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Abstract— The capacity of a class of deterministic relay chan-
nels with the transmitter input X , the receiver output Y , the
relay output Y1 = f(X,Y ), and a separate communication link
from the relay to the receiver with capacity R0, is shown to be

C(R0) = max
p(x)

min{I(X;Y ) +R0, I(X;Y, Y1)}.

Thus every bit from the relay is worth exactly one bit to the
receiver. Two alternative coding schemes are presented that
achieve this capacity. The first scheme, “hash-and-forward”, is
based on a variation of the usual random binning on the relay
outputs, while the second scheme uses the usual “compress-and-
forward”. In fact, these two schemes can be combined to give a
class of optimal coding schemes. As a corollary, this relay capacity
result confirms a conjecture by Ahlswede and Han on the capacity
of a channel with rate-limited state information at the decoder
in the special case when the channel state is recoverable from
the channel input and output.

I. INTRODUCTION WITH GAUSSIAN RELAY

Consider the Gaussian relay problem shown in Figure 1.
Suppose the receiver Y and the relay Y1 each receive informa-
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Fig. 1. Gaussian relay channel with a noiseless link.

tion about the transmitted signal X of power P . Specifically,
let

Y = X + Z

Y1 = X + Z1,

where (Z,Z1) have correlation coefficient ρ and are jointly
Gaussian with zero mean and equal variance EZ2 = EZ2

1 =
N . What should the relay Y1 say to the ultimate receiver Y ?
If the relay sends information at rate R0, what is the capacity
C(R0) of the resulting relay channel?

We first note that the capacity from X to Y , ignoring the
relay, is

C(0) =
1
2

log
(

1 +
P

N

)
bits per transmission.

The channel from the relay Y1 to the ultimate receiver Y has
capacity R0. This relay information is sent on a side channel

that does not affect the distribution of Y , and the information
becomes freely available to Y as long as it doesn’t exceed
rate R0. We focus on three cases for the noise correlation ρ:
ρ = 1, 0, and −1.

If ρ = 1, then Y1 = Y , the relay is useless, and the capacity
of the relay channel is C(R0) = (1/2) log(1 +P/N) = C(0)
for all R0 ≥ 0.

Now consider ρ = 0, i.e., the noises Z and Z1 are
independent. Then the relay Y1 has no more information about
X than does Y , but the relay furnishes an independent look
at X . What should the relay say to Y ? This capacity C(R0),
mentioned in [3], remains unsolved and typifies the primary
open problem of the relay channel.

How about the case ρ = −1? This is the problem that we
solve and generalize in this note. Here the relay, while having
no more information than the receiver Y , has much to say,
since knowledge of Y and Y1 allows the perfect determination
of X . However, the relay is limited to communication at rate
R0. Thus, by a simple cut-set argument, the total received
information is limited to C(0) + R0 bits per transmission.
We argue that this rate can actually be achieved. Since it is
obviously the best possible rate, the capacity for ρ = −1 is
given as

C(R0) = C(0) +R0.

(See Figure 2.) Every bit sent by the relay counts as one bit of

0 R0

C(0)

C(R0)

Fig. 2. Gaussian relay capacity C(R0) vs. the relay information rate R0.

information, despite the fact that the relay doesn’t know what
it is doing.

We present two distinct methods of achieving the capacity.
Our first coding scheme consists of hashing Y n1 into nR0 bits,
then checking the 2nC(R0) codewords Xn(W ), W ∈ 2nC(R0),
one by one, with respect to the ultimate receiver’s output
Y n and the hash check of Y n1 . More specifically, we check
whether the corresponding estimated noise Ẑn=Y n−Xn(W )
is typical, and then check whether the resulting Y n1 (W ) =
Xn(W ) + Ẑn satisfies the hash of the observed Y n1 . Since
the typicality check reduces the uncertainty in Xn(W ) by a
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factor of 2nC(0) while the hash check reduces the uncertainty
by 2nR0 , we can achieve the capacity C(R0) = C(0) +R0.

It turns out hashing is not the unique way of achieving
C(R0) = C(0) + R0. We can compress Y n1 into Ŷ n1 using
nR0 bits with Y n as side information in the same manner
as in Wyner–Ziv source coding [11], which requires R0 =
I(Y1; Ŷ1|Y ). Thus, nR0 bits are sufficient to reveal Ŷ n1 to
the ultimate receiver Y n. Then, based upon the observation
(Y n, Ŷ n1 ), the decoder can distinguish 2nR messages if

R < R∗ := I(X;Y, Ŷ1).

For this scheme, we now choose the appropriate distribution
of Ŷ1 given Y1. Letting Ŷ1 = Y1 + U, where U ∼ N(0, σ2)
is independent of (X,Z,Z1), we can obtain the following
parametric expression of R∗(R0) over all σ2 > 0:

R∗(σ2) = I(X;Y, Ŷ1) =
1
2

log
(

(P+N)σ2 + 4PN
Nσ2

)
(1)

R0(σ2) = I(Y1; Ŷ1|Y ) =
1
2

log
(

(P+N)σ2 + 4PN
(P+N)σ2

)
. (2)

Setting R0(σ2
0) = R0 in (2), solving for σ2

0 , and inserting it
in (1), we find the achievable rate is given by

R∗(σ2
0) = R0 +

1
2

log
(

1 +
P

N

)
= C(0) +R0,

so “compress-and-forward” also achieves the capacity.
Inspecting what it is about this problem that allows this

solution, we see that the critical ingredient is that the relay
output Y1 = f(X,Y ) is a deterministic function of the input
X and the receiver output Y . This leads to the more general
result stated in Theorem 1 in the next section.

II. MAIN RESULT

We consider the following relay channel with a noiseless
link as depicted in Figure 3. We define a relay channel with

∈ [2nR]
W Xn(W ) Y n

J(Y n1 ) ∈ [2nR0 ]

Ŵ (Y n, J(Y n1 ))

Y n1

∈ [2nR]

Fig. 3. Relay channel with a noiseless link.

a noiseless link (X , p(y, y1|x),Y × Y1, R0) as the channel
where the input signal X is received by the relay Y1 and the
receiver Y through a channel p(y, y1|x), and the relay can
communicate to the receiver over a separate noiseless link
of rate R0. We wish to communicate a message index W ∈
[2nR] = {1, 2, . . . , 2nR} reliably over this relay channel with
a noiseless link.1 We specify a (2nR, n) code with an encoding
function Xn : [2nR]→ Xn, a relay function J : Yn1 → [2nR0 ],
and the decoding function Ŵ : Yn × [2nR0 ] → [2nR].
The probability of error is defined by P

(n)
e = Pr{W 6=

Ŵ (Y n, J(Y n1 )}, with the message W distributed uniformly
over [2nR]. The capacity C(R0) is the supremum of the rates
R for which P (n)

e can be made to tend to zero as n→∞.

1Henceforth, the notation i ∈ [2nR] is interpreted as i ∈ {1, . . . , 2nR}.

We state our main result.

Theorem 1. For the relay channel (X , p(y, y1|x),Y × Y1)
with a noiseless link of rate R0 from the relay to the receiver,
if the relay output Y1 = f(X,Y ) is a deterministic function
of the input X and the receiver output Y , then the capacity
is given by

C(R0) = max
p(x)

min{I(X;Y ) +R0, I(X;Y1, Y )}. (3)

The converse is immediate from the max-flow min-cut
theorem on information flow [6, Sec. 15.10].

The achievability has several interesting features. First, as
we will show in the next section, a novel application of random
binning achieves the cut-set bound. In this coding scheme, the
relay simply sends the hash index of its received output Y n1 .

What is perhaps more interesting is that the same capacity
can be achieved also via the well-known “compress-and-
forward” coding scheme of Cover and El Gamal [4]. In this
coding scheme, the relay compresses its received output Y n1 as
in Wyner–Ziv source coding with the ultimate receiver output
Y n as side information.

In both coding schemes, every bit of relay information
carries one bit of information about the channel input (up to the
maximal information flow I(X;Y, Y1)), even though the relay
does not know the channel input. And the relay information
can be summarized in a manner completely independent
of geometry (random binning) or completely dependent on
geometry (random covering).

More surprisingly, we can partition the relay space using
both random binning and random covering. Thus, a com-
bination of “hash-and-forward” and “compress-and-forward”
achieves the capacity.

The next section proves the achievability using the “hash-
and-forward” coding scheme. The “compress-and-forward”
scheme is deferred to Section V and the combination will be
discussed in Sections VI and VII.

III. PROOF OF ACHIEVABILITY (HASH AND FORWARD)

We combine the usual random codebook generation with list
decoding and random binning of the relay output sequences:

Codebook generation. Generate 2nR independent code-
words Xn(w) of length n according to

∏n
i=1 p(xi). Indepen-

dently, assign all possible relay output sequences in |Y1|n into
2nR0 bins uniformly at random.

Encoding. To send the message index w ∈ [2nR], the
transmitter sends the codeword Xn(w). Upon receiving Y n1 ,
the relay sends the bin index b(Y n1 ) to the receiver.

Decoding. Let A(n)
ε [6, Section 7.6] denote the set of jointly

typical sequences (xn, yn) ∈ Xn × Yn under the distribution
p(x, y). The receiver constructs a list

L(Y n) = {Xn(w) : w ∈ [2nR], (Xn(w), Y n) ∈ A(n)
ε }

of codewords Xn(w) that are jointly typical with Y n. Since
the relay output Y1 is a deterministic function of (X,Y ), then
for each codeword Xn(w) in L(Y n), we can determine the
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corresponding relay output Y n1 (w) = f(Xn(w), Y n) exactly.
The receiver declares ŵ = w was sent if there exists a
unique codeword Xn(w) with the corresponding relay bin
index b(f(Xn(w), Y n)) matching the true bin index b(Y n1 )
received from the relay.

Analysis of the probability of error. Without loss of gener-
ality, assume W = 1 was sent. The sources of error are as
follows:

(a) The pair (Xn(1), Y n) is not typical. The probability of
this event vanishes as n tends to infinity.

(b) The pair (Xn(1), Y n) is typical, but there is more than
one relay output sequence Y n1 (w) = f(Xn(w), Y n)
with the observed bin index, i.e., b(Y n1 (1)) = b(Y n1 (w)).
By Markov’s inequality, the probability of this event is
upper bounded by the expected number of codewords
in L(Y n) with the corresponding relay bin index equal
to the true bin index b(Y n1 (1)). Since the bin index is
assigned independently and uniformly, this is bounded
by 2nR 2−n(I(X;Y )−ε) 2−nR0 , which vanishes asymptot-
ically as n→∞ if R < I(X;Y ) +R0 − ε.

(c) The pair (Xn(1), Y n) is typical and there is exactly
one Y n1 (w) matching the true relay bin index, but
there is more than one codeword Xn(w) that is jointly
typical with Y n and corresponds to the same relay
output Y n1 , i.e., f(Xn(1), Y n) = f(Xn(w), Y n). The
probability of this kind of error is upper bounded by
2nR 2−n(I(X;Y,Y1)−ε), which vanishes asymptotically if
R < I(X;Y, Y1)− ε.

IV. RELATED WORK

The general relay channel was introduced by van der
Meulen [10]. We refer the readers to Cover and El Gamal [4]
for the history and the definition of the general relay channel,
and Kramer et al. [9], El Gamal et al. [8], and the references
therein for recent progress.

We recall the following achievable rate for the general relay
channel investigated in [4].

Theorem 2. The capacity of the relay channel (X × X1,
p(y, y1|x, x1),Y × Y1) is lower bounded by

C ≥ sup min{I(X;Y, Ŷ1|X1, U) + I(U ;Y1|X1, V ),

I(X,X1;Y )− I(Ŷ1;Y1|X,X1, Y, U)}
where the supremum is over all p(u, v, x, x1, y, y1, ŷ1) =
p(v)p(u|v)p(x|u)p(x2|v)p(y, y1|x, x1)p(ŷ1|x1, y1, u) subject
to the constraint I(Y1; Ŷ1|X1, Y, U) ≤ I(X1;Y |V ).

Roughly speaking, the achievability of the rate in Theorem 2
is based on a superposition of “decode-and-forward” (in which
the relay decodes the message and sends it to the receiver)
and “compress-and-forward” (in which the relay compresses
its own received signal without decoding and sends it to the
receiver). This coding scheme turns out to be optimal for many
special cases; Theorem 2 reduces to the capacity when the
relay channel is degraded or reversely degraded [4] and when
there is feedback from the receiver to the relay [4].

Furthermore, for the semideterministic relay channel with
the sender X , the relay sender X1, the relay receiver Y1 =
f(X,X1), and the receiver Y , El Gamal and Aref [7] showed
that Theorem 2 reduces to the capacity given by

C = max
p(x,x1)

min{I(X,X1;Y ),H(Y1|X1) + I(X;Y |X1, Y1)}.
(4)

Although this setup looks similar to ours, neither (4) nor
Theorem 1 implies the other. In a sense, our model is more
deterministic in the relay-to-receiver link, while the El Gamal–
Aref model is more deterministic in the sender-to-relay link.

A natural question arises whether our Theorem 1 follows
from Theorem 2 as a special case. We first note that in
the coding scheme described in Section II, the relay does
neither “decode” nor “compress”, but instead “hashes” its
received output. Indeed, this “hash-and-forward” appears to
be a different method of summarizing the relay’s information.
However, “hash-and-forward” is not the unique coding scheme
achieving the capacity (3). In the next section, we show that
“compress-and-forward” can achieve the same rate.

V. COMPRESS AND FORWARD

Theorem 1 was proved using “hash-and-forward” in Sec-
tion III. Here we argue that the capacity in Theorem 1 can
also be achieved by “compress-and-forward”.

We start with a special case of Theorem 2. The “compress-
and-forward” part (cf. [4, Theorem 6]), combined with the
relay-to-receiver communication of rate R0, gives the achiev-
able rate

R∗(R0) = sup I(X;Y, Ŷ1), (5)

where the supremum is over all joint distributions of the form
p(x)p(y, y1|x)p(ŷ1|y1) satisfying

I(Y1; Ŷ1|Y ) ≤ R0. (6)

Here the inequality (6) comes from the Wyner–Ziv com-
pression [11] of the relay’s output Y n1 based on the side
information Y n. The achievable rate (5) captures the idea
of decoding Xn based on the receiver’s output Y n and the
compressed version Ŷ n1 of the relay’s output Y n1 .

We now derive the achievability of the capacity

C(R0) = max
p(x)

min{I(X;Y, Y1), I(X;Y ) +R0}

from an algebraic reduction of the achievable rate given by (5)
and (6). First observe that, because of the deterministic rela-
tionship Y1 = f(X,Y ), we have I(X; Ŷ1|Y ) ≥ I(Y1; Ŷ1|Y ).
Also note that, for any triple (X,Y, Y1), if H(Y1|Y ) > R0,
there exists a distribution p(ŷ1|y1) such that (X,Y )→ Y1 →
Ŷ1 and I(Y1; Ŷ1|Y ) = R0.

Henceforth, maximums are taken over joint distributions of
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the form p(x)p(y, y1|x)p(ŷ1|y1) with Y1 = f(X,Y ). We have

R∗(R0)

= sup{I(X;Y, Ŷ1) : I(Y1; Ŷ1|Y ) ≤ R0}
≥ sup{I(X;Y, Ŷ1) : I(Y1; Ŷ1|Y ) = R0, H(Y1|Y ) > R0}
≥ sup{I(X;Y ) + I(Y1; Ŷ1|Y ) : I(Y1; Ŷ1|Y ) = R0,

H(Y1|Y ) > R0}
= sup{I(X;Y ) +R0 : I(Y1; Ŷ1|Y ) = R0,H(Y1|Y ) > R0}
= max{I(X;Y ) +R0 : H(Y1|Y ) > R0}.

On the other hand,

R∗(R0)

= sup{I(X;Y, Ŷ1) : I(Y1; Ŷ1|Y ) ≤ R0}
≥ sup{I(X;Y, Ŷ1) : I(Y1; Ŷ1|Y ) ≤ R0,H(Y1|Y ) ≤ R0}
≥ sup{I(X;Y, Ŷ1) : Ŷ1 = Y1,H(Y1|Y ) ≤ R0}
= sup{I(X;Y, Y1) : Ŷ1 = Y1,H(Y1|Y ) ≤ R0}
= max{I(X;Y, Y1) : H(Y1|Y ) ≤ R0}.

Thus R∗(R0) ≥ maxp(x) min{I(X;Y )+R0, I(X;Y, Y1)}. In
words, “compress-and-forward” achieves the capacity.

VI. DISCUSSION: RANDOM BINNING VS. RANDOM
COVERING

It is rather surprising that both “hash-and-forward” and
“compress-and-forward” optimally convey the relay informa-
tion to the receiver, especially because of the dual nature
of compression (random covering) and hashing (random bin-
ning). (And the hashing in “hash-and-forward” should be
distinguished from the hashing in Wyner–Ziv source coding.)
The example in Figure 4 illuminates the difference between the
two coding schemes. Here the binary input X ∈ {0, 1} is sent

R0

X Y

S ∼ Bern(p)

Fig. 4. Binary symmetric channel with rate-limited state information at
receiver.

over a binary symmetric channel with cross-over probability
p, or equivalently, the channel output Y ∈ {0, 1} is given by
Y = X + S (mod 2), where the binary additive noise S ∼
Bern(p) is independent of the input X . With no information
on S available at the transmitter or the receiver, the capacity
is C(0) = 1−H(p).

Now suppose there is an intermediate node which observes
S and “relays” that information to the decoder through a side
channel of rate R0. Since S = X + Y is a deterministic
function of (X,Y ), from Theorem 1, C(R0) = 1−H(p)+R0

for 0 ≤ R0 ≤ H(p).
There are two ways of achieving the capacity. First, hashing.

The relay hashes the entire binary {0, 1}n into 2nR0 bins, then
sends the bin index b(Sn) of Sn to the decoder. The decoder
checks whether a specific codeword Xn(w) is typical with the

received output Y n and then whether Sn(w) = Xn(w) + Y n

matches the bin index.
Next, covering. The relay compresses the state sequence

Sn using the binary lossy source code with rate R0. More
specifically, we use the standard backward channel S = Ŝ+U
for the binary rate distortion problem [6, Sec. 10.3.1]. Here
Ŝ ∈ {0, 1} is the reconstruction symbol and U ∼ Bern(q) is
independent of Ŝ (and X) with parameter q satisfying R0 =
I(S; Ŝ) = H(p) −H(q). Thus, using nR0 bits, the ultimate
receiver can reconstruct Ŝn.

Finally, decoding Xn ∼ Bern(1/2) based on (Y n, Ŝn), we
can achieve the rate I(X;Y, Ŝ) = I(X;X + S, S + U) ≥
I(X;X + U) = 1 − H(q) = 1 − H(p) + R0. In summary,
the optimal relay can partition its received signal space into
either random bins or Hamming spheres.

VII. COMPRESS, HASH, AND FORWARD

Here we show that a combination of “compress-and-
forward” and “hash-and-forward” can achieve the capacity

C(R0) = max
p(x)

min{I(X;Y, Y1), I(X;Y ) +R0}

for the setup in Theorem 1.
First we fix an arbitrary conditional distribution p(ŷ1|y1)

and generate 2n(I(Y1;Ŷ1)+ε) codeword sequences Ŷ n1 (i), i =
[2n(I(Y1;Ŷ1)+ε)], each i.i.d. ∼ p(ŷ1). Then, with high proba-
bility, a typical Y n1 has a jointly typical cover Ŷ n1 (Y n1 ). (If
there is more than one, pick the one with the smallest index.
If there is none, assign Ŷ n1 (1).)

There are two cases to consider, depending on our choice
of p(ŷ1|y1) (and the input codebook distribution p(x)). First
suppose

I(Y1; Ŷ1|Y ) ≥ R0. (7)

If we treat Ŷ n1 (Y n1 ) as the relay output, Ŷ n1 is a deterministic
function of Y n1 and thus of (Xn, Y n). Therefore, we can use
“hash-and-forward” on Ŷ n1 sequences. (Markov lemma [2]
justifies treating Ŷ n1 (Y n1 ) as the output of the memoryless
channel p(y, ŷ1|x).) This implies that we can achieve

R∗(R0) = min{I(X;Y ) +R0, I(X;Y, Ŷ1)}.
But from (7) and the functional relationship between Y1 and
(X,Y ), we have I(X;Y, Ŷ1) ≥ I(X;Y ) + I(Y1; Ŷ1|Y ) ≥
I(X;Y ) +R0. Therefore, R∗(R0) = I(X;Y ) +R0, which is
achieved by the above “compress-hash-and-forward” scheme
with p(x) and p(ŷ1|y1) satisfying (7).

Alternatively, suppose

I(Y1; Ŷ1|Y ) ≤ R0. (8)

Then, we can easily achieve the rate I(X;Y, Ŷ1) by the
“compress-and-forward” scheme. The rate R0 ≥ I(Y1; Ŷ1|Y )
suffices to convey Ŷ n1 to the ultimate receiver.

But we can do better by using the remaining ∆ = R0 −
I(Y1; Ŷ1|Y ) bits to further hash Y n1 itself. (This hashing of Y n1
should be distinguished from that of Wyner–Ziv coding which
bins Ŷ n1 codewords.) By treating (Y, Ŷ1) as a new ultimate
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receiver output and Y1 as the relay output, “hash-and-forward”
on top of “compress-and-forward” can achieve

R∗(R0) = min{I(X;Y, Ŷ1) + ∆, I(X;Y, Ŷ1, Y1)}. (9)

Since I(X;Y, Ŷ1) + ∆ ≥ I(X;Y, Ŷ1) − I(X; Ŷ1|Y ) + R0 =
I(X;Y ) +R0 and I(X;Y, Ŷ1, Y1) = I(X;Y, Y1), (9) reduces
to

R∗(R0) = min{I(X;Y ) +R0, I(X;Y, Y1)}.
Thus, by maximizing over input distributions p(x), we can
achieve the capacity for either case (7) or (8).

It should be stressed that our combined “compress-hash-
and-forward” is optimal, regardless of the covering distribution
p(ŷ1|y1). In other words, any covering (geometric partitioning)
of Y n1 space achieves the capacity if properly combined with
hashing (nongeometric partitioning) of the same space. In
particular, taking Ŷ1 = Y1 leads to “hash-and-forward” while
taking the optimal covering distribution p∗(ŷ1|y1) for (5) and
(6) in Section V leads to “compress-and-forward”.

VIII. AHLSWEDE–HAN CONJECTURE

In this section, we show that Theorem 1 confirms the
following conjecture by Ahlswede and Han [1] on the capacity
of channels with rate-limited state information at the receiver,
for the special case in which the state is a deterministic
function of the channel input and the output.

First, we discuss the general setup considered by Ahlswede
and Han, as shown in Figure 5. Here we assume that the

∈ [2nR]
p(y|x, s)

Sn ∼ Qn
i=1 p(si)

Y nXn(W )W

J(Sn) ∈ [2nR0 ]

Ŵ (Y n, J(Sn))
∈ [2nR]

Fig. 5. Channel with rate-limited state information at the decoder.

channel p(y|x, s) has independent and identically distributed
state Sn and the decoder can be informed about the outcome
of Sn via a separate communication channel at a fixed rate
R0. Ahlswede and Han offered the following conjecture on
the capacity of this channel.

Conjecture (Ahlswede–Han [1, Section V]). The capacity of
the state-dependent channel p(y|x, s) as depicted in Figure 5
with rate-limited state information available at the receiver
via a separate communication link of rate R0 is given by

C(R0) = max I(X;Y |Ŝ), (10)

where the maximum is over all joint distributions of the form
p(x)p(s)p(y|x, s)p(ŝ|s) such that I(S; Ŝ|Y ) ≤ R0 and the
auxiliary random variable Ŝ has cardinality |Ŝ| ≤ |S|+ 1.

It is immediately seen that this problem is a special case of
a relay channel with a noiseless link (Figure 3). Indeed, we
can identify the relay output Y1 with the channel state S and
identify the relay channel p(y, y1|x) = p(y1|x)p(y|x, y1) with
the state-dependent channel p(s)p(y|x, s). Thus, the channel
with rate-limited state information at the receiver is a relay

channel in which the relay channel output Y1 is independent
of the input X . The binary symmetric channel example in
Section VI corresponds to this setup.

Now when the channel state S is a deterministic function
of (X,Y ), for example, S = X +Y as in the binary example
in Section VI, Theorem 1 proves the following.

Theorem 3. For the state-dependent channel p(y|x, s) with
state information available at the decoder via a separate
communication link of rate R0, if the state S is a deterministic
function of the channel input X and the channel output Y , then
the capacity is given by

C(R0) = max
p(x)

min{I(X;Y ) +R0, I(X;Y, S)}. (11)

Our analysis of “compress-and-forward” coding scheme in
Section V shows that (10) reduces to (11), confirming the
Ahlswede–Han conjecture when S is a function of (X,Y ). On
the other hand, our proof of achievability (Section III) shows
that “hash-and-forward” is equally efficient for informing the
decoder of the state information.

IX. CONCLUDING REMARKS

Even a completely oblivious relay can boost the capacity to
the cut set bound if the relay reception is fully recoverable
from the channel input and the ultimate receiver output.
And there are two basic alternatives for the optimal relay
function—one can either compress the relay information as in
the traditional method of “compress-and-forward,” or simply
hash the relay information. In fact, infinitely many relaying
schemes that combine hashing and compression can achieve
the capacity. While this development depends heavily on the
deterministic nature of the channel, it reveals another role of
hashing in communication.

REFERENCES

[1] R. Ahlswede and T. S. Han, “On source coding with side information via
a multiple-access channel and related problems in multi-user information
theory,” IEEE Trans. Inform. Theory, vol. IT-29, no. 3, pp. 396–412,
1983.

[2] T. Berger, “Multiterminal source coding,” in The Information Theory
Approach to Communications, G. Longo, Ed. New York: Springer-
Verlag, 1978.

[3] ——, “The capacity of the relay channel,” in Open Problems in
Communication and Computation, T. M. Cover and B. Gopinath, Eds.
New York: Springer-Verlag, 1987, pp. 72–73.

[4] T. M. Cover and A. El Gamal, “Capacity theorems for the relay channel,”
IEEE Trans. Inform. Theory, vol. IT-25, no. 5, pp. 572–584, Sept. 1979.

[5] T. M. Cover and Y.-H. Kim, “Capacity of a class of deterministic relay
channels.” [Online]. Available: http://arxiv.org/abs/cs.IT/0611053/

[6] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
New York: Wiley, 2006.

[7] A. El Gamal and M. Aref, “The capacity of the semideterministic relay
channel,” IEEE Trans. Inform. Theory, vol. IT-28, no. 3, p. 536, May
1982.

[8] A. El Gamal, N. Hassanpour, and J. Mammen, “Relay networks with
delay,” submitted to IEEE Trans. Inform. Theory, 2006.

[9] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and
capacity theorems for relay networks,” IEEE Trans. Inform. Theory, vol.
IT-51, no. 9, pp. 3037–3063, Sept. 2005.

[10] E. C. van der Meulen, “Three-terminal communication channels,” Adv.
Appl. Prob., vol. 3, pp. 120–154, 1971.

[11] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Trans. Inform. Theory, vol.
IT-22, no. 1, pp. 1–10, 1976.

ISIT2007, Nice, France, June 24 – June 29, 2007

595


