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Abstract—This paper studies the problem of secure communi-
cation over a degraded wiretap channel p(y, z|x) = p(y|x)p(z|y)
with secure feedback link of rate Rf , where X is the channel
input, and Y and Z are channel outputs observed by the
legitimate receiver and the wiretapper respectively. The secrecy
capacity is characterized as

Cs(Rf ) = max
p(x)

min{I(X; Y ), I(X; Y |Z) + Rf}.

A capacity-achieving coding scheme is presented, in which the
receiver securely feeds back fresh randomness with rate Rf ,
independent of the received channel output. The transmitter then
uses the shared randomness as a secret key on top of Wyner’s
coding scheme for wiretap channel without feedback. Hence,
when the receiver has a means of interacting with the transmitter,
he should allocate all resources to convey a new key rather than
sending back the channel output. For the converse, a recursive
argument is used to obtain the single-letter characterization.

I. INTRODUCTION
Shannon [1] studied a secrecy system consisting of a

legitimate transmitter (Alice), a legitimate receiver (Bob), and
an eavesdropper (Eve), in which Alice wishes to transmit a
message W to Bob completely secret from Eve. He showed
that if Eve has access to what Bob receives, a secret key K

whose entropy satisfies H(K) ≥ H(W ) has to be shared
between Alice and Bob. Later, Wyner [2] introduced the
degraded wiretap channel, in which Bob receives the message
through a discrete memoryless channel (DMC) p(y|x) and Eve
has access to what Bob receives through an additional discrete
memoryless channel p(z|y); see Figure 1.
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Fig. 1. Degraded wiretap channel.

He showed that Alice can exploit the better quality of her
channel to Bob and transmit information securely at a positive
rate

Cs = max
p(x)

[I(X ; Y )− I(X ; Z)] = max
p(x)

I(X ; Y |Z), (1)

even without any secret key. Later, this exciting result was ex-
tended by Csiszár and Körner [3] to general broadcast channels
with confidential messages. In particular, they showed that the
secrecy capacity Cs, the supremum of all achievable rates of
secure communication, is strictly positive unless the channel
from Alice to Eve is less noisy [4] than the channel from Alice
to Bob.
Many common communications arise over inherently two-

way channels, such as telephone systems, digital subscriber
lines (DSL), cellular networks, satellite communications, and
the Internet. Hence, it is natural to ask how possible interac-
tions between Alice and Bob can increase the secrecy of their
communication.
As a canonical model to study this question, this paper

extends Wyner’s wiretap channel model by introducing a
secure feedback link of rate Rf from Bob to Alice as depicted
in Figure 2. There are several concrete scenarios where this
model is applicable. For instance, consider the communication
between a satellite (Alice) and a base station (Bob) on the
ground. The satellite broadcasts information to the ground, so
any (unintended) station can wiretap it. The base station can
beamform some data back to the satellite securely, which can
be used to enhance the secret data rate sent from the satellite
to the base station.
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Fig. 2. Degraded wiretap channel with secure rate-limited feedback.

The main purpose of this paper is to characterize the secrecy
capacity Cs(Rf ) as a function of the secure feedback rate Rf .
We show that the secrecy capacity is given by

Cs(Rf ) = max
p(x)

min[I(X ; Y ), I(X ; Y |Z) + Rf ]. (2)

Interestingly, we show that to achieve the secrecy capacity
Bob can simply ignore what he receives and sends “fresh”
randomness. This fresh randomness plays the role of a secret
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key, which bridges Shannon’s original result and Wyner’s
wiretap model. We modified Wyner’s original scheme to allow
the use of a shared key (sent from Bob to Alice via rate-
limited feedback). To be fair, this modification has been
already proposed by Yamamoto [6] and Merhav [7], who
characterized the secrecy capacity of wiretap channels with
shared key (already given prior to the communication), where
additional effects of having distortion or side information are
also considered.
Proving the optimality of (2) is a little more involved.

Due to the dependencies introduced by the feedback, we
use a recursive argument to obtain the desired single-letter
characterization. Exploiting the recursive structure to find the
single-letter characterization could be a powerful tool for
similar converse proofs.
In a closely related work, Ahlswede and Cai [5] studied

degraded wiretap channels with secure output feedback, in
which channel output symbols received by Bob are secretly
fed back to Alice. They showed that the secrecy capacity is
given by

Csf = max
p(x)

min{I(X ; Y ), I(X ; Y |Z) + H(Y |X, Z)} (3)

which results in capacity larger than the non-feedback case
(1). At a first glance, it seems contradictory that the optimal
receiver should ignore the channel outputs completely when
feedback is rate-limited (our paper) while the unlimited output
feedback (Ahlswede–Cai) boosts the secrecy capacity as in (3).
However, looking closer at the coding scheme by Ahlswede
and Cai, one realizes that their scheme essentially extracts
the channel randomness hidden in those outputs and uses that
as a key. Hence, our result shows explicitly that when Bob
has a means of interacting with Alice, he should allocate all
resources to convey a key rather than sending back the channel
output.
Recently, thorough studies have been conducted on char-

acterizing the secrecy capacity of various two-way commu-
nication systems. Lai, El Gamal, and Poor [8] studied the
case of the modulo-additive DMC, where Eve receives the
modulo-sum of the source signal, the feedback signal, and the
noise. They showed that if Bob jams Eve completely, Alice
can send messages securely at the capacity of her channel to
Bob. Tekin and Yener [9] presented an achievable region for
two-way Gaussian wiretap channels. In their model, Eve also
receives the sum of the signals from both transmitters, and a
Gaussian noise. They showed that due to the multiple access
nature of Eve’s channel, both transmitters can help to hide
the other user’s message while maintaining the communication
rate. In both studies, the additive nature of Eve’s channel gives
the opportunity for jamming, in addition to possible backward
information transfer. In other words, the feedback provides
rather “physical” advantages for Alice–Bob interactions. In
comparison, our model decouples the forward and back-
ward communication channels, eliminating the possible use
of jamming, and focuses on rather “inherent” advantages of
Alice–Bob interactions. It also seems that having independent

forward and backward communication links fits better the
current practice of two-way communications over orthogonal
media such as different frequency bands or time slots.
The rest of the paper is organized as follows. First, we give

a formal statement of our result in Section II. Then, we show
the converse and the achievability scheme in Section III and
IV respectively. Section V concludes the paper.

II. PROBLEM SETUP AND THE MAIN RESULT

We consider the communication problem depicted in Fig-
ure 2. Here Alice communicates a message index W ∈
[2nR] := {1, 2, . . . , 2nR} over a degraded broadcast channel
p(y, z|x) = p(y|x)p(z|y), where the channel input Xi ∈ X
at time i is received as Yi ∈ Y and Zi ∈ Z respectively by
the legitimate receiver Bob and the wiretapper Eve. Alice and
Bob wish to communicate the message W reliably over their
channel p(y|x) while keeping it secret from Eve. To enhance
the secrecy of their communication, Bob can communicate
back signals Ki ∈ Ki, i = 1, 2, . . . , n, over a feedback
link of rate Rf secret from Eve. The feedback signal Ki

at time i can depend causally on previous channel outputs
Y i−1 := (Y1, . . . , Yi−1) and previous feedback signals Ki−1.
We assume that the channel alphabets X ,Y,Z , and feedback
alphabets K1, ...,Kn are finite, and Eve has complete knowl-
edge about them as well as the feedback-encoding scheme
used by Alice and Bob. The broadcast channel p(y, z|x) is
memoryless and degraded, i.e.,

p(yi, zi|x
i, yi−1, zi−1) = p(yi, zi|xi)

= p(yi|xi)p(zi|yi)

for i = 1, 2, ..., n.
More formally, we define a (2nR, 2nRf , n) code as
1) feedback signal alphabets K1, . . . ,Kn such that their
cardinalities satisfy

1

n

n∑

i=1

log(|Ki|) ≤ Rf , (4)

2) stochastic encoding maps consisting of conditional prob-
ability distributions fi(xi|w, ki), i = 1, 2, . . . , n, defined
for each xi ∈ X , ki ∈ Ki := K1 × · · · × Ki, and w ∈
[2nR] such that for each i, w, ki,

∑
xi

fi(xi|w, ki) = 1
(in other words, fi(xi|w, ki) denotes the probability that
at time i the message w and the previously received
feedback signals ki are mapped to the channel input
xi),

3) stochastic feedback maps consisting of conditional prob-
ability distributions ψi(ki|y

i−1, ki−1) (by convention,
K1 ∼ ψ1(k1) independent of W ), and

4) a decoding map g : Yn × Kn → [2nR] resulting in the
decoded message

Ŵ = g(Y n, Kn). (5)

We assume throughout that the message W is a random
variable uniformly distributed over [2nR]. The probability of
error is defined as P

(n)
e = Pr{Ŵ �= W}.
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Definition 2.1: We define the equivocation Δ(n) as

Δ(n) =
H(W |Zn)

H(W )
=

H(W |Zn)

nR
.

Definition 2.2: We call the pair (R, d) achievable if there
exists a sequence of (2nR, 2nRf , n) codes such that

P (n)
e → 0, (6)

Δ(n) → d, (7)

as n → ∞. We call rate R secret if the pair (R, 1) is
achievable.
Definition 2.3: We define the rate–equivocation regionR =

R(Rf ) as the closure of all achievable pair (R, d).
Definition 2.4: We define the secrecy capacity Cs(Rf ) at

feedback rate Rf as

Cs(Rf ) = sup
(R,1)∈R(Rf )

R.

We are ready to state our main result.
Theorem 2.1: The secrecy capacity of a degraded wiretap

channel with rate-limited feedback Rf is

Cs(Rf ) = max
p(x)

min[I(X ; Y ), I(X ; Y |Z) + Rf ].

Roughly speaking, until saturated by the mutual information
I(X ; Y ), adding one bit secure feedback can increase the
forward secure rate by one bit. Note that this does not
necessarily mean Cs(Rf ) = min{Cs(0) + Rf , Cm}, where
Cm = maxp(x) I(X ; Y ) is the capacity of the main channel
from Alice to Bob; it is easy to find examples, in which
Cs(Rf ) < Cs(0) + Rf ≤ Cm.
We prove the converse in the next section. A capacity-

achieving coding scheme is presented in Section IV.

III. PROOF OF THE CONVERSE
In this section we show if the pair (R, 1) is achievable, R

must satisfy the following constraint:

R ≤ max
p(x)

min[I(X ; Y ), I(X ; Y |Z) + Rf ]. (8)

To show (8) we prove the following two upper bounds:

R ≤
1

n

n∑

i=1

I(Xi; Yi). (9)

R ≤ Rf +
1

n

n∑

i=1

I(Xi; Yi|Zi), (10)

Then we can use the usual time sharing random variable and
concavity of mutual information in p(x) to obtain (8).
First, (9) follows easily from Fano’s inequality. For details,

please refer to the the standard converse proof of the channel
coding theorem [10, Theorem 7.7.1].
We now prove (10) using Fano’s inequality, secrecy con-

straint (7), and rate-limit constraint (4). A recursive argument
(Lemma 3.1) is used to obtain the single-letter characteriza-
tion.

By Fano’s inequality we have

H(W |Ŵ ) ≤ 1 + P (n)
e nR � nεn,

where εn → 0 as n → ∞ by the assumption that P
(n)
e → 0.

From (5) and data processing inequality we have

H(W |Kn, Y n) ≤ H(W |Ŵ ) ≤ nεn.

By definition of Δ(n), we have

I(W ; Zn) = H(W )−H(W )Δ(n)

= nR(1−Δ(n)) = nγn, (11)

where γn → 0 as n → ∞ by the assumption that Δ(n) → 1.
It then follows that

nR = H(W )

= H(W |Zn) + I(W ; Zn)

= H(W |Zn) + nγn (12)
= I(W ; Y n, Kn|Zn) + H(W |Y n, Zn, Kn) + nγn

≤ I(W ; Y n, Kn|Zn) + nεn + nγn (13)
= I(W ; Kn|Zn) + I(W ; Y n|Kn, Zn) + nδn (14)
≤ H(Kn|Zn) + I(W ; Y n|Kn, Zn) + nδn, (15)

where (12) follows from (11), (13) follows from Fano’s
inequality, (14) follows by defining δn = εn + γn, and (15)
follows from the fact that entropy is positive.
The following lemma is crucial to single-letterize (15).
Lemma 3.1: For each j = 1, 2, . . . , n, we have

H(Kj|Zj) + I(W ; Y j |Kj, Zj)

≤ H(Kj−1|Zj−1) + I(W ; Y j−1|Kj−1, Zj−1)

+ H(Kj |W, Kj−1, Zj−1) + I(Xj ; Yj |Zj).

Proof: We have the following chain of inequalities:

H(Kj|Zj) + I(W ; Y j |Kj , Zj)

= H(Kj |Zj) + I(W ; Y j−1|Kj, Zj)

+ I(W ; Yj |Y
j−1, Kj, Zj)

≤ H(Kj |Zj) + I(W ; Y j−1|Kj, Zj)

+ I(W, Y j−1, Kj, Zj−1, Xj; Yj |Zj) (16)
= H(Kj |Zj) + I(W ; Y j−1|Kj, Zj) + I(Xj ; Yj |Zj)

(17)
≤ H(Kj |Zj) + I(W, Zj ; Y

j−1|Kj, Zj−1) + I(Xj ; Yj |Zj)
(18)

= H(Kj |Zj) + I(W ; Y j−1|Kj, Zj−1) + I(Xj ; Yj |Zj)
(19)

= H(Kj |Zj) + I(W, Kj ; Y
j−1|Kj−1, Zj−1)

− I(Kj ; Y
j−1|Kj−1, Zj−1) + I(Xj ; Yj |Zj)

= H(Kj |Zj) + I(W ; Y j−1|Kj−1, Zj−1) + I(Xj ; Yj |Zj)

+ I(Kj ; Y
j−1|W, Kj−1, Zj−1)

− I(Kj ; Y
j−1|Kj−1, Zj−1)

= H(Kj−1|Zj) + I(W ; Y j−1|Kj−1, Zj−1) + I(Xj ; Yj |Zj)
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+ I(Kj ; Y
j−1|W, Kj−1, Zj−1) + H(Kj |K

j−1, Zj)

+ H(Kj |Y
j−1, Kj−1, Zj−1)−H(Kj |K

j−1, Zj−1)

≤ H(Kj−1|Zj) + I(W ; Y j−1|Kj−1, Zj−1) + I(Xj ; Yj |Zj)

+ I(Kj ; Y
j−1|W, Kj−1, Zj−1)

+ H(Kj |Y
j−1, Kj−1, Zj−1) (20)

≤ H(Kj−1|Zj) + I(W ; Y j−1|Kj−1, Zj−1) + I(Xj ; Yj |Zj)

+ H(Kj |W, Kj−1, Zj−1) + H(Kj|Y
j−1, Kj−1, Zj−1)

−H(Kj |Y
j−1, W, Kj−1, Zj−1)

= H(Kj−1|Zj) + I(W ; Y j−1|Kj−1, Zj−1) + I(Xj ; Yj |Zj)

+ H(Kj |W, Kj−1, Zj−1) (21)
≤ H(Kj−1|Zj−1) + I(W ; Y j−1|Kj−1, Zj−1)

+ H(Kj |W, Kj−1, Zj−1) + I(Xj ; Yj |Zj), (22)

where

• (16) and (18) follow from the fact that the mutual
information is positive,

• (17) holds because the channel is memoryless and there-
fore Yj → (Xj , Zj) → (W, Y j−1, Kj, Zj−1) form a
Markov chain,

• (19) holds because Zj → (W, Kj, Zj−1) → Y j−1 form
a Markov chain,

• (20) and (22) follow from the fact that conditioning
reduces entropy, and

• (21) holds because of the following Markov chain
(W, Zj−1)→ (Y j−1, Kj−1) → Kj .

The following corollary follows immediately from Lemma
3.1 by induction.
Corollary 3.2: We have

H(Kn|Zn) + I(W ; Y n|Kn, Zn)

≤

n∑

i=1

I(Xi; Yi|Zi) + H(Ki|W, Ki−1, Zi−1).

Applying Corollary 3.2 to (15) we obtain

R ≤
1

n

n∑

i=1

I(Xi; Yi|Zi) + H(Ki|W, Ki−1, Zi−1) + δn

≤
1

n

n∑

i=1

I(Xi; Yi|Zi) +
1

n

n∑

i=1

H(Ki) + δn

≤
1

n

n∑

i=1

I(Xi; Yi|Zi) + Rf + δn, (23)

where inequality (23) follows from the rate-limit constraint
(4). Finally, letting n→∞ and δn → 0, we get (10).
To complete the proof, let Q be a time-sharing random vari-

able distributed uniformly over {1, 2, ..., n} and independent

of Xn, Y n, Zn. Then (10) can be written as

R ≤ Rf +
1

n

n∑

i=1

I(Xi; Yi|Zi)

= Rf +
1

n

n∑

i=1

I(Xi; Yi|Zi, Q = i)

= Rf + I(XQ; YQ|ZQ, Q)

= Rf + I(X ; Y |Z, Q), (24)

where X � XQ, Y � YQ, Z � ZQ. Similarly, (9) can be
written as

R ≤ I(X ; Y |Q). (25)

Note that Pr(YQ = y, ZQ = z|XQ = x) is consistent with
the given wiretap channel p(y, z|x) and is independent of Q.
Thus Q → X → Y → Z form a Markov chain so that we
have from (24)

R ≤ Rf + I(X ; Y |Z, Q)

≤ Rf + I(X, Q; Y |Z)

= Rf + I(X ; Y |Z), (26)

and similarly from (25)

R ≤ I(X ; Y |Q) ≤ I(X, Q; Y ) = I(X ; Y ). (27)

Combining (26) and (27) we have

R ≤ min[I(X ; Y ), I(X ; Y |Z) + Rf ],

for some (X, Y, Z) consistent with the given channel p(y, z|x).
Therefore, we conclude that

R ≤ max
p(x)

min[I(X ; Y ), I(X ; Y |Z) + Rf ],

which completes the proof of converse.

IV. CAPACITY-ACHIEVING CODING SCHEME
In this section we present a coding scheme that acheives

R = max
p(x)

min [I(X ; Y ), I(X ; Y |Z) + Rf ]. (28)

Consider a wiretap channel where a secret key of rate Rk

is shared between Alice and Bob. The model is shown in
Figure 3. Let R′(Rk) be the equivocation–rate region of this
model. If we set Rk = Rf then we can easily see R′(Rk) ⊆
R(Rf ), where R(Rf ) is the equivocation–rate region with
secure feedback rate-limited by Rf (recall Figure 2). This is
true because Bob can use the feedback link to send back a
secret key of rate Rf (i.e., send K1 with |K1| = 2nRf ). Hence,
we can use the coding scheme for the wiretap channel with
shared key to achieve the secrecy rate (28).
Remark: This coding scheme can be easily modified to the

case in which the feedback channel has a time-invariant rate
constraint log(|Ki|) < 1

n
Rf for all i. By using block Markov

coding, we send the key in the L-th block that will be used
in the (L + 1)-th block.

Details of the coding scheme are as follows.
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Fig. 3. Wiretap channel with shared key.

Fix any p(x) and let R′f ≤ Rf be such that

R = min[I(X ; Y ), I(X ; Y |Z) + Rf ] = I(X ; Y |Z) + R′f .

(29)
Let R′ = R−R′f = I(X ; Y |Z), and W = {W1, W2}, where
W1 and W2 are independent random variables uniformly
distributed over W1 = [2nR′

] and W2 = [2nR′

f ], respectively.
The message W1 will be transmitted securely using Wyner’s
original coding scheme while the secrecy of W2 will be
achieved by using the key of rate R′f .
Codebook generation. Generate a codebook consisting of

2n(I(X;Y )−ε) i.i.d. codewords Xn according to probability
distribution

∏n

i p(xi). Divide the codebook into 2nR′

disjoint
sub-codebooks, each of which has 2n(I(X;Y )−R′

−ε) code-
words. Label the sub-codebooks C1, ..., C2nR′ . Now, divide
each sub-codebook Ci into T = 2n(I(X;Y )−R′

−R′

f−ε) sections
Ci1, ..., CiT , each of which has 2nR′

f codewords. Enumerate
the codewords in each section from 1 to 2nR′

f .
Feedback. Let K be uniform over W2 = [2nR′

f ]. Bob at
time 1, sends K1 = K .
Encoding. We use K as a key shared between Alice and

Bob. Generate a new variable W̃2 = W2⊕K ∈ [2nR′

f ], where
⊕ is the modulo addition over the set W2 = [2nR′

f ]. Note that
K and W2 are uniformly distributed and independent, so W̃2

is uniformly distributed and independent of both K and W2.
We pick Xn(W1, W2) as follows. According toW1 we pick

the corresponding sub-codebook among 2nR′

ones. In that sub-
codebook we pick one of the sections uniformly randomly and
in that section according to W̃2 we pick the corresponding
codeword among the 2nR′

f codewords in that section.
Decoding. Upon receiving Y n decode X̂n = D(Y n).

DecodeW1 to Ŵ1, the index of the sub-codebook X̂n belongs
to. Decode W̃2 to ˆ̃

W2, the index of X̂ in the section it belongs
to, and then take Ŵ2 = ˆ̃

W2 � K , where � is the modulo
subtraction over W2.
Analysis of error probability and secrecy analysis. Since

there are 2n(I(X;Y )−ε) codewords, it is easy to check that there
exists a codebook with vanishing decoding error probability
[10, Theorem 7.7.1]. Also note that the probability distribution
on the sub-codebooks is uniform, because the subsections are
chosen uniformly and the codeword in each subsection is

picked according to the key which is also a uniform random
variable. This is the main point in Wyner’s analysis in [2].
Therefore, the secrecy analysis can be done in parallel to
Wyner’s original analysis. Details are omitted.

V. CONCLUSION
We studied the wiretap channel with secure rate-limited

feedback link and characterized the secrecy capacity as a
function of the feedback rate. To achieve the secrecy capacity,
Bob ignores the channel output and simply sends back pure
randomness, which is used by Alice as a key. To position this
result along Ahlswede and Cai’s result [5], suppose that the
feedback rate Rf is sufficiently large to send back the entire
channel output itself, say, Rf ≥ H(Y ) (or evenRf ≥ log |Y|).
Our result proves that when Bob has an option to choose an
arbitrary (stochastic) feedback mapping rather than passively
repeating what he has received, the trivial scheme of sending
an independently generated secret key is sufficient to achieve
the secrecy capacity. In other words, in contrast to the case
of [5] where the feedback (output symbols) is only partially
useful for a key, the freedom to choose what to send back
allows for a full utilization of the feedback data rate Rf .
Ultimately, we are interested in characterizing the secrecy

capacity region when information flows in both directions over
the two-way communication channels. To get some insight, we
considered a special case of the secrecy capacity from Alice
to Bob when the backward channel is secure, rate-limited, and
independent of the forward channel. Future studies will focus
on characterizing the secrecy capacity region for different
scenarios of two-way communication.
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