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Information flow questions
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Information flow questions

o xc o0

Question 1
What is the limit on communication (how much/how fast)?

Question 2
What are the coding schemes/techniques that achieve this limit?
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Answer 1: Channel coding theorem
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Proof of achievability

e Random coding and joint typicality decoding
(Shannon 1948, Forney 1972, Cover 1975a)
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(Wozencraft-Reiffen 1961, Forney 1995)

¢ Algebraic/combinatorial/probabilistic coding theory
» Hamming, Reed-Solomon, BCH, LDPC, turbo, raptor, polar, spatially coupled codes

» 0.0045 dB of the Shannon limit (Chung-Forney-Richardson-Urbanke 2001)

e |EEE CTW 2010 panel discussion: is communication theory dead?
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Networked information processing system

e System: Internet, peer-to-peer network, sensor network, ...

e Task: Communicate sources or make decision based on them
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e What are the coding schemes/protocols/architectures that achieve this limit?
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¢ Dynamic data arrival and network topology
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Brief history

e First paper (Shannon 1961): “two-way communication channels”

e Significant research activities in 70s and early 8os
© Broadcast, multiple access, interference, and relay channels
© Distributed compression and multiple description coding
® Many basic problems open

@ Little interest from practice
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Brief history

e First paper (Shannon 1961): “two-way communication channels”
e Significant research activities in 70s and early 8os

e Wireless communications and the Internet revived interest in mid 9os

» Some progress on old open problems and many new problems
» Very large number of papers in ISIT, T-IT, T-COM, T-WC, ...

» Results starting to have an impact on real-world networks
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Brief history

e First paper (Shannon 1961): “two-way communication channels”

e Significant research activities in 70s and early 8os

e Wireless communications and the Internet revived interest in mid 9os

e State of the theory: El Gamal-K (2011)
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e Optimal (Ahlswede 1971, Liao 1972, Wyner 1974, Cover 1975b)

Young-HanKim (UCSD) From Entropy to Networks CUHK (July 2013)

12/36



Multiple access (uplink) communica

Ry

z (sy)
X1 &‘ l
YT e
X2 gZ S1+1

tion

| L —» R,
C(3_1) sy

Sy+1

e Optimal (Ahlswede 1971, Liao 1972, Wyner 1974, Cover 1975b)

e 3GPP HSPA, EV-DO rev A (Hou-Smee-Pfister-Tomasin 2006)

Young-Han Kim (UCSD) From Entropy to Networks

CUHK (July 2013)

12/36



Multiple access (uplink) communication

Ry

Z (S, =
Xl& l
T )
X2 D S+l

: L—» R,
C(3_1) sy

Sy+1

e Optimal (Ahlswede 1971, Liao 1972, Wyner 1974, Cover 1975b)

e 3GPP HSPA, EV-DO rev A (Hou-Smee-Pfister-Tomasin 2006)

e Can be generalized to any channel model with any number of senders/antennas

Young-HanKim (UCSD) From Entropy to Networks CUHK (July 2013) 12/36



Multiple access (uplink) communication

Ry

Z (S, =
Xl& l
T )
X2 D S+l

: L—» R,
C(3_1) sy

Sy+1

Optimal (Ahlswede 1971, Liao 1972, Wyner 1974, Cover 1975b)

3GPP HSPA, EV-DO rev A (Hou-Smee-Pfister-Tomasin 2006)

Can be generalized to any channel model with any number of senders/antennas

Good point-to-point codes + signal processing suffices!
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Hierarchical modulation: DVB-T, 3GPP2 UMB

Can be generalized to any number of single-antenna receivers

Good point-to-point codes + signal processing suffices!
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Interference (multicell) communication
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e Low interference: treating interference as noise (IAN) performs well

¢ High interference: successive cancellation (SC) performs well
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Interference (multicell) communication

Ry

SC

IAN

Ry
High interference

e Low interference: treating interference as noise (IAN) performs well

¢ High interference: successive cancellation (SC) performs well

¢ Neither is optimal in general; nor is time division

¢ In general, we need more than good point-to-point codes + signal processing
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Interference (multicell) communication

Ry

Ry
High interference

¢ Simultaneous decoding
» Always better than treating interference as noise and successive cancellation
» Optimal under random coding (Bandemer-El Gamal-K 2012)

» + superposition coding: optimal within 1/2 bit (Etkin-Tse-Wang 2008)
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Interference (multicell) communication

Ry
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High interference

Conclusion 1
Interference-aware coding schemes can boost performance tremendously
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Interference (multicell) communication

R,
SD
/ SC
IAN
Ry

High interference
Conclusion 1
Interference-aware coding schemes can boost performance tremendously J

Low-complexity implementation of simultaneous decoding

Challenge 1 J
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More on simultaneous decoding

e Maximum likelihood decoding (MLD): At receiver 1, find
arg max f(yy |x; (7))
= arg max Y fOr 1x1 (i), x5 (my))

= arg max Y exp(-lly" — gnaxt (i) = g5 (my)11*/2)
e Simultaneous decoding (Bandemer-El Gamal-K 2012):
= arg nylhax max exp(=lly; - gux (7)) - glzx;(m2)||2/2)
= argmax nilnzix—llyi' — gnx; (1) — gox5 (m,) |

. . n UNES n
= arg mimin Iy1 = guxy (7)) = o2, (my)l
my

Young-HanKim (UCSD) From Entropy to Networks CUHK (July 2013) 15/36



Outline of the talk

e Canonical problems in network communication
> Interference management
» Multiple unicast

> Wireless relaying
¢ Solutions from network information theory

e Challenges for the future
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Graphical unicast networks

e Model for wired networks (Internet, distributed storage, ...)

Young-HanKim (UCSD) From Entropy to Networks CUHK (July 2013) 17/36



Graphical unicast networks

N
K

e Model for wired networks (Internet, distributed storage, ...)

* Directed weighted graph (V, £) with link capacities Cik

Young-HanKim (UCSD) From Entropy to Networks CUHK (July 2013) 17/36



Graphical unicast networks

N
K

e Model for wired networks (Internet, distributed storage, ...)

* Directed weighted graph (V, £) with link capacities Cik

Network information flow questions

¢ Network capacity

e Optimal coding schemes/protocols/architectures
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Max-flow min-cut theorem

Ford-Fulkerson (1956)

C= min C(S)
ScN:1€S, NeS°¢

¢ Achieved error-free using simple routing (Ford-Fulkerson algorithm)
¢ Information treated as commodity flow
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Graphical multicast network
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Graphical multicast network

Network information flow questions
e Network capacity?

e Isrouting sufficient?
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e Routing:R=1

¢ Coding: R = 2 (capacity)

¢ Treating information as a commodity is not optimal in general
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Network coding theorem

Ahlswede-Cai-Li-Yeung (2000)

C=min min C(S)
j€D  ScN
1€8,jeS°¢
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Network coding theorem

Ahlswede-Cai-Li-Yeung (2000)

C=min min C(S)
j€D  ScN
1€8,jeS°¢

e Achieved by linear network coding (Li-Yeung—Cai 2003, Koetter-Médard 2003)
e Coded TCP: performance improvement for wi-fi and cellular networks
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Graphical multiple unicast network
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Graphical multiple unicast network

e Capacity not known in general even for two flows

¢ Nonlinear network coding > linear network coding > routing
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Graphical multiple unicast network

Conclusion 2
Coding brings a new dimension to networking
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Graphical multiple unicast network

M]
Conclusion 2
Coding brings a new dimension to networking J
Challenge 2
Network capacity and optimal network coding J
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Index coding
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¢ Content distribution, satellite communication, opportunistic routing, ...
e How many transmissions are needed?

e Which coding minimizes the number of transmissions?
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Content distribution, satellite communication, opportunistic routing, ...

e How many transmissions are needed?

Which coding minimizes the number of transmissions?

Canonical network coding problem (broadcast and interference)
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Composite coding
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¢ All 218 index coding problems with N = 4

¢ All 9608 index coding problems with N = 5
(Arbabjolfaei-Bandemer-K-Sasoglu-Wang 2013)
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Composite coding

Ml Wl
M : w

M,,..

oM : Wi,
“Encoder [1:N] ]

¢ All 218 index coding problems with N = 4

¢ All 9608 index coding problems with N = 5
(Arbabjolfaei-Bandemer-K-Sasoglu-Wang 2013)

¢ Problems with circular symmetry (Maleki-Cadambe-Jafar 2012)
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Outline of the talk

e Canonical problems in network communication
> Interference management
> Multiple unicast

» Wireless relaying
¢ Solutions from network information theory

e Challenges for the future
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Relay network

e Nodes: (X, Y7),..., Xy, Yy)

* Network topology/noise: p(y;, ..., yylxp, ... xy)
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Relay network

e Nodes: (X, Y7),..., Xy, Yy)
* Network topology/noise: p(y;, ..., yylxp, ... xy)

¢ Traffic: unicast / broadcast / multicast

Young-HanKim (UCSD) From Entropy to Networks CUHK (July 2013) 26/36



Dictionary of relaying schemes

¢ Standard parlance: decode—forward, amplify—forward, compress—forward
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Canonical coding schemes for relay channels
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Canonical coding schemes for relay channels

Y,:X,
M — X, Y, — M

e Decode-forward (Cover-El Gamal 1979): digital-to-digital
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Noisy network coding

Y,

e Compress—forward + network coding
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e Compress—forward + network coding

¢ Includes hash—forward (Cover-K 2007) and
quantize-map-forward (Avestimehr-Diggavi-Tse 2011)
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Noisy network coding

Compress—forward + network coding

Includes hash—forward (Cover-K 2007) and
quantize-map-forward (Avestimehr-Diggavi-Tse 2011)

Optimal for graphical, finite-field deterministic, wireless erasure multicast

0.63N bit gap from Gaussian multicast capacity

¢ Hybrid coding: noisy network coding + amplify—forward
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Two-way relay communication
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Two-way relay communication

Zs

Y;
X3
Y, Y,
\T/ 72— r)—s/z\(
Z Z,
;
1( ; ; )3 QZ
1

Young-HanKim (UCSD) From Entropy to Networks CUHK (July 2013)

30/36



Two-way relay communication
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¢ Decode-forward and amplify—forward: unbounded gap from capacity in general
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Two-way relay communication
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¢ Decode-forward and amplify—forward: unbounded gap from capacity in general

¢ Noisy network coding and hybrid coding: within 1 bit gap from capacity
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Two-way relay communication
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Conclusion 3
Advanced relaying schemes can outperform traditional schemes
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Conclusion 3
Advanced relaying schemes can outperform traditional schemes J
Challenge 3
Practical coding, modulation, and signal processing techniques
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More on noisy network coding

Cutset bound (El Gamal 1981)
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More on noisy network coding

Cutset bound (El Gamal 1981)

C< max min min I(X(S); Y(S9)|X(S9))
p(xN) keD S:1eS, keS¢
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More on noisy network coding

Cutset bound (El Gamal 1981)

O el o BN )IX(S%)

Noisy network coding bound (Lim-K-El Gamal-Chung 2011)

CZmaXII:;%lségm (I(X(S) Y(S°), Y, 1 X(S%)) - I(Y(S); 7(S)|IXN, ¥(S9), YY),

where the maximum is over all [T, p(x)p(G7glys %)

V.
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¢ Network information theory
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v
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» Still very young (many open problems)

» A path to develop network codes

e Moving forward
» Basic research on fundamental problems

» “lam very seldom interested in applications.
I am more interested in the elegance of a problem.
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