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Abstract—Motivated by recent advances in joint source–
channel coding over networks, hybrid (analog/digital) coding has
been proposed as a coding technique for discrete memoryless
relay networks, whereby each relay transmits a symbol-by-
symbol function of the received sequence at the channel output
and its quantized version (analog-to-analog/digital interface). For
a few simple channel models, it has been demonstrated that
hybrid coding unifies both amplify–forward and noisy network
coding and can strictly outperform both. This paper extends
these results to the class of general layered relay networks and
establishes the hybrid coding lower bound on the capacity for
the class.

Index Terms—Hybrid coding, Network Information Theory,
Relay Networks.

I. INTRODUCTION

Relaying is a fundamental building block in multihop coop-
erative communication systems. Over the past decades, three
dominant paradigms have been proposed for relay commu-
nication: decode–forward, compress–forward, and amplify–
forward.

• In decode–forward, each relay in the network recovers
the transmitted message by the source and forwards it to
the receiver (digital-to-digital interface) while coherently
cooperating with the source node. Decode–forward was
originally proposed in [1] for the relay channel and has
been generalized to multiple relay networks, for example,
in [2], [3] and further improved by combining it with
structured coding [4], [5].

• In amplify–forward, each relay sends a scaled version
of its received sequence and forwards it to the receiver
(analog-to-analog interface). Amplify–forward was pro-
posed in [6] for the Gaussian two–relay diamond network
and subsequently studied for the Gaussian relay chan-
nel in [7]. Generalizations of amply–forward to general
nonlinear analog mappings for relay communication have
been proposed, for example, in [8].

• In compress–forward, each relay vector-quantizes its re-
ceived sequence and forwards it to the receiver (analog-
to-digital interface). Compress–forward was proposed
in [1] for the relay channel and has been generalized to
arbitrary noisy networks in [9] as noisy network coding;
see also [10].
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Fig. 1. The two-relay diamond network — an example of a 4-node layered
network where the set of nodes {1, 2, 3, 4} is partitioned into three subsets
L1 = {1}, L2 = {2, 3}, and L3 = {4}.

In [11] we presented a new coding scheme for relay
networks based on the hybrid coding architecture which was
introduced in [12] in the context of lossy communications over
multiple access channels. In this hybrid coding architecture,
each relay node in the network transmits a symbol-by-symbol
function of the received sequence and its quantized version
(analog-to-analog/digital interface). We proved via two spe-
cific examples, the two–way relay channel and the two–relay
diamond network, that hybrid coding can strictly outperform
the existing coding schemes, not only amplify–forward and
compress–forward, but also decode–forward.

In this paper, we generalize the existing results on hybrid
coding by providing a general capacity lower bound for the
class of layered relay networks, i.e., the networks where the
nodes can be grouped into subsets L1, . . . ,LL such that the
source and destination nodes belong to L1 and LL, respec-
tively, and there are links only between nodes in adjacent
layers Li and Li+1, i = 1, . . . , L− 1. The two-relay diamond
network depicted in Fig. 1 is an example of 3-layer networks.

The rest of the paper is organized as follows. In Section II
we develop the necessary background on hybrid coding by
revisiting a a capacity lower bound for the two-relay diamond
channel presented in [11]. Section III presents the main result
of the paper, a coding theorem for a general noisy layered relay
network. Throughout the paper, we use the notation in [13].

II. FOUNDATIONS OF HYBRID CODING:
THE DIAMOND RELAY NETWORK

A canonical channel model used to feature the benefits of
node cooperation in relay networks is the diamond channel
introduced in [6] and depicted in Fig. 1. This two-hop network
consists of a source node (node 1) that wishes to send a
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message M ∈ [1 : 2nR] to a destination (node 4) with the
help of two relay nodes (nodes 2 and 3). The source node is
connected through the broadcast channel p(y2, y3|x1) to the
two relay nodes that are in turn connected to the destination
node through the multiple-access channel p(y4|x2, x3). The
capacity of the diamond channel is not known in general.
Schein and Gallager [6] characterized inner bounds on the
capacity region based on decode–forward, amplify–forward,
and compress–forward. In this section, we introduce hybrid
coding by revisiting a lower bound on the capacity region of
the diamond relay network presented in [11].

A. Problem Statement and the Hybrid Coding Lower Bound

A diamond channel (X1 × X2 × X3, p(y2, y3|x1)
p(y4|x2, x3),Y2 × Y3 × Y4) consists of six alphabet
sets and a collection of conditional pmfs on Y2 × Y3 × Y4.
A (2nR, n) code for the diamond channel consists of

• a message set [1 : 2nR],
• an encoder that assigns a codeword xn

1 (m) to each
message m ∈ [1 : 2nR],

• two relay encoders, where relay encoder j = 2, 3 as-
signs a symbol xj,i(y

i−1
j ) to each past received output

sequence yi−1
j ∈ Yi−1

j , and
• a decoder that assigns an estimate m̂ or an error message

to each received sequence yn4 ∈ Yn
4 .

We assume that the message M is uniformly distributed over
[1 : 2nR]. The average probability of error is defined as P (n)

e =
P{M̂ 6= M}. A rate R is said to be achievable for the diamond
channel if there exists a sequence of (2nR, n) codes such that
limn→∞ P

(n)
e = 0. The capacity C of the diamond channel is

the supremum of the achievable rates R.
Hybrid coding yields the following lower bound on the

capacity, the proof of which can be found in [14].

Theorem 1 ([11]): The capacity of the diamond channel
p(y2, y3|x1)p(y4|x2, x3) is lower bounded as

C ≥ maxmin{I(X1;U2, U3, Y4),

I(X1, U2;U3, Y4)− I(U2;Y2 |X1),

I(X1, U3;U2, Y4)− I(U3;Y3 |X1),

I(X1, U2, U3;Y4)− I(U2, U3;Y2, Y3 |X1)},
(1)

where the maximum is over all conditional pmfs
p(x1)p(u2|y2)p(u3|y3) and functions x2(u2, y2), x3(u3, y3).

B. Hybrid Coding Architecture

The proof of achievability of Theorem 1 is based on a hybrid
coding architecture depicted in Fig. 2, which is used at relay
node j = 2, 3. At the source node, the message M is mapped
to one of 2nR1 sequences Xn

1 (M) i.i.d. ∼ p(x1) as in point-
to-point communication. At the relay nodes, the “source” the
sequence Y n

j , j = 2, 3, is separately mapped into one of 2nRj

independently generated sequences Un
j (Mj). Then, the pair

Y n
j Un

j (Mj)Source
xj(uj , yj)

encoder

Xn
j

Fig. 2. Hybrid coding interface for relays.

(Y n
j , Un

j (Mj)) is mapped by node j to Xn
j via a symbol-

by-symbol map. By the covering lemma, the source encoding
operation at the relays is successful if

R2 > I(U2;Y2)

R3 > I(U3;Y3).

At the destination node, decoding is performed by joint typi-
cality and indirect decoding of the sequences (Un

2 , U
n
3 ), that is,

by searching for the unique message M̂ ∈ [1 : 2nR] such that
the tuple (Xn

1 (M̂), Un
2 (M2), U

n
3 (M3), Y

n
4 ) is typical for some

M2 ∈ [1 : 2nR2 ] and M3 ∈ [1 : 2nR3 ]. By the packing lemma,
combined with the technique introduced in [12], the channel
decoding operation at the destination node is successful if

R < I(X1;U2, U3, Y4)

R+R2 < I(X1, U2;U3, Y4) + I(X1;U2)

R+R3 < I(X1, U3;U2, Y4) + I(X1;U3)

R+R2 +R3 < I(X1, U2, U3;Y4) + I(X1;U2)

+ I(X1, U2;U3).

Hence, the lower bound (1) is obtained by combining the
conditions for source coding at the relay nodes with those
for channel decoding at the destination and by eliminating
the auxiliary rates (R1, R2) from the resulting system of
inequalities.

C. Comparison with Other Relaying Strategies

Next, we show that hybrid coding can strictly outperform
noisy network coding (and compress-forward). To do so, we
further specialize to the case of a deterministic diamond
channel, wherein the multiple access channel p(y2, y3|x1) and
the broadcast channel p(y4|x2, x3) depicted in Fig. 1 are
deterministic. Then, Theorem 1 yields the following inner
bound.

Corollary 1: The capacity of the deterministic diamond
channel is lower bounded as

C ≥ max
p(x1)p(x2|y2)p(x3|y3)

R(Y2, Y3, Y4 |X2, X3), (2)

where

R(Y2, Y3, Y4 |X2, X3) = min{H(Y2, Y3), H(Y4),

H(Y2) +H(Y4 |X2, Y2),

H(Y3) +H(Y4 |X3, Y3)}.

Proof: Set in Theorem 1 U2 = (Y2, X2), U3 = (Y3, X3),
x2(u2, y2) = x2, and x3(u3, y3) = x3 under a pmf
p(x2|y2)p(x3|y3).
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We can compare the result in Corollary 1 with the existing
inner and outer bounds for this channel model. An outer bound
on the capacity region is given by the cutset bound [15], which
in this case simplifies to

C ≤ max
p(x1)p(x2,x3)

R(Y2, Y3, Y4 |X2, X3) (3)

On the other hand, specializing the scheme in [16] for deter-
ministic relay networks, we obtain the lower bound

C ≥ max
p(x1)p(x2)p(x3)

R(Y2, Y3, Y4 |X2, X3). (4)

Note that (2), (3), and (4) differ only in the set of allowed
maximizing input pmfs. In particular, (2) improves upon the
inner bound (4) by allowing X2 and X3 to depend on Y2 and
Y3 and thereby increasing the set of distributions p(x2, x3).
The following example demonstrates that the inclusion can be
strict.

Example 1: Suppose that p(y2, y3|x1) is the Blackwell
broadcast channel (i.e., X1 ∈ {0, 1, 2} and pY2,Y3|X1

(0, 0|0) =
pY2,Y3|X1

(0, 1|1) = pY2,Y3|X1
(1|2) = 1) and p(y4|x2, x3) is

the binary erasure multiple access channel (i.e., X2, X3 ∈
{0, 1} and Y4 = X2 +X3 ∈ {0, 1, 2}). It can be easily seen
that the general lower bound reduces to C ≥ 1.5, while the
capacity is C = log 3, which coincides with the hybrid coding
lower bound (with X2 = Y2 and X3 = Y3). Thus, hybrid
coding strictly outperforms the coding scheme by Avestimehr,
Diggavi, and Tse [16] and noisy network coding [9].

III. HYBRID CODING IN LAYERED RELAY NETWORKS

In this section, we present our main result, namely, the
extension of Theorem 1 to general layered relay networks,
i.e., networks with a single source node (say, node 1), a single
destination (say, node N ) and a channel pmf of the form

p(y2, . . . , yN |x1, . . . , xN−1) =

L∏

i=2

p(y(Li)|x(Li−1)), (5)

where L1, . . . ,LL are a partition of the set [1 : N ] such that
L1 = {1} and LL = {N}. Throughout this section we use the
notation x(L) = {xj , j ∈ L}. As an example, the diamond
network studied in Section II is a layered network with L = 3
layers, because the set of nodes [1 : 4] is partitioned into a
source node L1 = {1}, one set of relay nodes L2 = {2, 3}, and
one destination node L3 = {4}, and the corresponding channel
pmf factorizes as p(y2, y3|x1)p(y4|x2, x3). In a layered relay
network with L layers, each relay node j ∈ Li, i ∈ [1 : L−1],
uses the hybrid coding interface depicted in Fig. 2 to transmit
the channel output Yj to the nodes in the (i+1)-st layer. The
main result of the paper is the following capacity lower bound
for general layered relay networks based on hybrid coding.

Theorem 2: The capacity of the L-layered DMN (5) is
lower bounded as

C ≥ max min
S⊆[2:N−1]

I(X1, U(S);U(Sc), YN )

−
∑

k∈S

I(Uk;Yk |U(Sk), X1),
(6)

where Sk = {k′ ∈ S : k′ < k} and the maximum is
over all conditional pmfs p(x1)

∏N−1
k=2 p(uk|yk) and functions

xk(uk, yk), k = 2, . . . , N − 1.

Notice that in the case of the diamond network there are four
subsets of the set of relay nodes {2, 3}. Accordingly, when
specialized to this channel model the right hand side of (6)
simplifies and yields the four expressions at the right hand
side of (1).

A. Comparison with Other Relaying Strategies

Theorem 1 includes both the noisy network coding inner
bound, which is recovered by setting Uj = (Xj , Ŷ j) with
p(xj)p(ŷj |yj), j = 2, 3, and the amplify–forward inner bound,
which is obtained by setting Uj = ∅ for j = 2, 3. To
visualize the differences between hybrid coding and noisy
network coding, it is worth focusing on the special case of
a deterministic layered networks, whereby p(y(Li)|x(Li−1)),
i ∈ [2 : L] are deterministic, i.e., the channel outputs are
functions of the corresponding inputs. In this case, Theorem 2
simplifies to the following corollary.

Corollary 2: The capacity of the L-layered deterministic
network is lower bounded as

C ≥ max min
S⊆[2:N−1]

R(S),

where

R(S) = H(Y (Sc), YN |X(Sc)) + I(X1, X(S), Y (S);X(Sc))

−
∑

S

H(Yk |X(Sk), Y (Sk), X1)

and the maximum is over all conditional pmfs
p(x1)

∏N−1
k=2 p(xk|yk), k = 2, . . . , N − 1.

Proof: Let Uk = (Xk, Yk), k = 2, . . . , N − 1 where
Xk ∼ p(xk|yk). Then,

I(X1, U(S);U(Sc), YN )−
∑

S

I(Uk;Yk |U(Sk), X1)

= I(X1, X(S), Y (S);X(Sc), Y (Sc), YN )

−
∑

S

I(Xk, Yk;Yk |X(Sk), Y (Sk), X1)

= I(X1, X(S), Y (S);Y (Sc), YN |X(Sc))

+ I(X1, X(S), Y (S);X(Sc))

−
∑

S

H(Yk |X(Sk), Y (Sk), X1)

= I(X1, X(S);Y (Sc), YN |X(Sc))

+ I(X1, X(S), Y (S);X(Sc))

−
∑

S

H(Yk |X(Sk), Y (Sk), X1)

= H(Y (Sc), YN |X(Sc)) + I(X1, X(S), Y (S);X(Sc))

−
∑

S

H(Yk |X(Sk), Y (Sk), X1)
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Note that the noisy network coding lower bound for deter-
ministic networks is given by

C ≥ max min
S⊆[2:N−1]

H(Y (Sc), YN |X(Sc))

where the maximization is over all
∏N−1

k=1 p(xk). Compared
to the noisy network coding lower bound, hybrid coding has
two additional terms while the maximization is done over the
more general set of distributions p(x1)

∏N−1
k=2 p(xk|yk), k =

2, . . . , N−1. The inclusion is in general strict, as demonstrated
by Example 1. It can verified, in fact, that Corollary 2 reduces
to Corollary 1 in the special case of the deterministic diamond
channel.

IV. CONCLUDING REMARKS

Hybrid coding is a general coding technique for discrete
memoryless relay networks, whereby each relay transmits
a symbol-by-symbol function of the received sequence at
the channel output and its quantized version (analog-to-
analog/digital interface). In this paper, we first revisited the
foundations of hybrid coding for relay networks by focusing
on the two-relay diamond channel, for which hybrid coding
(analog-to-analog/digital interface) yields a capacity lower
bound that strictly outperform both amplify–forward (analog-
to-analog interface) and compress–forward/noisy network cod-
ing (analog-to-digital interfaces). We then presented a capacity
lower bound based on hybrid coding for general layered relay
networks that naturally extends the previous result on the
diamond channel.

While we assumed that the relay nodes do not attempt to
decode the message transmitted by the source, the presented
results can be further improved by combining hybrid coding
with other coding techniques such as decode–forward and
structured coding [4]. In this case, hybrid coding provides
a general analog/digital-to-analog/digital interface for relay
communication. In principle, hybrid coding can also be applied
to the relay channel and other nonlayered relay networks. In
this case, however, hybrid coding (or even amplify–forward)
would not yield inner bounds on the capacity region in a
single-letter form, due to the dependency between the channel
input at each relay node and the previously received analog
channel outputs.
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