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Abstract—We study the tradeoffs between the number of
measurements, the signal sparsity level, and the measurement
noise level for exact support recovery of sparse signals via
random noisy measurements. By drawing analogy between exact
support recovery and communication over the Gaussian multiple
access channel, and exploiting mathematical tools developed for
the latter problem, we derive sharp asymptotic sufficient and
necessary conditions for exact support recovery. Specifically,
when the number of nonzero entries is held fixed, the exact
asymptotics on the number of measurements for support recovery
is developed. When the number of nonzero entries increases
in certain manners, we obtain sufficient conditions tighter than
existing results. The proposed information theoretic framework
for analyzing the performance of support recovery is further
demonstrated to be capable of dealing with a variety of sparse
signal recovery models.

I. INTRODUCTION

Consider the estimation of a sparse signal X ∈ R
m via lin-

ear measurements Y = AX+Z, where A ∈ R
n×m is referred

to as the measurement matrix and Z ∈ R
n is the measurement

noise. The goal is to reconstruct the signal X from as few
number of measurements as possible. This problem has re-
cently received much attention and has many applications such
as compressed sensing, biomagnetic inverse problems, image
processing, outlier detection, bandlimited extrapolation and
spectral estimation, channel estimation, and wireless commu-
nication [1]–[4]. Efficient algorithms for sparse signal recovery
have been proposed to find or approximate the sparse solution
X in various settings, e.g., matching pursuit algorithms [5],
[6], convex [7], [8] and nonconvex [9] optimization algorithms,
Bayesian methods [10], etc.

In many applications, it is important to find the exact support
of the sparse signal [11], [12]. Performance analyses have been
developed to shed light on the abilities of practical algorithms
for support recovery in both noiseless settings [13]–[15] and
noisy settings [16], [17]. Meanwhile, information theoretic
tools have proven useful in understanding the fundamental
performance tradeoff, regardless of algorithm complexity, for
exact support recovery of sparse signals in the presence of
noise. For instance, Wainwright [18] considered the problem
of exact support recovery using the maximum likelihood
decoder. Sufficient and necessary conditions are developed for
different sparsity levels. Using the same decoder, Fletcher et
al. [19] further improved the necessary condition in certain
settings. Wang et al. [20] also presented a set of necessary
conditions for exact support recovery. Akçakaya and Tarokh

[21] analyzed the performance of a joint typicality decoder
and found a set of sufficient and necessary conditions under
different performance metrics including the one for exact
support recovery.

In this paper, we present sharper asymptotic tradeoffs be-
tween the signal dimension m, the number of nonzero entries
k, and the number of measurements n for exact support
recovery in the noisy setting. When k is held fixed, we
find that n = logm

c(X) is sufficient and necessary. We provide

a complete characterization of c(X) that depends on the
values of the nonzero entries of X. When k increases in
certain manner as specified later, we obtain sufficient and
necessary conditions for support recovery which improve upon
existing results. Our main results are inspired by the analogy
to communication over the additive white Gaussian noise
multiple access channel (AWGN-MAC) [22], [23]. According
to this connection, the columns of the measurement matrix
form a common codebook for all senders. Codewords from
each sender are individually multiplied by unknown channel
gains, which correspond to nonzero entries of X. Then,
the noise corrupted linear combination of these codewords
is observed. Thus, support recovery can be interpreted as
decoding messages from multiple senders. With appropriate
modifications, the techniques for deriving channel capacity
can be leveraged to provide performance tradeoffs for support
recovery. This analytical framework can further incorporate
alternate related models of sparse signal recovery, such as
random nonzero entries and multiple measurement vectors
(MMV).

The rest of the paper is organized as follows. Section II
formulates the problem of support recovery. Section III sum-
marizes the main results and makes comparisons with other
parallel work. The outline of the proofs of our main results is
presented in Section IV. Further extensions to different model
assumptions are discussed in Section V.

Throughout this paper, a set is a collection of unique objects.
Let Rm denote the m-dimensional real Euclidean space. Let
[k] denote the set {1, 2, ..., k}, |S| denote the cardinality of set
S, and ‖x‖ denote the �2-norm of a vector x. The expression

f(x) = o(g(x)) denotes limx→∞
f(x)
g(x) = 0, f(x) = O(g(x))

denotes |f(x)| ≤ α|g(x)| as x → ∞ for some constant
α > 0, f(x) = Θ(g(x)) denotes f(x) = O(g(x)) and
g(x) = O(f(x)), f(x) = Ω(g(x)) denotes g(x) = O(f(x)),
and f(x) = ω(g(x)) denotes g(x) = o(f(x)).
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II. FORMAL DEFINITION OF THE PROBLEM

Let w = [w1, ..., wk]
ᵀ ∈ R

k, where wi �= 0 for all i. Let
S = [S1, ..., Sk]

ᵀ ∈ [m]k be such that S1, ..., Sk are chosen
uniformly at random from [m] without replacement. In particu-
lar, {S1, ..., Sk} is uniformly distributed over all size-k subsets
of [m]. Then, the signal of interest X = X(w,S) ∈ R

m is
generated as

Xs =

{
wj if s = Sj ,
0 if s /∈ {S1, ..., Sk}. (1)

Thus, the support of X is supp(X) = {S1, ..., Sk}. According
to the signal model (1), |supp(X)| = k. Throughout this paper,
we assume k is known. The signal is said to be sparse when
k � m.

We measure X through the linear operation

Y = AX+ Z (2)

where A ∈ R
n×m is the measurement matrix, Z ∈ R

n is the
measurement noise, and Y ∈ R

n is the noisy measurement.
We further assume that the elements of matrix A are indepen-
dently generated according to N (0, σ2

a), and the noise Zi are
independently and identically distributed (i.i.d.) according to
N (0, σ2

z).
Upon receiving the noisy measurement Y, the goal is to

recover the support of the sparse signal X. Formally, a support
recovery map is defined as

d : Rn 	−→ 2{1,2,...,m}. (3)

Given the signal model (1), the measurement model (2), and
the support recovery map (3), the performance metric is de-
fined to be the average probability of error in support recovery,
i.e., P{d(Y) �= supp(X(w,S))}, for each (unknown) signal
value vector w ∈ R

k. Note that this probability is taken over
the random signal support vector S, the measurement matrix
A, and the noise Z.

III. MAIN RESULTS AND THEIR IMPLICATIONS

A. Fixed Number of Nonzero Entries

To discover the precise impact of the values of the nonzero
entries on support recovery, we consider the support recovery
of a sequence of sparse signals generated with the same w,
which means k is fixed. Define the auxiliary quantity

c(w) � min
T ⊆[k]

⎡
⎣ 1

2|T | log

⎛
⎝1 +

σ2
a

σ2
z

∑
j∈T

w2
j

⎞
⎠
⎤
⎦ .

The following theorems summarize the performance tradeoff.
Theorem 1 (Sufficient condition): If

lim sup
m→∞

logm

nm
< c(w) (4)

then there exists a sequence of support recovery maps
{d(m)}∞m=k, d(m) : Rnm 	→ 2{1,2,...,m}, such that

lim
m→∞

P{d(m)(Y) �= supp(X(w,S))} = 0.

Theorem 2 (Necessary condition): If

lim sup
m→∞

logm

nm
> c(w) (5)

then for any sequence of support recovery maps {d(m)}∞m=k,
d(m) : Rnm 	→ 2{1,2,...,m}, we have

lim inf
m→∞

P{d(m)(Y) �= supp(X(w,S))} > 0.

Theorems 1 and 2 together indicate that n = 1
c(w) logm

is sufficient and necessary for exact support recovery. The
leading constant 1

c(w) is explicitly characterized, capturing the

role of the magnitudes of the nonzero entries.

B. Growing Number of Nonzero Entries

Next, we consider the support recovery for the case where
k, the number of nonzero entries, grows with m, the dimension
of the signal. For ease of exposition, we assume that the
magnitude of a nonzero entry is bounded from both below
and above. This could be a reasonable assumption in practice
due to the physical constraints underlying the signal generation
and measurement procedure.

We first present a sufficient condition.
Theorem 3: Let {w(m)}∞m=1 be a sequence of vectors sat-

isfying w(m) ∈ R
km and 0 < wmin ≤ |w(m)

j | ≤ wmax < ∞
for all j ∈ [km],m ≥ 1. If

lim sup
m→∞

1

nm
max
j∈[km]

[
6km log km + 2j logm

log (jw2
minσ

2
a/σ

2
z + 1)

]
< 1 (6)

then there exists a sequence of support recovery maps
{d(m)}∞m=1, d(m) : Rnm 	→ 2{1,2,...,m}, such that

lim
m→∞

P{d(m)(Y) �= supp(X(w(m),S))} = 0.

To understand Theorem 3, we note that (6) suggests that
the sufficient number of measurements for support recovery
be of the order n = max[Ω(k log k),Ω( k

log k logm)]. The
following table lists in detail the sufficient orders of n paired
with different relations between m and k.1

Relation b/w m and k Sufficient n

m = ω(k)

m = kΩ(log k) n = Ω( k logm
log k

)

eω(log k) ≤ m ≤ ko(log k) 2 n = Ω(k log k) 3

ω(k) ≤ m ≤ eΘ(log k) 4 n = Ω(k logm)

m = Θ(k) n = Ω(k logm)

In the existing literature, Wainwright [18] and Akçakaya et
al. [21] both derived sufficient conditions for exact support
recovery. Under the same assumption of Theorem 3, the
sufficient conditions presented in these papers, respectively,
are summarized in the following table:

1In this work, we mainly focus on the order of n in terms of m and k with
other parameters (wmin, wmax, σ2

a, and σ2
z ) held fixed.

2For example, m = klog log k .
3In this case, logm = ω(log k), and hence Ω(k logm) ⊂ Ω(k log k).

Thus, n = Ω(k log k) is a better sufficient condition than n = Ω(k logm).
4For example, m = k2.
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Relation b/w m and k Wainwright [18] Akçakaya et al. [21]

m = ω(k) n = Ω(k log m
k
) n = Ω(k log(m− k))

m = Θ(k) n = Ω(m) n = Ω(m)

To compare the results, we first examine the case for m =
ω(k) (i.e., sublinear sparsity). Note that in the regime where
m = eω(log k), our sufficient condition on n includes lower
order growth rate, hence is better, than existing results. In the
regime where ω(k) ≤ m ≤ eΘ(log k), there exists a certain
scenario, e.g. k = m

logm , in which our sufficient condition is
of the same order as in [21] but higher than in [18]. In the case
of m = Θ(k) (i.e., linear sparsity), we see that our sufficient
condition is stricter, implying its inferiority to existing results
in this regime.

Next, we present a necessary condition.
Theorem 4: Let {w(m)}∞m=1 be a sequence of vectors sat-

isfying w(m) ∈ R
km and 0 < wmin ≤ |w(m)

j | ≤ wmax < ∞
for all j ∈ [km],m ≥ 1. If

lim sup
m→∞

2km log(m/km)

nm log (2kmw2
maxσ

2
a/σ

2
z + 1)

> 1 (7)

then for any sequence of support recovery maps {d(m)}∞m=1,
d(m) : Rnm 	→ 2{1,2,...,m}, we have

lim inf
m→∞

P{d(m)(Y) �= supp(X(w(m),S))} > 0.

Under the same assumption5 of Theorem 4, we summarize
the necessary conditions developed in previous papers below:

Relation b/w m and k m = ω(k) m = Θ(k)

Wainwright [18] n = Ω(logm) n = Ω(logm)

Wang et al. [20] n = Ω(
k log(m/k)

log k
) n = Ω(m)

Akçakaya et al. [21] 6 n = Ω(
k log(m/k)

log k
) n = Ω( m

log k
)

Theorem 4 n = Ω(
k log(m/k)

log k
) n = Ω( m

log k
)

We remark that when m = ω(k), n = Ω(k log(m/k)
log k ) is

the best known necessary condition. When m = Θ(k), n =
Ω(m) is necessary, which follows simply from the elementary
constraint n ≥ k that the number of measurements has to
be no smaller than the number of nonzero entries for support
recovery to be possible.

C. Further Observations
Note that for the sublinear sparsity with m = kΩ(log k),

log m
k and logm are of the same order and hence our sufficient

and necessary conditions both indicate n = Ω( k
log k logm).

5It should be noted that the necessary conditions derived in [18], [20],
and [21] were originally under slightly different assumptions. They can be
accommodated to fit our assumption. For the purpose of comparison, only
the asymptotic order of n is relevant.

6This set of results are implied in [21], by identifying C′4 and C4

in Thm. 1.6 and 1.3 therein, respectively, and clarifying the order of
n in different cases. The proof of Thm. 1.3 (and 1.6) states that (be-
low its (25)) asymptotically reliable support recovery is not possible if
n < [log(1 + ‖w(m)‖2/σ2

z)]
−1mH(k/m) − log(m + 1). Note that

mH(k/m) = Θ(k log(m/k)). Hence, we consider n = Ω(
k log(m/k)

log k
)

an appropriate necessary condition resulting from the proof in [21].

This provides a sharp performance tradeoff for support re-
covery in this specific regime, which to our knowledge has
not been observed in previous work (see, for example, the
remarks in [18, III-A-1)], [19, III-Remark 2)]). For the regime
where ω(k) ≤ m ≤ ko(log k), the orders of n in any
pair of sufficient and necessary conditions have a nontrivial
difference, leaving an open question on further narrowing the
gap in this remaining regime of sublinear sparsity.

In addition, it is worthwhile to note that our analytical
framework could also be adapted to the case where wmin =
O(1/

√
k). This is a scenario extensively discussed in [18]–

[20]. We will not pursue this direction in detail due to the
existing development and space limitation.

IV. MOTIVATION AND PROOF OUTLINE OF MAIN RESULTS

Our work is inspired by the connection between the prob-
lems of support recovery of sparse signals and channel coding
in network information theory. We start with a discussion on
this connection to assist understanding of the proof.

A. Analogies and Differences to the Problem of Channel
Coding

Our previous work [22], [23] established the connection be-
tween sparse signal recovery and the channel coding problem.
We briefly reiterate the key issues here. First, by removing
the columns of A corresponding to the zero entries in X, the
effective form of the measurement procedure (2) is given by

Y = AS1XS1 +AS2XS2 + ...+ASk
XSk

+ Z. (8)

Note that (8) can be actually interpreted as communication
over a Gaussian multiple access channel (MAC) [24] by
making the following analogies.

i) A nonzero entry as a sender: We can view the
existence of a nonzero entry position Sj as sender j
that accesses the MAC.

ii) XSj as the channel gain: The nonzero entry XSj , i.e.,
wj , plays the role of the channel gain.

iii) Ai as the codeword: We treat the measurement matrix
A as a codebook with each column Ai, i ∈ [m], as a
codeword. Each element of ASj is fed one by one to the
channel as input symbols for the jth sender, resulting in
n uses of the channel.

iv) Similarity of objectives: In the problem of sparse signal
recovery, we focus on finding the support {S1, ..., Sk} of
the signal. In the problem of MAC communication, the
receiver needs to determine the indices of codewords,
i.e., S1, ..., Sk, that are transmitted by senders.

As a natural consequence, the MAC capacity result could
be leveraged to provide the performance tradeoff for support
recovery of sparse signals. It should be noted that although
the analogy between the problems of sparse signal recovery
and channel coding has also been observed from various per-
spectives in parallel work [25], [26, IV-D], [20, II-A], [21, III-
A], [27], [28, 11.2], our approach is different by making this
connection precise. Especially, we realize that the following
domain specific differences from the support recovery problem
impose difficulties that must be addressed accordingly in order
to rigorously apply the information theoretic approaches.
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i) Common codebook: In the MAC communication, each
sender uses its own codebook. However, in sparse signal
recovery, the “codebook” A is shared by all “senders”.
Hence, all senders operate at the same rate. Different
senders will not choose the same codeword, or they will
collapse into one sender.

ii) Unknown channel gains: For sparse signal recovery
problem, the XSi values are unknown. This corresponds
to the analogy of unknown channel gains. Although
capacity results are available for communication under
channel uncertainty, a closer examination indicates that
they are not directly applicable to our problem. For
instance, training using pilot symbols is common for
combating channel uncertainties [29]; however, it is not
obvious how to incorporate the training procedure into
the measurement model (2).

Next, we develop techniques that are rooted in network
information theory, but suitably modified to account for these
differences.

B. Outline of Proofs for Theorem 1 and Theorem 3

Theorems 1 and 3 can be proved in a similar manner. We
shall first focus on the proof of Theorem 1. The key steps are
outlined as follows.

1) Estimation of the Values of Nonzero Entries: This is to
estimate w. We first form an estimate of ‖w‖ as

Ŵ �
√∣∣‖Y‖2/n− σ2

z

∣∣/σ2
a.

Fix an ε > 0. Let Q = Q(Ŵ , ε) be a minimal set of points in
R

k satisfying the following properties:

i) Q ⊆ Bk(Ŵ ), where Bk(Ŵ ) is the k-dimensional

hypersphere of radius Ŵ .
ii) For any b ∈ Bk(Ŵ ), there exists Ŵ ∈ Q such that

‖Ŵ − b‖ ≤ ε
2 .

It can be shown that with high probability there exists Ŵ ∈
Q such that ‖Ŵ − w‖ ≤ ε. Essentially, Q contains a good
estimate of w while still maintaining a controllable cardinality.

2) Method of Support Recovery: This is inspired by the dis-
tance decoding technique [30] for MAC. We declare d(Y) =
{ŝ1, ŝ2, ..., ŝk} ⊆ [m] is the recovered support of the signal,
if it is the unique set of indices such that

1

n

∥∥∥∥∥Y −
k∑

j=1

ŴjAŝj

∥∥∥∥∥
2

≤ σ2
z + ε2σ2

a (9)

for some Ŵ ∈ Q. If there is none or more than one such set,
pick an arbitrary set of k indices. Essentially, this recovery
method tries all the points in Q as candidate estimates of the
values of nonzero entries.

3) Analysis of the Error Probability: There are two types
of error events to consider.

i) Error event E1: There does not exist a Ŵ ∈ Q for the
true support set to satisfy (9).

ii) Error event E2: There exists a set of indices other than
the true support such that with some Ŵ ∈ Q, (9) is
satisfied.

The remaining task is to find an appropriate condition involv-
ing the model parameters (i.e., m, n, k, w, σ2

a, and σ2
z ) to

ensure that the overall error probability diminishes as m → ∞.
First, it can be readily shown that, according to the weak

law of large numbers [31], the probability that E1 occurs tends
to zero as m → ∞. It does not impose any special condition
on the model parameters.

Next, let us consider E2. Due to the symmetry of the
problem setup, we assume without loss of generality that
the true support set is [k]. Consider a set of k indices
{s1, s2, ..., sk} ⊆ [m] where {s1, s2, ..., sk} �= [k]. Let
T = [k]\{s1, s2, ..., sk}. Then, motivated by the analysis for
distance decoding technique [30], we can show that

P{∃Ŵ ∈ Q s.t. {s1, s2, ..., sk} satisfies (9)}

≤ k! · |Q| · 2−
n
2 log

(∑j∈T w2
j)σ2

a+σ2
z−ε

σ2
z+ε2σ2

a (10)

where the factor |Q| can be upper bounded when the mea-

surement is typical in certain sense. There are
(
m−k
|T |

)
of such

sets of indices whose corresponding E2 can be governed by
the same probability upper bound (10). By enumerating over
T ⊆ [k] and using the union of events bound, we can identify
(4) as a sufficient condition to ensure the probability that E2
occurs tends to zero as m → ∞.

To prove Theorem 3 for the case of growing number of
nonzero entries, we consider the following modifications. First,
for a consistent estimate of ‖w(m)‖, we need limm→∞

km

nm
=

0. Second, one can replace any wi by wmin in (10) to obtain
a similar but general probability upper bound. Third, in the
resultant general probability upper bound, the factor k! · |Q|
increases as m → ∞. Its growth rate can be shown as log(k! ·
|Q|) = O(k log k). Taking into consideration all these aspects,
one can show that (6) serves as a proper sufficient condition
to ensure asymptotically successful support recovery.

C. Outline of Proofs for Theorem 2 and Theorem 4
The proofs of Theorems 2 and 4 mimic the converse proof

of the coding theorem for the AWGN-MAC [24]. Important
aspects are summarized as follows.

First, we assume the nonzero vector w(m) is known. Since
knowing the nonzero values does not make the support recov-
ery more difficult, the necessary condition obtained under this
assumption works for the original problem where the nonzero
values are unknown.

Once we assume that the values of the nonzero entries
are known, the proof techniques for the converse of the
channel coding theorem become useful. At the core is Fano’s
inequality, which provides an upper bound for the entropy of
an estimate. Under the assumption that the error probability
diminishes as m → ∞, Fano’s inequality bridges the model
parameters to yield a set of necessary conditions that the model
has to satisfy. Theorem 2 indeed reflects this set of necessary
conditions precisely. Instead, Theorem 4 selects only one of
these necessary conditions for its clear interpretation.

V. EXTENSIONS

The connection between the problems of support recovery
and channel coding can be further explored to provide the
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performance tradeoff for different scenarios. We briefly discuss
its potential to several important cases.

A. Random Nonzero Values
Thus far, the nonzero vector w(m) is assumed to be deter-

ministic but unknown for any m. It is also possible to consider
the case where the elements of w(m) are generated according
to a certain probability distribution. Recall that w(m) can be
interpreted as the channel gains of a MAC. Under the new
assumption, the channel gains will be random. They will be
realized once and then kept fixed during the entire channel
use. This channel model is usually termed as a slow fading
channel [32]. Since there is a nontrivial probability that the
channel gains are realized too poorly to support the target
rate, an outage analysis is usually employed to evaluate the
performance [32]. Correspondingly, some nonzero entries may
be too weak to be reliably recovered. Based on this new
analogy and the method of outage analysis, the performance
analysis for support recovery becomes feasible.

B. Multiple Measurement Vectors (MMV)
Recently, increasing research effort has been focus-

ing on the sparse signal recovery with multiple mea-
surement vectors [33], where there are multiple signals
X1(w1,S),X2(w2,S), ...,Xt(wt,S) that one would mea-
sure. Note that all Xj possess the common sparsity profile.
That is, the locations of nonzero entries are the same in each
Xj , j ∈ [t]. Let X = [X1,X2, ...,Xt] ∈ R

m×t. To measure
X , one performs

Y = AX + Z (11)

where Z = [Z1,Z2, ...,Zt] ∈ R
n×t is the measurement noise

and Y = [Y1,Y2, ...,Yt] ∈ R
n×t is the noisy measurement.

Note that the model (2) can be viewed as a special case of
the MMV model (11) with t = 1. The methodology that has
been developed in this paper has the potential to be extended
to deal with the performance issues with the MMV model
by noting the following connections [22]. First, the same set
of columns in A are scaled by entries in different Xj in the
generation of the different Yj . The nonzero entries of X can
then be viewed as the coefficients that connect different pairs
of inputs and outputs of a channel. Second, each measurement
vector Yj can be viewed as the data received at the jth
receiver. Hence, the MMV model corresponds to a multiple-
input multiple-output (MIMO) channel model. Third, the goal
is to recover the locations of nonzero rows of X upon receiving
Y . This implies that, in the corresponding channel coding
problem, the receivers will fully collaborate to decode the
information sent by all senders. We hope that, via proper
accommodation of the developed method in this paper, the
capacity results for MIMO channels can be leveraged to shed
light on the performance tradeoff of sparse signal recovery
with MMV. Since the MIMO channel capacity grows as
min(k, t), the support recovery can be significantly enhanced
in the MMV problem.
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