
Article

Attack Algorithm for a Keystore-Based Secret Key
Generation Method

Seungjae Chae 1 , Young-Sik Kim 2,* , Jong-Seon No 1 and Young-Han Kim 3

1 The Department of Electrical and Computer Engineering, Institute of New Media and Communications
(INMC), Seoul National University, Seoul 08826, Korea; chae950104@ccl.snu.ac.kr (S.C.);
jsno@snu.ac.kr (J.-S.N.)

2 The Department of Information and Communication Engineering, Chosun University, Gwangju 61452, Korea
3 The Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla,

CA 92093, USA; yhk@ucsd.edu
* Correspondence: iamyskim@chosun.ac.kr; Tel.: +82-62-230-7032

Received: 19 January 2019; Accepted: 20 February 2019; Published: 23 February 2019

Abstract: A new attack algorithm is proposed for a secure key generation and management method
introduced by Yang and Wu. It was previously claimed that the key generation method of Yang and
Wu using a keystore seed was information-theoretically secure and could solve the long-term key
storage problem in cloud systems, thanks to the huge number of secure keys that the keystone seed
can generate. Their key generation method, however, is considered to be broken if an attacker can
recover the keystore seed. The proposed attack algorithm in this paper reconstructs the keystore seed
of the Yang–Wu key generation method from a small number of collected keys. For example, when
t = 5 and l = 27, it was previously claimed that more than 253 secure keys could be generated, but the
proposed attack algorithm can reconstruct the keystone seed based on only 84 collected keys. Hence,
the Yang–Wu key generation method is not information-theoretically secure when the attacker can
gather multiple keys and a critical amount of information about the keystone seed is leaked.

Keywords: information-theoretically secure; key generation; key management; keystore seed;
one-key-for-one-file

1. Introduction

Data storage and transmission have been frequently used in recent public cloud systems. It is
important to use secure keys in the cloud system, because users using a password can be vulnerable to
dictionary attacks [1]. It is well known that secure keys reveal less user information than the password
method. Thus, secure keys have been used in various fields such as file encryption, access to virtual
private networks, and user authentication [2]. However, conventional key generation methods have
many problems in terms of long-term file management, where each file should be independently
encrypted with random secure keys since it has the characteristics of long-term file storage and frequent
user access. Otherwise, cloud systems are not secure for ciphertext-only attack or chosen-plaintext
attack [3]. To make one-key-for-one-file secure encryption for long-term data protection, a new secure
key generation method using the keystore seed was proposed in [4] claiming that their method could
make many information-theoretically ε-secure keys. In this paper, we propose a new method to break
their key generation by reconstructing the keystore seed using a small number of collected keys.

This paper is organized as follows. In Section 2, the secure key generation and management
methods are reviewed. In Section 3, we propose an attack algorithm of the information theoretically
ε-secure key generation method in [4] and show the successful attack probability. In Section 4, we
analyze the modified Yang-Wu’s scheme with the hashed key [5], where information is not theoretically
ε-secure, but has only computational security. Finally, Section 5 concludes this paper.

Entropy 2019, 21, 212; doi:10.3390/e21020212 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-6743-0927
https://orcid.org/0000-0003-4114-4935
http://dx.doi.org/10.3390/e21020212
http://www.mdpi.com/journal/entropy

Entropy 2019, 21, 212 2 of 8

2. Key Generation and Management Based on Keystore Seed

In this section, we briefly explain the secure key generation and management methods in [4].

2.1. Key Generation

There is a keystore seed K = K(0)K(1) · · ·K(L− 1), which is a randomly generated L-bit binary
sequence, where K(i) is the i-th bit of the keystore seed for 0 ≤ i ≤ L− 1. Let aj be a sub-sequence
of length l of the keystore seed and let mj be a keystore seed index of the first element of aj, where
0 ≤ m1 < m2 < . . . < mt ≤ L− 1. Then, aj is represented as aj = K(mj)K(mj + 1) · · ·K(mj + l − 1).
The key ki of length l is generated as ki = a1 ⊕ a2 ⊕ · · · ⊕ at, where ⊕ denotes the bit-wise exclusive
OR. The set of all possible keys generated from the keystore seed K is denoted as Ψ = {ki|1 ≤ i ≤ Λ},
where Λ is (L

t). This key generation method is expressed as the (L, l, t)-key generation scheme, where l
is the length of each key and t is the number of subkeys of keystore seed for the generation of each key.

2.2. Key Management

After key generation, the generated keys can be used in the following way:

1. A file is encrypted using a key ki randomly selected from set Ψ.
2. Attach the key index information i = (m1, m2, · · · , mt) into the encrypted file and send it.
3. To decrypt an encrypted file, the encryption key ki is regenerated from the secure stored keystore

seed and the received file using ki is decrypted using the attached key index information i.

The keystore seed should be protected in a secure memory that cannot be accessed by outside
users. Even though the key index information is available, any information on the keystore seed
should not be disclosed.

2.3. Information-Theoretically ε-Secure Keystore

The information-theoretically ε-secure for arbitrarily small ε is defined according to the
following specifications.

Definition 1 ([4]). A keystore Ψ = {ki | 1 ≤ i ≤ Λ} of keys of length l generated from a keystore seed K is
said to be information-theoretically ε-secure for 0 ≤ ε < 1, if the properties in the following theorems hold.

Theorem 1 ([4]). For 1 ≤ i ≤ Λ and arbitrarily small ε > 0, all keys ki are randomly and uniformly
distributed over {0, 1}l as

Pr{ki = k j} ≤ (1− ε)× 2−l + ε.

Theorem 2 ([4]). For all pairs of independent indices i, j, 1 ≤ i, j ≤ Λ,

H(k j|i, j, ki) ≥ H(k j|j)× (1− ε) = l(1− ε).

Yang and Wu [4] stated that Theorem 2 can be extended to the following argument.

Argument 1 (n-th order of Theorem 2). For all independent i, j1, . . . , jn, where 1 ≤ i, j1, . . . , jn ≤ Λ, we have

H(ki|j1, . . . , jn, i, k j1 , . . . , k jn) ≥
H(ki|i)× (1− ε) = l(1− ε). (1)

In this paper, we will demonstrate that this argument is only true for a very small n.

Entropy 2019, 21, 212 3 of 8

3. Linear Attack on Key Generation and Management

3.1. Linear Attack Algorithm

In this section, we propose an attack algorithm to reconstruct a keystore seed from a number of
collected keys. For example, assume that we have some keys with t = 5 as presented in [4]. Each key
has 5 indices and consists of 5 binary exclusive OR subkeys of length l starting at given indices. Each
key can make l × L submatrix Mi shown on the left side of Figure 1. Each Mi consists of l indicator
vectors to generate key ki. For example, we have one key with index i = (1, 3, 4, 6, 7). Then, the
indicator vector e0

1 is 0101101100 · · · 00 (All 0 except indices 1,3,4,6,7). Next, the indicator vector e1
1

is a circular shift to the right of e0
1. Rows of Mi consist of e0

i , · · · , el−1
i and rank(Mi) = l because it

has l independent indicator vectors. If the tl << L condition is not satisfied, there are dependent
indicator vectors due to overlap by cyclic shift. The indicator matrix M is made by stacking up M′is.
Consequently, we stack up submatrices until M satisfies rank(M) = L. Finally, we find keystore seed
using the system of linear equations as Figure 1 because M becomes full rank and it is invertible. The
attack algorithm is summarized in Algorithm 1. If the indicator matrix M has rank L by stacking up
several indicator submatrices, Argument 1 is not correct for a sufficiently large n to make M full rank.
Thus, their key generation method is not secure.

Algorithm 1 Successful attack probability with R keys
Input: Variables L, l, R, t
Output: True if the indicator matrix rank is larger than or equal to L

for i from 1 to R do
key_index_set← Randomly select t integers in range of (0, L− 1)
ei

0 ← indicator vector of key_index_set of length l
for j from 1 to l − 1 do

ei
j ← circular cyclic shift right once of ei

j−1

end for
Mi ← stack{ei

0, · · · , ei
l−1}

M = stack{M1, · · · , Mi}
if rank(M) ≥ L then

return True
end if

end for

Let Z be a random variable defined as

Z =

{
1 if rank(M) = L

0 if rank(M) 6= L.

With this random variable, the left-hand side of (1) can be rewritten as

H(ki | j1, · · · , jn, i, k j1 , · · · , k jn) =

H(ki | j1, · · · , jn, i, k j1 , · · · , k jn , Z = 1)P(Z = 1)

+H(ki | j1, · · · , jn, i, k j1 , · · · , k jn , Z = 0)P(Z = 0), (2)

Entropy 2019, 21, 212 4 of 8

where P(Z = 1) means that keystore seed is reconstructed and key’s entropy goes to 0 because ki
is automatically determined with key index i. Therefore, (2) only contains the P(Z = 0) case. Since
H(ki | j1, · · · , jn, i, k j1 , · · · , k jn) ≤ l, we have

H(ki |j1, · · · , jn, i, k j1 , · · · , k jn , Z = 0)P(Z = 0)

≤ lP(Z = 0).

According to numerical analysis, P(Z = 0) becomes almost 0 when the number of collected keys
increases, which means that the lower bound of entropy in the n-th order expansion in Argument 1
is not correct for a large n. Although Argument 1 is correct for very small n, it is not useful in that
they could not generate many secure keys because the purpose of their proposed method is to deal
with one-key-for-one-file in cloud systems. In other words, when the entropy of the generated keys
becomes 0, the keystore seed cannot be used to generate secure keys anymore. Thus, attackers can
reconstruct the keystore seed with high probability, which means that their key generation method
is no longer information-theoretically ε-secure. In the next subsection, we will show the number of
collected keys to make rank(M) = L by numerical analysis.

Figure 1. Matrix operation to find keystore seed.

3.2. Successful Linear Attack Probability

The successful attack probability with R keys is given as a probability that an indicator matrix
M has rank larger than or equal to L by using R keys as in Algorithm 1. Clearly, at least L/l keys
are required to make M with full rank. Figure 2 shows that the successful attack probability of the
key generation algorithm in [4] is numerically derived for L = 212, 214, l = 27, 28, respectively, when
t = 5, 10, 20. Table 1 lists the successful attack probability in Figure 2 for several numbers of R.

Entropy 2019, 21, 212 5 of 8

(a)

(b)

Figure 2. Successful attack probability of the proposed attack algorithm when: (a) L = 212, l = 27,
(b) L = 214, l = 28.

Table 1. Successful attack probability of the proposed attack algorithm.

L = 212, l = 27

Number of keys t = 5 t = 10 t = 20
R = 32 0.02 0.664 0.986
R = 40 0.735 1 1
R = 84 1 1 1

L = 214, l = 28

Number of keys t = 5 t = 10 t = 20
R = 64 0.02 0.540 0.820
R = 70 0.208 0.992 1

R = 100 0.801 1 1
R = 141 1 1 1

Entropy 2019, 21, 212 6 of 8

4. Information Theoretic Weakness of Modified Yang-Wu’s Schemes with Hashed Keys

The forward secrecy is a property such that if a secret key is compromised, past keys are not
compromised. According to the key generation method in [4], several keys are generated from one
keystore seed through a linear combination. If the number of generated keys is large enough, the
newly generated key will have only a very small entropy from previously generated keys. This idea
can be checked via the following observation.

For binary independent random variables X and Y, suppose that H(X) = H(Y) = 1 and
H(X, Y) = 2. Then, we have

H(X, Y|X⊕Y) = H(X, Y, X⊕Y)− H(X⊕Y)

= H(X, Y)− H(X⊕Y) = 1.

This can easily be extended and applied to Yang and Wu’s algorithm intended to provide
independent and uncorrelated secret keys for the one-key-for-one-file long-term secure system.
Assume that we have one key generated from tl bits of keystore seed as in Figure 3. If we
know the subkeys K(mj)K(mj + 1) · · ·K(mj + l − 1) for j = 1, · · · , t− 1, we can derive the subkey
K(mt)K(mt + 1) · · ·K(mt + l − 1) since we know the key k(0)k(1) · · · k(l − 1). As t increases, the
number of subkeys generating a key becomes large. This becomes a weak point when giving the
indicator matrix M a full rank in Section 3. As the simulation results show that the successful attack
probability of the proposed attack algorithm for t = 10, 20 increases abruptly compared to t = 5 when
the number of collected keys becomes large. In addition, the successful attack probability becomes
very large as t increases. Therefore, a large value of t for the key generation scheme should be avoided.

In real applications, it is very important to provide a way of strong protection for the keystored
seed. However, in a cloud environment, there is a possibility that some information can be disclosed
during the processing such as key generation, file encryption, or decryption, due to undiscovered
weakness of systems or side channel attacks as in [6]. In this paper, we show that it is possible to
reconstruct the entire keystore seed even if a very small number of generated keys (i.e., 84 keys) are
leaked compared to the total size of the possible keys (i.e., 253 keys).

In order to reduce the risk of keystore seed reconstruction, the encryption using a hashed key h(k)
was proposed in [5], where k is a generated key from the keystore seed and h(·) is a one-way hash
function. It is true that encryption with a hashed key could avoid the proposed linear attack of keystore
seed reconstruction. However, avoiding the linear attack does not guarantee information-theoretically
ε-secure since hashed keys are the same number of bits as original keys. If the original keystore is not
information-theoretically ε-secure, hashed keys are not also information-theoretically ε-secure since
hashing is one to one mapping. Hashing only increases computational complexity, but it does not
guarantee key entropy.

The hashed key can be a countermeasure for the proposed linear attack. Moreover, by introducing
a hash chain for key generation, it is possible to increase both the computational complexity of the linear
analysis and the number of possible keys. Let us set each subkey as aj = K(mj)K(mj + 1) · · ·K(mj +

l − 1) for j = 1, · · · , 5. Then, the key k j is generated as k j = h(h(h(h(h(a1)⊕ a2)⊕ a3)⊕ a4)⊕ a5),
where ai is a subkey and h(·) is a one-way hash function from {0, 1}∗ to {0, 1}l . Note that if the
order of applying ai is changed, the generated key is completely different when a cryptographic hash
function such as SHA-2 or SHA-3 is used. Even though this type of countermeasure cannot guarantee
information-theoretically ε-secure keys, but it can be a cryptographically secure way.

Entropy 2019, 21, 212 7 of 8

Figure 3. Key generation by subkeys.

5. Conclusions

As the demand for long-term data over the public clouds increases, a large number of secure
keys are needed. To deal with this problem, Yang and Wu proposed a new key generation method
using the keystore seed [4]. In this paper, we proposed an attack algorithm for their key generation
method, where a small number of collected keys can be used to reconstruct the keystore seed with
high probability. Although the encryption using a hashed key could avoid the proposed reconstruction
attack, it still does not guarantee the information-theoretically ε-secure in certain situations where
some information is leaked. Therefore, a new secure key generation method with keystore seed can be
studied in future research.

Author Contributions: S.C. firstly found the main issue of the previous scheme. Y.-H.K. proposed a methodology
to analyze this issue. All authors carried out the formal analysis of the proposed attack. S.C. wrote a program in C
and Y.-S.K. and J.-S.N. investigated the numerical data. All authors have read and approved the final manuscript.

Funding: This work was supported by Institute for Information & Communications Technology Promotion (IITP)
grant funded by the Korea government (MSIP) (R-20160229-002941, Research on Lightweight Post-Quantum
Crypto-systems for IoT and Cloud Computing).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Morris, R.; Thompson, K. Password security: A case history. Commun. ACM 1979, 22, 594–597. [CrossRef]
2. Monrose, F.; Reiter, M.K.; Li, Q.; Wetzel, S. Cryptographic key generation from voice. In Proceedings of the

2001 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 14–16 May 2001; pp. 202–213.
3. Menezes, A.J.; van Oorschot, P.; Vanstone, S. Handbook of Applied Cryptography; CRC Press: Boca Raton, FL,

USA, 1996.
4. Yang, E.H.; Wu, X.W. Information-theoretically secure key generation and management. In Proceedings of

the 2017 IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017;
pp. 1529–1533.

http://dx.doi.org/10.1145/359168.359172

Entropy 2019, 21, 212 8 of 8

5. Wu, X.W.; Yang, E.H.; Wang, J.H. Lightweight security protocols for the Internet of Things. In Proceedings of
the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), Montreal, QC, Canada, 8–13 October 2017.

6. Bazm, M.-M.; Lacoste, M.; Sudholt, M.; Menaud, J.-M. Side Channels in the Cloud: Isolation Challenges,
Attacks, and Countermeasures. 2017. Available online: https://hal.inria.fr/hal-01591808/ (accessed on 17
February 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://hal.inria.fr/hal-01591808/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Key Generation and Management Based on Keystore Seed
	Key Generation
	Key Management
	Information-Theoretically -Secure Keystore

	Linear Attack on Key Generation and Management
	Linear Attack Algorithm
	Successful Linear Attack Probability

	Information Theoretic Weakness of Modified Yang-Wu's Schemes with Hashed Keys
	Conclusions
	References

