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Abstract— A coding theorem is proved for a class of sta-
tionary channels with ‘feedback in which the output Yn =
f(Xn

n−m, Z
n
n−m) is the function of the current and past m

symbols from the channel input Xn and the stationary ergodic
channel noise Zn. In particular, it is shown that the feedback
capacity is equal to

lim
n→∞

sup
p(xn||yn−1)

1

n
I(Xn → Y n),

where I(Xn → Y n) =
Pn
i=1 I(Xi;Yi|Y i−1) denotes the Massey

directed information from the channel input to the output, and
the supremum is taken over all causally conditioned distributions
p(xn||yn−1) =

Qn
i=1 p(xi|xi−1, yi−1). The main ideas of the

proof are the Shannon strategy for coding with side information
and a new elementary coding technique for the given channel
model without feedback, which is in a sense dual to Gallager’s
lossy coding of stationary ergodic sources. A similar approach
gives a simple alternative proof of coding theorems for finite
state channels by Yang–Kavčić–Tatikonda, Chen–Berger, and
Permuter–Weissman–Goldsmith.

I. INTRODUCTION

In [11], Massey introduced the mathematical notion of
directed information

I(Xn → Y n) =
n∑

i=1

I(Xi;Yi|Y i−1),

and established its operational meaning by showing that the
feedback capacity is upper bounded by the maximum normal-
ized directed information, which can be in general tighter than
the usual mutual information. Since then there have been many
attempts to show that Massey’s directed information is indeed
the feedback capacity, namely,

CFB = lim
n→∞

sup
p(xn||yn−1)

1
n
I(Xn → Y n) (1)

= lim
n→∞

sup
p(xn||yn−1)

1
n

n∑

i=1

I(Xi;Yi|Y i−1),

where the supremum is taken over all causally conditioned
probabilities p(xn||yn−1) =

∏n
i=1 p(xi|xi−1, yi−1). For ex-

ample, in a heroic effort [17], [18], Tatikonda attacked the
general nonanticipatory channel with feedback by combining
Verdú–Han formula for nonfeedback capacity [19], Massey
directed information, and Shannon strategy for channel side
information [16], as well as dynamic programming for Markov

decision processes. As the cost of generality, however, it is
extremely difficult to establish a simple formula like (1). See,
for example, [18, Theorem 7.5] for a major hurdle in proving
the equivalence between a Verdú–Han-type formula and (1).

More recently, Yang, Kavčić, and Tatikonda [20] and Chen
and Berger [3] studied special cases of finite-state channels,
based on Tatikonda’s framework. A finite-state channel [6,
Section 4.6] is described by the conditional probability dis-
tribution

p(yn, sn|xnsn−1), (2)

where sn denotes the channel state at time n. Using a different
approach based on Gallager’s proof of the nonfeedback capac-
ity [6, Section 5.9], Permuter, Weissman, and Goldsmith [15]
proved various coding theorems for finite-state channels with
feedback that, inter alia, subsume many results in [20], [3]
and establish the validity of (1) for indecomposable finite-
state channels without intersymbol interference (i.e., finite-
state channels whose state evolves as an ergodic Markov chain,
independent of the channel input).

The main goal of this paper is to establish the validity of the
feedback capacity formula (1) for a reasonably general class
of channels with memory, in the simplest manner. Towards
this goal, we focus on stationary nonanticipatory channels of
the form

Yi =
{ ∅, i = 1, . . . ,m,
g(Xi

i−m, Z
i
i−m), i = m+ 1,m+ 2, . . . , (3)

where the time-i channel output Yi on the output alphabet Y
is given by a deterministic map f : Xm × Zm → Y of the
current and past m channel inputs Xi

i−m on the input alphabet
X and the current and past m channel noises Zii−m on the
noise alphabet Z . We assume that the noise process {Zn}∞n=1

is an arbitrary stationary ergodic process (without any mixing
condition).

The channel model (3) is rather simple and physically
motivated. Yet this channel model is general enough to include
many important feedback communication models such as any
additive noise fading channels with intersymbol interference
and indecomposable finite-state channels without intersymbol
interference.1

1A notable exception is a famous finite-state channel called the “trapdoor
channel” introduced by Blackwell [1], the feedback capacity of which is
established in [14].
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The channel (3) has finite input memory in the sense of
Feinstein [5] and can be viewed as a finite-window sliding-
block coder [7, Section 9.4] of input and noise processes (cf.
primitive channels introduced by Neuhoff and Shields [13]
in which the noise process is memoryless). Compared to the
general finite-state channel model (2), in which the channel has
infinite input memory but the channel noise is memoryless, our
channel model (3) has finite input memory but the noise has
infinite memory; recall that there is no mixing condition on the
noise process {Zn}∞n=1. Thus, the finite-state channel model
and the finite sliding-block channel model nicely complement
each other.

Our main result is to show that the feedback capacity CFB
of the channel (3) is characterized by (1). More precisely,
we consider a communication problem depicted in Figure 1.
Here one wishes to communicated a message index W ∈

Y n Ŵn(Y n)W ∈ [2nR]

Zn

Yi=g(Xii−m, Z
i
i−m)Xn(W,Y n−1)

Xi(W,Y
i−1)

Fig. 1. Feedback communication channel Yi = g(Xi
i−m, Z

i
i−m).

[2nR] := {1, 2, . . . , 2nR} over the channel (3). We assume
that the channel noise process {Zi}∞i=1 is stationary ergodic
and is independent of the message W . The initial values of
Y1, . . . , Ym are set arbitrarily. They depend on the unspecified
initial condition (X0

−m+1, Z
0
−m+1), the effect of which van-

ishes from time m + 1. Thus the long term behavior of the
channel is independent of Y m1 .

We specify a (2nR, n) code with the encoding maps
Xn(W,Y n−1) = (X1(W ), X2(W,Y1), . . . , Xn(W,Y n−1)),
and the decoding map Ŵn : Yn → [2nR]. The probability of
error P (n)

e is defined as P (n)
e = Pr{Ŵn(Y n) 6=W}, where the

message W is uniformly distributed over [2nR] and is indepen-
dent of {Zi}∞i=1. We say that the rate R is achievable if there
exists a sequence of (2nR, n) codes with P (n)

e → 0 as n→∞.
The feedback capacity CFB is defined as the supremum of
all achievable rates. The nonfeedback capacity C is defined
similarly, with codewords Xn(W ) = (X1(W ), . . . , Xn(W ))
restricted to be a function of the message W only.

We will prove the following result in Section II.

Theorem 1. The feedback capacity CFB of the channel (3) is
given by

CFB = lim
n→∞

sup
p(xn||yn−1)

1
n
I(Xn → Y n). (4)

Our development has two major ingredients. First, we use
the coding theorem for the same channel without feedback,
fully described in [10]. This approach is somewhat different
from the conventional approaches such as Shannon’s random
codebook generation and typicality decoding, Gallager’s ran-
dom coding exponent method, or Feinstein’s maximal coding
argument. We use the strong typicality (relative frequency)

decoding for n-dimensional super letters. A constructive cod-
ing scheme (up to the level of Shannon’s random codebook
generation) based on block ergodic decomposition of Ne-
doma [12] is developed, which uses a long codeword on
the n-letter super alphabet, constructed as a concatenation
of n shorter codewords. While each short codeword and the
corresponding output fall into their own ergodic mode, the
long codeword as a whole maintains the ergodic behavior. To
be fair, codebook construction of this type is far from new
in the literature, and our method is intimately related to the
one used by Gallager [6, Section 9.8] for lossy compression
of stationary ergodic sources. Indeed, when the channel (3)
has zero memory (m = 0), then the role of the input for our
channel coding scheme is equivalent to the role of the covering
channel for Gallager’s source coding scheme.

Equipped with this coding method for nonfeedback sliding-
block coder channels (3), the extension to the feedback case
is relatively straightforward. The basic ingredient for this
extension is the Shannon strategy for channels with causal
side information at the transmitter [16]. As a matter of fact,
Shannon himself observed that the major utility of his result
is feedback communication. Following is the first sentence of
[16]:

Channels with feedback from the receiving to the
transmitting point are a special case of a situation
in which there is additional information available at
the transmitter which may be used as an aid in the
forward transmission system.

As observed by Caire and Shamai [2, Proposition 1], the
causality has no cost when the transmitter and the receiver
share the same side information—in our case, the past input
(if decoded faithfully) and the past output (received from
feedback)—and the transmission can fully utilize the side
information as if it were known a priori. Thus, intuitively
speaking, we can achieve the rate

R = max
p(xn||yn−1)

n∑

i=1

I(Xi;Y ni |Xi−1, Y i−1)

per n transmissions. Now a simple algebra shows that this rate
is equal to the maximal directed information:

n∑

i=1

I(Xi;Y ni |Xi−1, Y i−1) = I(Xn → Y n). (5)

The above argument, while intuitively appealing, is not
completely rigorous, however. Therefore, we will take more
careful steps, by first proving the achievability of 1

nI(Un;Y n)
for all auxiliary random variables Un and Shannon strategies
Xi(Ui, Xi−1, Y i−1), i = 1, . . . , n, and then showing that
I(Un;Y n) reduces to I(Xn → Y n) via pure algebra.

II. PROOF OF THEOREM 1

Recall our channel model

Yi =
{ ∅, i = 1, . . . ,m,
g(Xi

i−m, Z
i
i−m), i = m+ 1,m+ 2, . . . , (6)
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with the input Xi and the stationary ergodic noise process
{Zi}∞i=1, as depicted in Figure 1. We prove that the feedback
capacity is given by

CFB = lim
n→∞

CFB,n

= lim
n→∞

sup
p(xn||yn−1)

1
n
I(Xn → Y n), (7)

where the supremum is over all causally conditioned distribu-
tions

p(xn||yn−1) =
n∏

i=1

p(xi|xi−1, yi−1).

The following lemma is crucial to the proof of Theorem 1.

Lemma 1. Suppose a causally conditioned distribution
p(yn||xn) is given. Then we have

max
p(un),xi=f(ui,xi−1,yi−1)

I(Un;Y n) = max
p(xn||yn−1)

I(Xn → Y n),

(8)
where the maximum on the left hand side is taken over all
joint distributions of the form

p(un, xn, yn) =
n∏

i=1

(
p(ui)p(xi|ui, xi−1, yi−1)p(yi|xi, yi−1)

)

=
( n∏

i=1

p(ui)p(xi|ui, xi−1, yi−1)
)
p(yn||xn)

(9)

with deterministic p(xi|ui, xi−1, yi−1), i = 1, . . . , n, and the
auxiliary random variables Ui has the cardinality bounded by
|Ui| ≤ |X |i|Y|i−1.

Proof. Let q(un, xn, yn) be any joint distribution of the
form (9) such that q(xi|ui, xi−1, yi−1), i = 1, . . . , n are
deterministic and that q(yn||xn) = p(yn||xn) (i.e., the joint
distribution q(un, xn, yn) is consistent with the given causally
conditioned distribution p(yn||xn)). For (Un, Xn, Y n) ∼
q(un, xn, yn), it is easy to verify that Uni is indepen-
dent of (U i−1, Xi−1, Y i−1), which implies that U i−1 →
(Xi−1, Y i−1) → Y ni forms a Markov chain. On the other
hand, Xi−1 is a deterministic function of (U i−1, Y i−1)
and thus Xi−1 → (U i−1, Y i−1) → Y ni also forms a
Markov chain. Similarly, we have the Markovity for U i →
(Y i−1, Xi) → Y ni and Xi → (U i, Y i−1) → Y ni . Therefore,
we have

I(Ui;Y n|U i−1) = I(Ui;Y ni |Y i−1, U i−1) (10)

= H(Y ni |Y i−1, U i−1)−H(Y ni |Y i−1, U i)

= H(Y ni |Y i−1, Xi−1)−H(Y ni |Y i−1, Xi)
(11)

= I(Xi;Y ni |Xi−1, Y i−1),

where (10) follows from the independence of Ui and
(U i−1, Y i−1), and (11) follows from Markov relationships
observed above. Now from the alternative expansion of the
directed information shown in (5), we have

max
q
I(Un;Y n) = max

q
I(Xn → Y n).

Finally, by using distributions of the form

p(xi|xi−1, yi−1) =
∑
ui

p(ui)p(xi|ui, xi−1, yi−1)

with appropriately chosen p(ui) and deterministic
p(xi|ui, xi−1, yi−1), we can represent any causally
conditioned distribution

n∏

i=1

p(xi|xi−1, yi−1) =
∑
un

n∏

i=1

(
p(ui)p(xi|ui, xi−1, yi−1)

)
,

which implies the desired result.

That the limit in (7) is well-defined follows from the
superadditivity2 of nCFB,n. Thus,

CFB = lim
n→∞

CFB,n = sup
n≥1

CFB,n.

The converse was proved by Massey [11, Theorem 3]. For
any sequence of (2nR, n) codes with P

(n)
e , we have from

Fano’s inequality

nR ≤ I(W ;Y n) + nεn

=
n∑

i=1

I(W ;Yi|Y i−1) + nεn

=
n∑

i=1

I(Xi;Yi|Y i−1) + nεn (12)

= I(Xn → Y n) + nεn,

where εn → 0 as n → ∞. Here (12) follows from the
codebook structure Xi(W,Y i−1) and the Markovity W →
(Xi, Y i−1)→ Yi.

For the achievability, we show that there exists a sequence
of codes that achieves CFB,n for each n. For simplicity, we
assume that the alphabets X and Y are finite. A complete
argument is given in [10].

In the light of Lemma 1, it suffices to show that

C ′FB,n = max
p(un),xi=f(ui,xi−1,yi−1)

I(Un;Y n) (13)

is achievable, where the auxiliary random variables Ui has the
cardinality bounded by |Ui| ≤ |X |i|Y|i−1, and the maximiza-
tion is over all joint distributions of the form

p(un, xn, yn) =
( n∏

i=1

p(ui)p(xi|ui, xi−1, yi−1)
)
p(yn||xn)

with deterministic p(xi|ui, xi−1, yi−1), i = 1, . . . , n.
Codebook generation and encoding. Fix n and let p∗i (ui),

i = 1, . . . , n, and f∗i : (ui, xi−1, yi−1) 7→ xi, i = 1, . . . , n,
achieve the maximum of (13). We will also use the no-
tation p∗(un) =

∏n
i=1 p

∗
i (ui) and f∗(un, xn−1, yn−1) =

(f∗1 (u1), . . . , f∗n(un, xn−1, yn−1)).
For each k = k(L, n) = Ln2 + n, L = 1, 2, . . . , we

generate a (2kR, k) code {Xi(W,Y i−1)}ki=1 as summarized in

2that is, n1CFB,n1 +n2CFB,n2 ≤ (n1 +n2)CFB,n1+n2 , which is an easy
consequence of the stationarity of the process {Zi}∞i=1 and the definition of
the channel model (6), in particular, Yi = ∅, i = 1, . . . ,m.
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Figure 2. Here X̃(n), Ỹ(n), and Z̃(n) are copies the underlying
sequences X,Y,Z with every (Ln+ 1)st symbol omitted.

For each w ∈ {1, 2, . . . , 2kR}, we generate a codeword
U(n)(w) = ULn

2
(w) of length Ln on the n-letter alphabet

U1 × · · · × Un independently according to

p(uLn
2
) =

Ln∏

i=1

p∗(uni(n−1)i+1).

This gives a 2kR×Ln codebook matrix with each entry drawn
i.i.d. according to p∗(un).

To communicate the message W = w, the transmitter
chooses the codeword U(n)(w) = ULn

2
(w) and sends

X̃(i−1)n+j = f∗j
(
Uj(w), X̃(i−1)n+j−1

(i−1)n+1 , Ỹ
(i−1)n+j−1
(i−1)n+1

)
,

i = 1, . . . , Ln, j = 1, . . . , n. Thus, the code function
Xn(w, Y n−1) utilizes the codeword U(n) and the channel
feedback Ỹ(n) only within the frame of n transmissions (each
box in Figure 2).

Decoding. Upon receiving Y k, the receiver declares that the
message Ŵ was sent if there is a unique Ŵ such that

(U(n)(Ŵ ), Ỹ(n)) ∈ A∗(Ln)
ε (Un, Y n),

that is, (U(n)(Ŵ ), Ỹ(n)) is jointly typical with respect to
the joint distribution p(un, yn) specified by p∗(un)p(zn),
xi = f∗i (ui, xi−1, yi−1), and the definition of the channel (6).
Otherwise, an error is declared.

Analysis of the probability of error. We define the following
events:

Ei = {(U(n)(i), Ỹ(n)) ∈ A∗(Ln)
ε (Un, Y n)}, i ∈ [2kR]

Without loss of generality, we assume W = 1 was sent.
From [10, Lemma 7], U(n)(1) and Z(n) are jointly typical

with high probability for L sufficiently large. Furthermore,
Ỹ(n) is an n-letter blockwise function of (X̃(n)(1), Z̃(n)), and
thus of (U(n)(1), Z̃(n)). Therefore, the probability of the event
Ec1 that the intended codeword U(n)(1) is not jointly typical
with Ỹ(n) vanishes as L→∞.

On the other hand, U(n)(i), i 6= 1, is generated blockwise
i.i.d. ∼ p∗(un) independent of Y(n). Hence, from [4, Lemma
10.6.2], the probability of the event Ei that U(n)(i) is jointly
typical with Y(n) is bounded by

Pr(Ei) ≤ 2−Ln(I(Un;Y n)−δ), for all i 6= 1,

where δ → 0 as ε→ 0. Consequently, we have

Pr(Ŵ 6= W ) ≤ Pr(Ec1) +
2kR∑

i=2

Pr(Ei)

≤ ε+ 2kR2−Ln(I(Un;Y n)−δ)

≤ 2ε

if L is sufficiently large and

kR = (Ln2 + n)R < Ln(I(Un;Y n)− δ).
Thus by letting L→∞ and then ε→ 0, we can achieve any
rate R < C ′FB,n.

Finally by Lemma 1, this implies that we can achieve

CFB,n = max
p(xn||yn−1)

1
n
I(Xn → Y n),

which completes the proof of Theorem 1.

i.i.d.∼ p∗(un)

x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃8 x̃9 x̃10 x̃11 x̃12 x̃13 x̃14 x̃15 x̃16 x̃17 x̃18

z̃1 z̃2 z̃3 z̃4 z̃5 z̃6 z̃7 z̃8 z̃9 z̃10 z̃11 z̃12 z̃13 z̃14 z̃15 z̃16 z̃17 z̃18

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18

∅ ỹ2 ỹ3 ∅ ỹ5 ỹ6 ∅ ỹ8 ỹ9 ∅ ỹ11 ỹ12 ∅ ỹ14 ỹ15 ∅ ỹ17 ỹ18

x1 x2 x3 x4 x5 x6 ∅ x8 x9 x10 x11 x12 x13 ∅ x15 x16 x17 x18 x19 x20 ∅

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17 z18 z19 z20 z21

y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 y21

X

Z

Y ∅
Yi = g(Xi

i−m, Z
i
i−m)

X̃(n)

Z̃(n)

Ỹ(n)

U(n)

Ỹ in(i−1)n+1 = f(X̃in
(i−1)n+1, Z̃

in
(i−1)n+1) = f ′(U in(i−1)n+1, Z̃

in
(i−1)n+1)

X̃(i−1)n+j = f∗j (Uj , X̃
(i−1)n+j−1
(i−1)n+1 , Ỹ

(i−1)n+j−1
(i−1)n+1 )

U in(i−1)n+1

Fig. 2. Code, input, noise, and output sequences: n = 3, L = 2,m = 1.
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III. CONCLUDING REMARKS

Trading off generality for transparency, we have focused on
stationary channels of the form

Yn = f(Xn
n−m, Z

n
n−m)

and presented a simple and constructive proof of the feedback
coding theorem. The Shannon strategy (Lemma 1) has a
fundamental role in transforming the feedback coding problem
into a nonfeedback one, which is then solved by a scalable
coding scheme of constructing a long typical input-output
sequence pair by concatenating shorter nonergodic ones with
appropriate phase shifts.

This two-stage approach can be applied to other channel
models and can give a straightforward coding theorem. For
example, we can show that the semi-deterministic finite-state
channel

p(yn, sn|sn−1, xn) = p(yn|sn−1, xn)p(sn|sn−1, xn, yn)

with sn = f(sn−1, xn, yn) for some deterministic function
f (but without the assumption of indecomposability) has the
feedback capacity lower bounded by

CFB ≥ sup
n≥1

max
p(xn||yn−1)

min
s0

1
n
I(Xn → Y n|s0).

This result was previously shown by Permuter et al. [15,
Section V] via a generalization of Gallager’s random coding
exponent method for finite state channels without feedback [6,
Section 5.9]. Here we sketch a simple alternative proof.

From a trivial modification of Lemma 1, the problem
reduces to showing that

max
p(un),xi=f(ui,xi−1,yi−1)

min
s0

1
n
I(Un;Y n|s0) (14)

is achievable for each n. But the given Shannon strategy
(p∗(un), xn = f∗(un, xn−1, yn−1)) induces a new time-
invariant finite-state channel on the n-letter super alphabet
as p(yk, sk|sk−1,uk). Hence we can use Gallager’s random
coding exponent method directly to achieve

lim
k→1

max
p(uk)

min
s0

1
k
I(Uk; Yk|s0),

which can be shown to be no less than our target

1
n
I(U1; Y1|s0),

because of the deterministic evolution of the state Sn =
f(Sn−1, Xn, Yn).

We finally mention an important question that is not dealt
with in this paper. Our characterization of the feedback capac-
ity

CFB = lim
n→∞

max
p(xn||yn−1)

1
n
I(Xn → Y n) (15)

or any similar multi-letter expressions are in general not com-
putable and do not provide much insight on the structure of
the capacity achieving coding scheme. One may ask whether
a stationary or even Markov distribution is asymptotically

optimal for the sequence of maximizations in (15). This
problem has been solved for a few specific channel models
such as certain classes of finite-state channels [3], [20], [15],
[14] and stationary additive Gaussian noise channels [8], [9],
sometimes with analytic expressions for the feedback capacity.
In this context, the current development is just the first step
toward the complete characterization of the feedback capacity.
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