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ABSTRACT

A simple and scalable denoising algorithm is proposed that
can be applied to a wide range of source and noise models.
At the core of the proposed CUDE algorithm is symbol-by-
symbol universal denoising used by the celebrated DUDE al-
gorithm, whereby the optimal estimate of the source from an
unknown distribution is computed by inverting the empirical
distribution of the noisy observation sequence by a deep neu-
ral network, which naturally and implicitly aggregates multi-
ple contexts of similar characteristics and estimates the con-
ditional distribution more accurately. The performance of
CUDE is evaluated for grayscale images of varying bit depths,
which improves upon DUDE and its recent neural network
based extension, Neural DUDE.

Index Terms— Universal denoising, sparse context prob-
lem, context aggregation, plug-in approach.

1. INTRODUCTION

One of the simplest, yet most powerful approaches in data
processing (such as compression, prediction, filtering, and
estimation) of sequential data with spatiotemporal memory
(text, image, biological sequences, and time series) is to first
parse a given sequence according to a context model and then
apply symbol-by-symbol solutions for each context indepen-
dently. The discrete universal denoiser (DUDE) algorithm [1]
is a canonical example of this approach for denoising. With
context size k, the DUDE algorithm is a two-sided k-th order
sliding window denoiser, which decides each reconstruction
symbol as the Bayes optimal response with respect to a given
loss function and noise model, solely based on the counts of
noisy symbols in the noisy observation sequence without any
additional knowledge on the underlying sequence.

Due to its theoretical performance guarantee and low-
complexity implementation, DUDE has been studied in
various settings including continuous-alphabet [2, 3], non-
stationary [4], and online [5] denoising. It has also found
applications such as DNA sequence [6] and image [7–11]
denoising.

Most context-based algorithms, with DUDE being no ex-
ception, however, suffer the “sparse context” problem (see,
e.g. [11,12]). As we increase the context size k, which is nec-

essary to capture more spatiotemporal dependence in given
data, the number of contexts increases exponentially in k and
thus each context has too few samples to learn the structure
of the data reliably. As this problem becomes more severe
when the alphabet size is large, it poses a serious challenge
on grayscale image denoising with DUDE [9, 11, 13].

One remedy to this sparse context problem is context ag-
gregation that reduces the number of contexts by merging sta-
tistically or semantically similar contexts together. Image de-
noising using this context aggregation approach was devel-
oped as the iDUDE algorithm proposed in [9,11]. In iDUDE,
multiple contexts are explicitly aggregated based on vector
quantization as well as prior assumptions on natural images
previously used in lossless image compression [12]. The re-
sulting denoising performance and computational complexity
improves upon the naive k-context DUDE algorithm by or-
ders of magnitude, and are comparable to other state-of-the-
art grayscale image denoising algorithms.

As an alternative to an explicit reduction of a context
model, one can implicitly aggregate contexts by allowing
multiple contexts to “share” their samples. This idea was
materialized recently by the Neural DUDE algorithm [14]
that utilizes a neural network to learn a smooth mapping from
a given context to expected losses of all single-symbol de-
noisers, through which contexts are effectively aggregated.
Neural DUDE outperforms DUDE for a large context size k
without suffering the aforementioned sparse context problem.
On the downside, Neural DUDE has to learn all single-
symbol denoiser losses, which becomes intractable even with
a moderate alphabet size and makes it unfit for grayscale
images.

In this paper, we propose a more natural and perhaps more
principled approach to implicit context aggregation, in which
a simple feedforward deep neural network is trained from the
given noisy image to learn a smooth mapping from each con-
text to the conditional distribution of a noisy symbol condi-
tioned on the context. This conditional probability is then
plugged in to construct the Bayes optimal symbol-by-symbol
denoiser used in DUDE and iDUDE. Compared to Neural
DUDE, the neural network employed in the proposed context-
aggregated universal denoiser (CUDE) algorithm scales lin-
early in the alphabet size, which makes it suitable for denois-
ing of grayscale images and other larger alphabet problems.
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We remark that the idea of learning the contextual condi-
tional distribution via neural networks and plugging in a cor-
responding Bayes optimal response to a given data processing
problem is not new. For example, in the previous work [15],
the conditional distribution of a binary channel information
sequence was learned adaptively for channel equalization us-
ing a neural network with structure and training objective sim-
ilar to ours.

Throughout this paper, we use xn to denote a length-n
sequence (x1, x2, . . . , xn), and xji to denote its subsequence
(xi, xi+1, . . . , xj). A random variable is denoted by an upper-
case symbol, and a corresponding lowercase symbol denotes
its realization. The probability mass function (pmf) of a ran-
dom variable X ∈ X is denoted by P{X = x} = p(x) and
is often identified as a vector in the simplex ∆|X |. Finally,
1z ∈ {0, 1}|Z| denotes the one-hot encoding vector of z ∈ Z
whose z-th coordinate is 1 and others are 0.

2. PROBLEM FORMULATION

We first describe the problem in the one-dimensional case,
and discuss how it can be generalized in higher dimensions
later. We follow the standard definition of universal denois-
ing in [1]. Let X , Z , and X̂ denote the alphabets of the clean
source, the noisy observation, and the reconstruction symbol,
respectively. Suppose that there is an underlying hidden se-
quence of clean symbolsXn ∈ Xn emitted from an unknown
stationary distribution, which is corrupted by a discrete mem-
oryless channel Π(z|x) to result in a noisy observation se-
quence Zn. A denoiser x̂n(zn) is a mapping from Zn to a
reconstruction sequence X̂n = x̂n(Zn) with associated cu-
mulative loss

∑n
i=1 Λ(Xi, X̂i), where Λ : X × X̂ → [0,∞)

is a prespecified loss function. We assume that Π is known
and, when written in a matrix form, has a right inverse Π†.

We note that the aforementioned stochastic setting can
be relaxed to the semistochastic setting, in which there is no
probabilistic assumption on the clean source sequence xn.

3. REVIEW OF THE DUDE ALGORITHM

We first assume that the distribution of (Xn, Zn) is known.
For a given context size k, let Ci := (Zi−1

i−k , Z
i+k
i+1 ) be a two-

sided balanced context consisting of k symbols on the left
and k symbols on the right of the symbol Zi. For each po-
sition i = 1, 2, . . . , n, consider the Bayes optimal denoiser
x̂∗i (ci, zi) based on the observation {Ci = ci, Zi = zi}:

x̂∗i (ci, zi) = arg min
x̂∈X̂

E[Λ(Xi, x̂)|Ci = ci, Zi = zi], (1)

where the expectation is taken with respect to p(xi|ci, zi),
which can be found from p(zi|ci) by the Bayes rule and the
inverse channel Π†. This denoiser can be readily shown to
minimize the expected cumulative loss

∑n
i=1 E Λ(Xi, X̂i)

among all denoisers x̂i that use zi+k
i−k = (ci, zi). Therefore, if

the stationary pmf p(zi|ci) were known, the optimal denoiser
could be found immediately.

Without any prior knowledge of the distribution, the
DUDE algorithm follows this symbol-by-symbol Bayes opti-
mal denoising approach by using the empirical distribution

p̂emp(z |c) =
|{j : cj = c, zj = z}|
|{j : cj = c}|

(2)

in place of the true p(z|c) for each position i. Accordingly,
the algorithm runs in two passes. In the first pass, scanning
through the data once, it finds the empirical conditional pmf
p̂emp(z|c) in (2) by counting the number of occurrences of
noisy symbols for each context c. In the second pass, it finds
the Bayes optimal denoiser (1) under p̂(xi|ci, zi), which can
be computed from the empirical conditional pmf p̂emp(zi|ci)
and the inverse channel matrix Π†. This computation can be
performed easily by a few matrix–vector operations (see, for
example, eq. (2) in [14].)

The DUDE algorithm has been shown to be universal in
the sense that for any underlying stationary process it asymp-
totically attains the Bayes optimal performance, provided that
k grows appropriately with n. A similar universality result
has been also established for the semistochastic setting [1].

The two-sided balanced context model can be easily
extended to other context models. For example, a square-
window neighborhood of side length 2k + 1 centered at each
symbol can be used for two-dimensional images. For a de-
tailed discussion on the choice of a context model in higher
dimensions, we refer the reader to [16].

4. THE PROPOSED CUDE ALGORITHM

Our CUDE algorithm consists of two steps. First, it learns
the conditional distribution p(z|c) using a neural network. It
then plugs in the estimated distribution to find the symbol-by-
symbol Bayes optimal denoiser (1), as in DUDE.

4.1. Conditional Distribution Learning Network

As before, suppose that a context model C of order k is used
(e.g., the two-sided context model or the square-window con-
text model). We introduce a feedforward fully connected
neural network with multiple layers p̂w : C → ∆|Z| pa-
rameterized by the weight vector w, which is trained with
the training data {(ci,1zi)}ni=1, solely based on the noisy
observation sequence zn, to learn the stationary conditional
distribution p(z|c), under the cross entropy loss function
H(p‖q) := −

∑
z∈Z p(z) log q(z). Equivalently, the net-

work training minimizes

L(w|zn) :=
1

n

n∑
i=1

H(1zi‖p̂w(z |ci)). (3)

To force the output to be a proper probability distribution, the
softmax layer of dimension |Z| is placed at the output layer.
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The context aggregating behavior of our conditional dis-
tribution learning network can be explained by rewriting the
objective function (3) as

1

n

n∑
i=1

p̂emp(c)(D(p̂emp(z |c)‖p̂w(z |c)) +H(p̂emp(z |c))).

Here we use H(p‖q) = D(p‖q) + H(p), where D(p‖q) =∑
z∈Z p(z) log(p(z)/q(z)) denotes the relative entropy be-

tween p and q, and H(p) = −
∑

z∈Z p(z) log p(z) denotes
the entropy of p. As the second term is independent of w,
our neural network can be trained to estimate the conditional
distribution to minimize the first term, which captures the dis-
crepancy between the empirical distribution and the trained
distribution. This term converges to the conditional relative
entropy E[D(p(z|C)‖p̂w(z|C))] almost surely in the sample
limit by Birkhoff’s ergodic theorem [17]. Due to the finite
capacity of the neural network and the continuity of the map-
ping c 7→ p̂w(z|c), the network is expected to assign similar
conditional probabilities to close contexts, effectively aggre-
gating multiple contexts.

4.2. Context-Based Symbol-by-Symbol Denoising

After training the network, we use the trained conditional dis-
tribution p̂w(z|c) for symbol-by-symbol denoising by finding
the Bayes optimal denoiser in (1). This plug-in approach pro-
vides a complete separation between probability learning and
the denoising operation.

5. COMPARISON WITH NEURAL DUDE

The Neural DUDE algorithm [14] is a variant of DUDE that
was designed to select the optimal symbol-by-symbol de-
noiser for a given context based on a neural network. Neural
DUDE trains a single fully connected feedforward neural
network qw : C → ∆|S|, which maps a context to a proba-
bility vector over the collection S := {s : Z → X̂} of all
single-symbol denoisers. After training the parameter w with
the training data constructed from zn and a new loss function
over Z × S , the output probability distribution qw(s|c) is
used as the score vector of each single-symbol denoiser for a
context c as in classification (see, e.g., [18, Ch. 5]). Neural
DUDE then selects the single-symbol denoiser of the highest
score and uses it to denoise the given noisy symbol.

The advantage of CUDE over Neural DUDE lies mostly
in its simple and flexible plug-in architecture. CUDE uses a
smaller output layer that scales linearly in the alphabet size
|Z|, while the output layer in Neural DUDE scales as |S| =

|Z||X̂ | (see Fig. 1 for a comparison of the neural networks
used in CUDE and Neural DUDE). As a concrete example,
when |Z| = |X̂ | = 4 (quaternary image), the network for
CUDE has the output layer dimension of 4, whereas the di-
mension for Neural DUDE is 44 = 256. Hence, CUDE can be

(a) CUDE (b) Neural DUDE

Fig. 1: Comparison of neural networks used in CUDE and
Neural DUDE under the two-sided balanced context model
of order k = 4.

implemented in lower complexity for a large alphabet, while
achieving a faster convergence to the desired performance.

6. EXPERIMENTS

Experiments were carried out with Python 3.6 and Keras
package with Theano backend [19]. We trained the networks
with six hidden layers of 40 rectified linear unit (ReLU) ac-
tivations for Neural DUDE and CUDE by the optimization
method Adam [20] following the same setting such as mini-
batch size in [14]. Raw alphabets were used for both cases,
instead of the one-hot encoding used in [14].

To compare CUDE with DUDE and Neural DUDE, we
performed denoising experiments with publicly available
standard test images such as Barbara, boat, cameraman, and
Lena of size 512 × 512 (e.g., [21]), scaled down to the bit
depth of 2 (alphabet size 4). We chose the quaternary al-
phabet for our simulation because DUDE and Neural DUDE
can only handle small alphabets. We considered an image
as a one-dimensional sequence by raster scan, and used the
balanced two-sided context model of order k = 1, 2, . . . , 40.
The images were corrupted by the salt and pepper (S&P)
noise [11] with error probability δ = 10% and 30%, and by
the quaternary symmetric channel (QSC) noise with error
probability δ = 10% and 30%. The squared-error loss was
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Fig. 2: PSNR plot for the quaternary boat image corrupted by
S&P noise (δ = 10% and 30%) with different context orders.
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(a) Original image (b) Noisy image
8.3dB

(c) CUDE (k=1)
24.1dB

(d) IMSM prefiltered image
25.6dB

(e) Iterated CUDE (k=15)
29.9dB

Fig. 3: Denoising of the grayscale Barbara image corrupted by S&P noise with δ = 50%. Two-dimensional square-window
contexts were used. The red and blue patches specified in each image are magnified and shown below.

assumed. Fig. 2 shows the plot of PSNRs of the different
context order k for the boat image corrupted by S&P noise,
and CUDE consistently outperforms Neural DUDE. Denois-
ing results for different images and noise models exhibit a
similar trend, as summarized in Table 1. Note that the gain
in performance as well as computational complexity would
become more pronounced as the alphabet size grows.

Unlike DUDE and Neural DUDE that cannot be scaled
to large alphabets due to either high complexity or the sparse
context problem, CUDE can be applied directly to grayscale
image denoising. To demonstrate the potential of CUDE for
grayscale images, we performed a denoising experiment for
the grayscale Barbara image of the original bit depth 8 cor-
rupted by S&P noise with δ = 50% in Fig. 3. In this experi-
ment, we used two-dimensional square context model, which
yields a better performance than one-dimensional model in
general. Fig. 3(c) shows the reconstructed image using CUDE
under the best context order of k = 1 (8 pixels surrounding
a given pixel), and the attained PSNR. As is clear from the
image, CUDE was able to denoise the corrupted image only
roughly, leaving numerous visible spots. It was generally ob-

Noise Algorithms Barbara Boat Cameraman Lena

S&P
(10%)

DUDE 21.3 (3) 23.4 (2) 25.8 (2) 23.3 (2)
Neural DUDE 21.9 (30) 23.7 (10) 25.8 (16) 24.0 (21)

CUDE 23.0 (20) 24.4 (16) 27.8 (5) 25.3 (35)

S&P
(30%)

DUDE 13.4 (2) 16.4 (2) 19.0 (2) 14.7 (2)
Neural DUDE 16.3 (23) 18.0 (11) 19.0 (5) 16.8 (23)

CUDE 17.2 (38) 19.1 (20) 20.3 (17) 17.9 (34)

QSC
(10%)

DUDE 20.5 (3) 22.0 (2) 24.4 (2) 22.4 (2)
Neural DUDE 20.7 (26) 21.9 (5) 23.9 (3) 21.9 (27)

CUDE 21.5 (36) 22.6 (11) 25.2 (10) 23.1 (6)

QSC
(30%)

DUDE 14.7 (3) 16.3 (2) 16.7 (2) 15.7 (3)
Neural DUDE 16.3 (10) 17.8 (13) 18.7 (16) 17.6 (17)

CUDE 16.5 (18) 18.2 (16) 19.1 (15) 17.9 (15)

Table 1: Comparison of denoising performance in PSNR(dB)
attained by DUDE, Neural DUDE, and CUDE for quaternary
scaled images corrupted by S&P or QSC noise with δ = 10%
and 30%. The number in the parentheses indicates the best
order k that achieves the PSNR presented.

served that in low SNR as in this case, excessive aggregation
of contaminated contexts degraded the performance.

In order to mitigate this issue, we extended the CUDE al-
gorithm with prefiltering followed by iterated denoising. This
approach was developed originally in [11], where the iterated
median selective median filter (IMSM) tailored for S&P noise
was used as a prefilter for initial, low-quality denoising, and a
context-aggregated DUDE algorithm was used iteratively as
a main denoiser. Our conditional distribution learning frame-
work can readily incorporate prefiltered images to enhance
the quality of context aggregation. Let yn be a cleaner version
of the original noisy observation zn, obtained by prefiltering
or iterated denoising. Instead of learning p(zi|ci), we can
learn the conditional distribution p(zi|ci(yn)) of zi given the
corresponding context at position i in yn. This can be imple-
mented by training our network with {(ci(yn),1zi}ni=1. Un-
der this modification, we performed IMSM prefiltering ini-
tially on the same noisy image and iteratively applied CUDE.
Fig. 3(d) shows the prefiltered image by the IMSM filter (no
CUDE yet), and Fig. 3(e) shows the denoised image obtained
after 5 iterations of CUDE under the context order of k = 15,
initially starting from Fig. 3(d). Although the IMSM prefilter
destroys some image structures and results in a blurry image
(see the magnified patches below the image), the subsequent
CUDE iterations recover the texture details in the original
image. It can be also noted that, compared to CUDE-only
denoising, larger contexts are utilized without performance
degradation. According to our preliminary results (data not
shown), this extension of CUDE achieves denoising perfor-
mance comparable to that of iDUDE, especially in a low SNR
regime, although further research and more extensive experi-
ments are called for in high SNR and other noise models.

Tuning the context order can be performed by visual as-
sessment of the resulting images. An alternative was pro-
posed in [14] based on the observation that the estimated loss
for Neural DUDE concentrates tightly around the true loss.
The same phenomenon was also observed for CUDE (data not
shown). A theoretical development on the CUDE loss estima-
tor and its concentration behavior will be reported elsewhere.
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