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Abstract—Monte Carlo Markov chain (MCMC) decoding is a
randomized algorithm which has been proven to be near-optimal
in terms of decoding error probability. However, the exponentially
slow mixing rate of Markov chains seems to preclude MCMC
decoding from applications concerning even short blocklength
codes. In contrast, belief propagation (BP) is a deterministic
algorithm that is empirically fast but sub-optimal in error rate
when it is used to decode low-density parity-check (LDPC)
codes. In this paper, a code-independent BP–MCMC hybrid
decoder is devised for short-blocklength LDPC codes. Theoretical
error analysis of the hybrid algorithm is provided. Preliminary
experiments show that the preprocessing of BP successfully
reduces the time complexity of MCMC decoding and hence
significantly improves the applicability of MCMC decoders to
short LDPC codes.

I. INTRODUCTION

Consider the channel decoding problem in which we wish
to infer the transmitted message m ∈ Fk

2 , which was encoded
by a given code x : Fk

2 → Xn, x(m) = (x1, . . . , xn) ∈ Xn,
from an output sequence y = (y1, . . . , yn) of a memoryless
communication channel p(y|x). The performance of any de-
coding mapping (deterministic or random) M̂ : Yn → Fk

2 is
evaluated by the average probability of decoding error:

pe = P(M ̸= M̂(Y)). (1)

A recent discovery founded on the Liu–Cuff–Verdú (LCV)
lemma [1]–[3] asserts that the randomized likelihood (RL)
decoding algorithm, which generates the estimate by sampling
from the posterior

M̂RL(y) ∼ p(m|y), (2)

has error probability bounded by twice of the best achievable
value from the maximum a posteriori probability (MAP)
decoding rule

P(M ̸= M̂RL(Y)) ≤ 2p∗e, (3)

where
p∗e = argmax

m
p(m|y). (4)

Since most good codes operate at p∗e ≪ 1, the factor of two
here is essentially negligible.

Given the strong performance guarantee in (3), many algo-
rithms based on Monte Carlo Markov chain (MCMC) methods
were proposed for practical implementation of RL decoders. In
2001, Radford Neal developed a decoding algorithm for low-
density parity-check (LDPC) codes based on Gibbs sampling,

a classical MCMC method [4]. Then, the asymptotic decoding
performance of the Gibbs decoder was compared to that of a
belief propagation (BP) decoder in the textbook by Mezard
and Montanari [5]. Besides Gibbs sampling, the use of other
MCMC techniques such as Metropolis algorithm was also
studied in our previous work [6].

In decoding LDPC codes, it is known that Gibbs decoders
have a message-passing representation, which is structurally
similar to that of the conventional BP decoding. Both involve
iterative “message passing” between check nodes and variable
nodes. There are also major differences, which make BP more
appealing for LDPC codes (at the moment), but not a complete
winner:
• BP is deterministic, fast (low-complexity), suboptimal

(getting trapped and not converging to the MAP perfor-
mance), and soft (producing log likelihood ratios).

• Gibbs is random, slow (high-complexity), near-optimal
(eventually converging to the MAP performance), and
hard (producing bit estimates).

These observations motivated us to combine the complemen-
tary strengths (low-complexity and accuracy, in particular) to
design a hybrid of the two. In an earlier study [7], Ahn et
al. developed such a BP–Gibbs hybrid method to approximate
a partition function of a graphical model, whereby BP is run
first to approximate the partition function and then Gibbs is
used to correct the approximation error.

Although the objective of approximating partition functions
is quite different from our decoding application, the high-level
idea still transcends to our case. Thus inspired, we developed
a hybrid decoding scheme in which BP decoding is used as
a preprocessor to Gibbs (or any Monte Carlo decoding for
that matter). Our preliminary simulations show that the hybrid
algorithm outperforms both the pure BP and the pure Gibbs
decoder. As a variant of an MCMC decoder, the preprocess-
ing of BP also successfully reduces the time complexity of
the Gibbs decoding algorithm. It is also fortuitous that the
downside of Gibbs in producing hard bits no longer exists,
since it is used in the second (and final) stage.

The rest of the paper is organized as follows. In Section II
we propose a BP–MCMC hybrid decoder for LDPC codes and
provide a preliminary theoretical analysis of its performance.
Then, a key step in our algorithm, which we call the subset
selection step, is described in details in Section III. Numer-
ical experiment results are presented in Section IV. Finally,
Secion V concludes the paper.
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II. BP–MCMC HYBRID DECODING FOR LDPC CODES

LDPC codes are commonly decoded using iterative algo-
rithms operating over a factor graph (e.g., the sum-product al-
gorithm [8]), where soft messages like bit-wise log-likelihood
ratios (LLRs) are passed between variable nodes and check
nodes. After a maximum number TBP,max of iterations being
performed, the BP decoder produces an estimate of the input
codeword if the bit-wise hard decisions satisfy all the parity-
check constraints, or declares decoding failure if otherwise.
Thus, a decoding error occurs when some of the LLRs
converge to the opposite polarity or fail to converge.

To correct the BP decoding error, we devise a simple,
MCMC-based method. Given the channel output y, we first
run BP to obtain the LLRs for each message bit. We then
identify the set I of wrongly decoded message bits. Finally
we employ the MCMC method to re-decode the bits in I by
generating a random sample from the conditional posterior as

M̂MCMC ∼ p(m|y,m¬I = M̂BP,¬I), (5)

where ¬I denotes the complementary set of I in [k]. If BP
works well, the effective blocklength |I| is much smaller than
the dimension of the code k, which lets MCMC under its sweet
spot.

This naive hybrid scheme does not work as is, however. The
problem of precisely identifying the trapping set, the set of bits
that are not correctly decoded by the BP decoder, is in fact NP-
hard [9]. There is still a silver lining if we target the low error
rate region of LDPC codes, where the block error rate of BP
decoders is contributed only by a small trapping set [10], [11].
Inspired by some existing post-processing approaches [12]–
[14] for mitigating the error-floor problem, we thus propose
three heuristic subset selection methods for capturing the small
culprit trapping set (cf. Sec. III).

Provided that a reliable subset selection scheme exists, it can
then be shown that, under some mild conditions, our hybrid
decoding is able to achieve the decoding error probability
comparable to that of optimal decoding. Let I be the selected
subset after BP. The error event E := {M̂BP−MCMC ̸= M}
of the hybrid decoding method can be easily expressed as

E = E1 ∪ (E2\E1),

where

E1 =
{
M̂BP,¬I ̸= M¬I

}
is the subset selection error, and

E2 =
{
M̂MCMC ̸= M

}
is the MCMC decoding error. Note that since the BP algorithm
is deterministic, the set I and the estimate M̂BP are functions
of the channel output Y. Suppose that the output of the
MCMC decoder M̂MCMC is perfectly sampled according

to the conditional posterior p
(
m
∣∣∣Y,m¬I = M̂BP,¬I(Y)

)
.

Then, an application of LCV lemma yields

P(E) = P(E1) + P(E2\E1)
= P(E1) + P(Ec

1)P(E2 |Ec
1)

= P(E1) + P(Ec
1)E[P(E2 |Y, Ec

1)]

≤ P(E1) + 2P(Ec
1)E[P(M∗(Y) ̸= M|Y, Ec

1)], (6)

where

M∗(Y) = argmax
m

p
(
m
∣∣∣Y,m¬I = M̂BP,¬I(Y)

)
,

is the MAP estimate of the conditional posterior. Let

EY = {m ∈ {0, 1}k : m¬I = M̂BP,¬I(Y)}

denote the space from which the MCMC decoder generates
the sample. Then, we can write

P(M∗(Y) ̸= M|Y, Ec
1)

=

∑
m∈EY,m̸=M∗(Y) p(Y|M = m)∑

m∈EY
p(Y|M = m)

=

∑
m p(Y|M = m)∑

m∈EY
p(Y|M = m)

∑
m∈EY,m̸=M∗(Y) p(Y|M = m)∑

m p(Y|M = m)

=
1

P(Ec
1 |Y)

∑
m∈EY,m̸=M∗(Y) p(Y|M = m)∑

m p(Y|M = m)
. (7)

Note that if the MAP estimate M̂MAP(Y) lies in the set EY,
it must equal to M∗(Y). Therefore, it follows that

P(M∗(Y) ̸= M|Y, Ec
1) ≤

∑
m̸=M̂MAP(Y)

p(Y|M = m)

P(Ec
1 |Y)

∑
m p(Y|M = m)

=
P(M̂MAP(Y) ̸= M|Y)

P(Ec
1 |Y)

. (8)

Now, suppose that the random variables P(Ec
1 |Y) and

P(M∗(Y) ̸= M|Y, Ec
1) are “nearly positively correlated", that

is, there exists some constant ϵ > 0 such that

E[P(Ec
1 |Y)]E[P(M∗(Y) ̸= M|Y, Ec

1)]

≤(1 + ϵ)E[P(Ec
1 |Y)P(M∗(Y) ̸= M|Y, Ec

1)]. (9)

Combining (6), (8), and (9) yields

P(E) ≤ P(E1) + 2E[P(Ec
1 |Y)]E[P(M∗(Y) ̸= M|Y, Ec

1)]

≤ P(E1) + 2(1 + ϵ)E[P(Ec
1 |Y)P(M∗(Y) ̸= M|Y, Ec

1)]

≤ P(E1) + 2(1 + ϵ)E[P(M̂MAP(Y) ̸= M|Y)]

= P(E1) + 2(1 + ϵ)p∗e. (10)

Hence, as long as the state selection error is well controlled,
the performance of the hybrid decoder only deviates from the
optimal MAP decision by constant factors.

Although the nearly positive correlation condition in (9)
seems arbitrary, it holds conceptually when the code operates
in the low error-rate region, where the true message M, the
MAP estimate M̂MAP, and the conditional MAP estimate M∗

are most likely the same. Our simulation result confirms that
the subset selection error indeed dominates the error events
(cf. Sec IV).
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III. SUBSET SELECTION METHODS

In this section, we describe three subset selection methods.
Typically if the BP decoding failure is caused by small trap-
ping sets, the bit LLRs are usually characterized by two types
of behaviors: 1) false convergence, i.e., the LLRs reach a fixed
false state and stay unchanged for the following iterations; 2)
oscillation, i.e., some of the LLRs oscillate among a set of
states periodically. Based on this observation, we proposed
the following subset selection methods.

1) LLR thresholding (LLR-TH). In BP decoding, the LLR
of a large number of variable nodes converges to a strong
belief within very few iterations. Intuitively, these nodes
are already reliably decoded so they can be removed
from the subsequent decoding process [12]. Thus we
set I = {i ∈ [k] : |LLRi| ≤ η}, where LLRi is the i-th
bit LLR and η is a preset threshold.

2) LLR thresholding and oscillation (LLR-OSC). The LLR
value of bits in the trapping set tends to oscillate about 0.
Hence, we select message bit i ∈ [k] if the sign of LLRi

oscillates too much or LLRi is below a preset threshold.
Clearly, the set thus selected is always a superset of the
one selected by the LLR thresholding method.

3) Unsatisfied check nodes (UN-CHK). If the decoding
failure is caused by a small trapping set, then the set
of unsatisfied check nodes is expected to be small as
well. Following an idea in the bit flipping algorithm
by Gallager [15], we select all the neighboring variable
nodes of the unsatisfied check nodes.

Note that these subset selection methods have marginal com-
putational overhead. The thresholding and oscillation condi-
tions can be examined during the BP iterations. To determine
whether the LLR value of the message bits has too much
oscillation, it does not have to store all the signs of the
LLRs. Instead, only one counter is needed for each message
bit to record the number of sign changes. Also, finding the
neighboring variable nodes of the unsatisfied check nodes only
requires one additional round of message-passing using the
hard decisions.

IV. EXPERIMENT RESULTS

For experimental purposes, the performance of the hybrid
decoder is compared with the pure BP decoder using randomly
generated irregular LDPC codes1 of block length n = 200
and rates 1/4 (k = 50), 3/8 (k = 75), and 1/2 (k =
100) transmitted though different binary symmetric channels
(BSCs) or additive white Gaussian noise (AWGN) channels.
For the LLR-TH and the LLR-OSC methods, the value of the
threshold is heuristically chosen to be 3.66 for maximizing the
probability of correct subset selection.

For the MCMC decoding stage, we chose the annealed block
Gibbs (ABG) decoder, since it has the fastest convergence in

1The LDPC codes were generated using the software devel-
oped by Radford Neal, which can be found on his website
https://www.cs.toronto.edu/∼radford/ldpc.software.html. Each code generated
has a fixed variable node degree of 3 and no 4-cycles.

the family of Gibbs decoders we previously studied [6]. The
general ABG decoding algorithm can be summarized in the
following steps.

• Initialize a starting point m(0) = (m
(0)
1 ,m

(0)
2 , . . . ,m

(0)
k ).

• On the t-th iteration (t = 1, 2, . . .),
◃ randomly pick a block of s coordinates B ⊂ [k].
◃ sample the coordinates in B according to the an-

nealed conditional marginal distribution M
(t)
B ∼

pα(mB |y,m(t−1)
¬B ).

◃ fix the remaining coordinates m
(t)
j = m

(t−1)
j for all

j ∈ [k]\B.
After the preprocessing of BP, the ABG decoder is initialized
by the message bits of the BP output M̂k

BP. Then, at each
iteration, the set of coordinates B to be sampled is chosen
randomly from the selected subset of variable nodes I ⊂ [k].
In our experiment, we set the annealing parameter α = 0.5
and blocksize s = 10. The maximal numbers of iterations for
the BP and MCMC steps are 20 and 1000, respectively.

In Figures 1(a) and 1(b), we compare the block error
rate (BLER) performance of the proposed hybrid decoders.
The subset selection scheme based on LLR thresholding and
oscillation performed uniformly better than the other two and
pure BP, achieving one order of magnitude improvement over
pure BP in the best case. Simulations also show that the
LLR-OSC subset selection scheme has a uniformly higher rate
of successful selection (i.e., the selected subset contains the
trapping set of the given channel output) of ∼ 80%, compared
to ∼ 60% for the UN-CHK method and ∼ 30% for the LLR-
TH method.

One interesting observation from these simulations is the
success in reducing the dimension of the state space of the
Markov chain via the subset selection step. Extrapolating from
the toy example of the (40, 20) LDPC code investigated earlier
in [6], the estimated number of iterations required by the
annealed block Gibbs decoder (without BP preprocessing)
to converge would be of order 1020 to 1025 for 100-bit
messages. With the aid of dimension reduction, however, the
BLER improvement happens within merely 1000 iterations.
Figure 2(a) and 2(b) display part of the statistics of subset
sizes. We notice that since the LLR-OSC method has the best
error rate performance, the average size of the subsets it selects
may be close the effective dimension of the state space of the
Markov chain. We also note that the speedup in convergence
may be not solely due to the smaller state space, but also
due to the better initialization of the Markov chain by BP
preprocessing.

Another notable remark from these experiments is the
dominance of the subset selection error over the decoding error
events of the hybrid method. Table I lists the percentage of
decoding error contributed by each of the proposed subset
selection schemes. Therefore, investigating how to design
better subset selection algorithms will be a future topic of
research in this thrust.

Finally, we study how the performance of the proposed
hybrid decoding algorithm scales with the block length. To this

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on January 17,2022 at 17:37:27 UTC from IEEE Xplore.  Restrictions apply. 



0.5 1 2 3 4 5 6 7
BSC crossover probability p

10-6

10-5

10-4

10-3

10-2

B
LE

R

BP
BP+MCMC (LLR-TH)
BP+MCMC (UN-CHK)
BP+MCMC (LLR-OSC)
(n,k)=(200,100)
(n,k)=(200,75)
(n,k)=(200,50)

x10-2

(a) BSCs

1 2 3 4 5
AWGN channel SNR (dB)

10-6

10-5

10-4

10-3

10-2

B
LE

R

BP
BP+MCMC (LLR-TH)
BP+MCMC (UN-CHK)
BP+MCMC (LLR-OSC)
(n,k)=(200,100)
(n,k)=(200,75)
(n,k)=(200,50)

(b) AWGN channels

Fig. 1. BLER performance of BP–ABG hybrid decoders for irregular LDPC codes of length 200.
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Fig. 2. Expected size of the selected subset for an irregular (200, 100) LDPC code.

end, we perform experiment on randomly generated irregular
LDPC codes of rate 1/2 and block lengths n = 100, 200, and
500. The LLR-OSC method is chosen for the subset selection.
The other parameter settings are kept the same. The results are
shown in Figure 3(a) and 3(b). From Figure 4(a) and 4(b), we
can observe the convergence of the ABG decoder for codes of
block lengths n = 100 and 200. However, for the (500, 250)
code the Markov chain does not seem to reach the convergence
within 1000 iterations. According to our simulation results, the
effective dimension of the state space grows approximately
linearly with the block length. This implies that the proposed
algorithm may have exponential time complexity.

V. CONCLUDING REMARKS

In this paper, we proposed a BP-MCMC hybrid decoding
method for decoding LDPC codes. Experimental results show
that with the aid of BP preprocessing, the state space of
the Markov chain can be effectively reduced. Hence, our
approach successfully widen the application of MCMC de-

coding to LDPC codes of short block lengths (in the order
of a few hundreds bits). However, the performance of the
hybrid decoding algorithm heavily relies on the correctness
of the subset selection step as well as the dimension of the
code. Therefore, designing better subset selection methods and
theoretical complexity analysis constitute interesting paths for
further investigation.
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