +2c(44(I -J2)2 + (1+ r2) 2 + 2E2(1+ (J4))
,-22 C2

(14)
which, taken with (12), gives the explicit form of A *

2(j)

While we have obtained A*2 U2 (-) explicitly, solving for
the a that satisfies A2,u22-) ENOFB (P/u2, R), namely the

inverse function of A*2 2, is elusive. It is therefore useful to
express the bound of Theorem 1 in parametric form. Towards

ENOFB (S, R) < Esp(s, R) < [1

(cf., e.g., [1]) which implies also

R

log(1 + s)

1 2e-
RNoFB (S, e-) log(1 + s) Ii -~ Q.E.D

2 s

(20)

(21)

Figure 1 shows the curves of Corollary 1, for the case of
E2 = 1, and several values of or. It is seen that there is no one

value which dominates for all values of R, although there are

values that are dominated for all values of R at the relevant
range [0, C] (blue curve, corresponding to or = 0.8).

Another immediate consequence of Theorem 1 and (20) is
Corollary 2:

SflP £°)2 < 22E-NoisyFB(P, E 2u2<~+ ~ (22)
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Let P'l. denote the probability of error of the coding scheme
associated with Pe m, when operating in the useless feedback
setting. Thus, letting fN/l,V/i and fNl,V denote the respective
densities of (N", V") and (Nl, V1), and denoting

3t
2

1

0.1 0.2 0.3 0.4

Fig. 1. Upper bounds on ENO,SyFB (1, 1, R). The purple, red, black, yellow,
and blue curves are the parametric bounds of Corollary 1 for the respective
values of a: 2, 1.5, 1.2, 1, and 0.8. The green curve is the bound of Corollary
3. The green line (higher of the two) is the straight line bound on the sphere
packing bound (inequality (20)), applied to the bound of Proposition 1. The
lower green line, for comparison, is the straight line bound on the sphere
packing bound of the same channel with no feedback. This line intersects the
x-axis at the capacity of this channel, 2log 2 0.347 nats. Thus, the region

where the bounds can be useful is 0 < R < 2 log 2.

for any ur2 > 0 and a satisfying

A*22 (-) > 22 (23)

B={(= ,n ') -= log V <

we have

Pe'm = Pr ((N", V") e Am)
j fzNi,vl (nI, vl)dnlrdv'
Am

=X fNlt ,vll (nl, vl )dnl dvl
TmnB-,

JAnB,

< elaX-
AmnB,

"AnBcs

YB

fNll,v"l (n', v')dn'dv'

fNl,vl (n', vl)dnldv'

fNlv,Vla (nl, vl)dnldv'

2 22 2 22( 2]and for which -y> 2± 2-F+1 1 log[U2 2(1 + 2)1
22 2

For another working point, note that by choosing
(72 = p/(e2 - 1) (smallest value of (72 for which
ENOFB (P/(72, R) 0) in Theorem 1, we obtain:

Corollary 3: For any R > 0,

ENoisyFB(P E2, R) <

P
(1+ £2) +1 1 P2(1 + 2)

s~~-__log e2R (24)

The bound of Corollary 3, for the case E2 = 1, is plotted
in Figure 1 (green curve). Note that, as it should, this curve

passes through the endpoints of the curves of Corollary 1. We
conclude this section with the proof of Theorem 1.
Proof of Theorem 1: Fix a particular coding scheme, for the
setting of (1)-(6), operating at average power upper bounded
by P. Let P,,m denote its probability of error when transmit-
ting the message m. In other words, for block length 1,

Pelm = Pr ((N', V') C Am): (25)

< elaX- fNl vl (nl, vl )dnldvl

+ J fNi ,va (nr, vl)dnlrdvl

= e'l Pr ((N', V') C Am) + Pr ((N"1, V"1)
= el'Pelm + Pr ((N"1, V"1) C Bc)

Averaging the two sides of (30) over m gives

Pe < e' Pe + Pr ((N"1, V"1) C Bc)

or, equivalently,

e--l7Pl - c-la Pr ((N11, V/1) C Bc) < Pe.

C Bc)
(30)

(31)

(32)

Assuming a was chosen such that Pr ((N"1, V"1) C Bc) < P',
(32) is, in turn, equivalent to

-- log Pe < a

implying

T log [P Pr ((Nl, V"1) Bc)] (33)

Am denoting the error set

Am = {(n',vl): m m}, (26)

where m in (26) denotes the decoder estimate under the fixed
coding scheme and the realized values (n', vl) when encoding
for the message m.

Consider now the following scenario of communications
with useless feedback:

Y ='=X + Ni', Xi = X(mr,V/'-), (

where {Ni'} and {Vi'} are independent white noises with

Ni/_A/'(O,g2),Vi _ A/(0,I + E2).(

log P6 < a-

I
log [P.l in (P, (J2, R)-Pr ((N1, V'1) C Bc)], (34)

where P/lin (P, 2, R) denotes the minimum probability of
error achievable with block-length I in the useless feedback
setting of (27) and (28).1 Since, by definition of ENOFB,

lim --log Pmin (P, or', R) = ENOFB (P/lJo, R)
loo~C) I(27)

(35)

'Note that we have used here the fact that Vn d V'n, which implies that
the power used by the scheme in the useless feedback setting is identical to

(28) that used in the original setting.
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it follows that

ENOiSYFB (P, 2 , R) < a + ENOFB (p/U2, R) (36)

for a sufficiently large that

lim inf -log Pr ((N"1. V"1) C B) > ENOFB (p/72, R).

(37)
The lim inf in (7), however, is in fact a limit we can explicitly
characterize. Indeed, by the definition of B, in (29),

Pr ((N"1, V"1) E Bc) (38)

= Pr (!log fN(1,V/1(N, V/1) >v y) (39)
\\ fNl,vl(Nll,V1) >(9

=Pr log f> V(Nf',Vq') (40)

thus, for a > E [log fN,v(N'IV]= D (fNI,v/ fN,v),
Cramer's theorem (cf. [3, Th. 2.2.3]) implies

lim- logPr ((N"1, V"1) C Bc) = A*), (41)

where A* is the Fenchel-Legendre transform of the random
variable log V (N',V') It follows by substitution of (41)fN,V(NI,Vl)
in (37) that (7) holds for all a > D (fN',V' fN,V) satisfying
A* (-) > ENOFB (P/ 2, R) and, consequently, by the continuity
and strict monotonicity of A* (a), for the value of a satisfying
A* (a) = ENOFB (P/U2, R). Q.E.D.

IV. UPPER BOUND ON ENOISYFB VIA GENIE
Consider a genie-aided scheme where encoding is allowed

to depend on the Vi sequence non-causally, i.e., to be of
the form Xi = Xi(m, VI) instead of Xi(m, Vi- 1). Assume
further that the decoder is given access, in addition to Yn,
also to VI, i.e., m = m(Y', VI). By conditioning on V1 we
then see that the capacity and error exponent for this setting is
exactly that for the standard AWGN channel with no feedback
and noise variance equals to Var(N,|V) = Var(Ni|N +-Wt)

F2
2+1± Of course, the capacity and error exponent for this

problem upper bound those of our problem, since here encoder
and decoder are supplied with more information. Thus:

Proposition 1:

ENoisyFB(P, 2, R) < ENOFB (P 2 R) (42)
Simple as the argument leading to it may be, the bound of
Proposition 1 is, in many cases, tighter than those of the
previous section (see Figure 1 for a comparison in the case
E2 = 1). Furthermore, the bound allows us to conclude that
the noisy feedback (at least insofar as the fundamental limits
go) can be no more useful than a power increase of P7 2 in
the absence of feedback. Furthermore, when combined with
the sphere packing bound on ENOFB, Proposition 1 gives

ENOiSYFB (P, 20)°< P2
£

implying that ENoisyFB (P, E2 0) increases with small E es-
sentially no faster than 2P2. The section that follows shows

that this bound is in fact tight. Finally, we note that the
bound of Proposition 1 can potentially be tightened by denying
the decoder of the genie-aided scheme access to V1. ENOFB
on the right-hand side of (7) can thus be replaced by the
error exponent of the corresponding dirty paper problem [2].
Unfortunately, it is as yet unknown whether the latter is strictly
smaller than ENOFB-

V. ZERO RATE AND SMALL FEEDBACK NOISE
In this section we briefly address the asymptotic regime

of zero rate and feedback noise of very small variance.
Specializing Inequality (43) to this regime yields

(44)lim sup £ * ENoisyFB (P, 20 < P
F--~o - 2

We shall next show that the RHS of the above is achievable
in the two-message setting. Denoting the two-message error
exponent by Ebinary,NoisyFB (P, E2) we shall thus show that

lim inf 2 Ebinary,NoisyFB (P, £2) > 2
F--~~~~o - ~~2 (45)

To this end, we consider the following scheme for communi-
cating one (unbiased) bit: Assuming that the value say '1' is
to be communicated, the channel input is

Xi = a- Vi 1 = a- Ni 1-Wt-
The channel output will then be

Y, = Xi + Nt = a- Nt + N - Wi.

(46)

(47)
If '0' is to be communicated then a will be replaced by -a.
The decoder computes Sn2=, 1 Yi and decides that a
'1' was sent if Sn, > 0, otherwise it decides on '0,. Thus,
conditioned on '1' being sent,

n

Sn = Yi
i=l

n-1

= na + Nn- wi
i=l

(48)

which implies

pe= p ( ,-n na <

VA/1 I)(-)2Pe~~n

(A1+ (n-1)£2F
w a2 t

r-. exp t-n-)

while the average power is

na 1

A/1 + (n~- 1~)£2

(49)

E[(X,)2] = a2 + 1 + £2.
We thus obtain

Proposition 2: For all a > O, E > 0

a 2
Ebinary,NoisyFB(a2 + 1 + 2,~E2)> 2E2

(50)

(51)
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and (by operating only fraction a of the time) for any 0 <
a <1,

2 > ~a2Ebinary,NoisyFB (a(a2 + 1 + 2), £2) > a2E2 (52)

We can now use this proposition to prove (45). Proposition 2
implies that for P > 1,

liminf E EbinaryNoisyFB (P ) > (53)

and, consequently, for any 0 < a 1 and Q > 1,

lim inf 2 Ebinary,NoisyFB(aQ, ) > aaQ (54)

It follows that for any P > 0 and 0 < a < min{1, P}, by
taking Q = P/a in (54),

lim inf E2 iar NOsys 2:) >
P a

(55)ip rn(4) 2EbinaryNoisyFB(P2>

implying (45) when taking a -*> 0.
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VI. EXTENSIONS

In order to give a reasonably detailed and self-contained
description, we have chosen to restrict the exposition to the
case of the AWGN channel with AWGN-corrupted feedback.
Our approach and techniques, however, are applicable more
generally.
One straightforward generalization is to the case of non-

Gaussian channels. It is readily verified that the proof of
Theorem 1 carries over to the case where the noise components
are generally distributed. More specifically, if instead of (6)
we have Ni - fN and Wi - fw that are independent (and, as
before, Vi = Ni + Wi), we can take (N', V') to be a pair of
independent variables where N' can be arbitrarily distributed
and V' V. Then we would have

ENoisyFB (P, fN, fw, R) <_ + ENOFB (P, fN', R) (56)

for any ai > D(fN',v'qfN,v) for which A 2,527) >
ENOFB (P, fN', R), where A*2 52 is the Fenchel-Legendre
transform of the random variable log fN',V' (N',V') HerefN,V(NI,Vl)
ENoisyFB (P, fN, fw, R) denotes the error exponent at power
level P of the channel of interest (namely where Ni
fN and Wi - fw) and ENoFB (P, fN', R) of the channel
with no feedback and memoryless additive noise components
distributed as fN,. Note that the restriction to V' such that
V = Vi is to guarantee that the power used by the scheme
in the useless feedback setting is the same as in the original
setting. A similar bound can be obtained for finite-alphabet
channels with modulo-additive noise (where densities would
be replaced by PMFs). For this case, in the absence of power
(or cost) constraints, the restriction V Vi is no longer
required. The approach behind the bound of Section IV can
also be extended to the non-Gaussian and discrete cases.

These and other extensions will be detailed elsewhere.
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