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Abstract—A new analog-digital hybrid coding architecture for
joint source–channel coding is proposed. The encoder generates
a channel input by a symbol-by-symbol mapping of the observed
(analog) source and its (digital) compression codeword, while
the decoder reconstructs the source by a symbol-by-symbol
mapping of the (analog) channel output and the decoded (digital)
compression codeword from it. When applied to the problem
of lossy communication of sources over the two-user discrete
memoryless interference channel, this hybrid coding scheme
achieves the best known performance and recovers as special
cases several previous results on lossless and lossy communication
over single hop networks.

I. INTRODUCTION

Shannon’s source-channel separation theorem states that

a source can be optimally transmitted over a point-to-point

discrete memoryless channel by concatenating a rate-distortion

achieving source coder, which compresses the analog source

into “bits” by removing the source redundancy, followed by

a capacity achieving channel coder, which ensures that digital

“bits” can be correctly decoded at the receiver by adding the

transmission redundancy. The great appeal of this architecture

is that the source coding and the channel coding operations

can be performed independently of each other. It is well

known, however, that this modular scheme yields suboptimal

performance for the general problem of lossy transmission

of correlated sources over multi-user discrete memoryless

channels [1]. One of the great challenges towards developing

a general theory of lossy communication over networks lies in

designing new techniques for jointly designing source-channel

codes.

In this paper we make one first step in this direction by

proposing a new approach to joint source-channel coding

based on hybrid coding, whereby the encoder generates a

channel input by a symbol-by-symbol mapping of the observed

(analog) source and its (digital) compression codeword, while

the decoder reconstructs the source by a symbol-by-symbol

mapping of the (analog) channel output and the decoded

(digital) compression codeword from it. Shannon’s source-

channel separation scheme is recovered in the special case

where the channel input is independent of the source and only

carries information about the (digital) compression codeword.

On the other hand, if the channel input is a function of the

source only, we recover the uncoded (analog) transmission

strategy.

Hybrid coding has been previously proposed as an alterna-

tive to Shannon’s source-channel separation architecture [2],

[3], [4], [5]. However, while most existing works in the

literature focus on communication of Gaussian sources over

additive Gaussian noise channels under squared error dis-

tortion measure, we propose a new generalized architecture

that can be applied to any lossy communication problem

over discrete memoryless channels. This new architecture

is conceptually as simple as the traditional architecture of

separate source and channel coding, yet it achieves much

improved performance. To illustrate this approach, we study

the problem of lossy communication of correlated sources

over the two-user discrete memoryless interference channel

in which each receiver estimates a function of the sources.

For this problem, hybrid coding achieves the best known

performance and recovers as special cases several previous

results on lossless and lossy communication over single hop

networks. The main contribution of the paper, however, lies

not with the generality of the new scheme that unifies these

results, but with the simple joint source–channel coding system

architecture that is used in the proof of achievability and that

could be useful for other multi-user communication problems.

The new joint source–channel coding system architecture

is described first in the simple point-to-point communication

setting in Section II and then applied to the problem of lossy

communication over the the interference channel in Section III.

II. BACKGROUND ON HYBRID CODING

Consider the general point-to-point communication system

depicted in Fig. 1, where the source S ∼ p(s) is to be

communicated over the discrete memoryless channel p(y|x).
What is the sufficient and necessary condition such that the

Sn
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Fig. 1. Point-to-point communication system.

source can be reconstructed with expected distortion satisfying

1

n

n∑

i=1

E(d(Si, Ŝi)) ≤ D?

Shannon [6], [7] showed that a distortion D is achievable if

R(D) < C, (1)
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(a) Separate source and channel coding system architecture.
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(b) Uncoded transmission.
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(c) A new joint source–channel coding system architecture based on hybrid coding.

Fig. 2. Three system architectures for the problem of lossy transmission of a source over a point to-point channel.

where R(D) = minp(ŝ|s): E(d(S,Ŝ))≤D I(S; Ŝ) is the rate–

distortion function for the source S and distortion measure

d(s, ŝ) and

C = max
p(x)

I(X ;Y )

is the capacity of the channel p(y|x). The proof of this

result uses separate source and channel coding, as illustrated

in Fig. 2(a). Under this separate source and channel coding

architecture, the source sequence is mapped into one of 2nR

indices M and then this index is mapped into a channel

codeword Xn, which is transmitted over the channel. Upon

receiving Y n, the decoder finds an estimate M̂ of M and

reconstructs Ŝn from M̂ . The index M provides a digital

interface between the source code and the channel code, which

can be designed and operated separately. By the lossy source

coding theorem and the channel coding theorem, the desired

distortion D can be achieved, provided that the index rate R
satisfies R > R(D) and R < C.

As another extreme point of communication, we can con-

sider uncoded transmission as depicted in Fig. 2(b). In this

simple analog interface between the source and the chan-

nel, the encoder transmits a symbol-by-symbol mapping of

the source sequences. Despite its simplicity, this uncoded

transmission can be sometimes optimal, for example, when

communicating a Gaussian source over a Gaussian channel

under a squared error (quadratic) distortion measure [8] or

communicating a binary source over a binary symmetric chan-

nel under a Hamming distortion measure. In these two cases,

the desired distortion D can be achieved if C ≥ R(D). (Note

the nonstrict inequality, compared to Shannon’s sufficient

condition for source–channel separation.)

Hybrid coding combines the separate source and channel

coding and uncoded transmission (see Fig. 2(c)). Under this

new architecture, the source sequence Sn is mapped to one

of 2nR sequences Un(M) and then this sequence Un(M)
(along with Sn) is mapped to Xn symbol-by-symbol, which is

transmitted over the channel. Upon receiving Y n, the decoder

finds an estimate Un(M̂) of Un(M) and reconstructs Ŝn

from Un (and Y n) again by a symbol-by-symbol mapping.

Thus, the codeword Un(M) plays the roles of both the source

codeword Ŝn(M) and the channel codeword Xn(M) simul-

taneously. This dual role of Un(M) allows simple symbol-

by-symbol interfaces x(u, s) and ŝ(u, y) that replace the

channel encoder and the source decoder in the separation

architecture. Moreover, the source encoder and the channel

decoder can be operated separately. Roughly speaking, again

by the lossy source coding theorem, the condition R >
I(U ;S) guarantees a reliable source encoding operation and

by the channel coding theorem, the condition R < I(U ;Y )
guarantees a reliable channel decoding operation (over the

channel p(y|u) =
∑

s p(y|x(u, s))p(s)). Thus, a distortion D
is achievable if

I(S;U) < I(U ;Y ) (2)

for some pmf p(u|s) and functions x(u, s) and ŝ(u, y) such

that E(d(S, Ŝ)) ≤ D. By taking U = (X, Ŝ) where Ŝ ∼
p(ŝ|s), X ∼ p(x) is independent of S and Ŝ, and using the

memoryless property of the channel, it can be easily shown

that this condition simplifies to (1). On the other hand, by

taking U = ∅, hybrid coding reduces to uncoded transmission.

Conceptually speaking, this new coding scheme is as simple

as the separation scheme. The precise analysis of its perfor-

mance, however, involves a technical subtlety. In particular,

because Un(M) is used as a source codeword, the index M
depends on the entire codebook C = {Un(M) : M ∈ [1 :
2nR]}. But the conventional random coding proof technique

for a channel codeword Un(M) is developed for situations

for which the index M and the (random) codebook C are

independent of each other. The dependency issue for joint

source–channel coding has been well noted by Lapidoth and

Tinguely [4, Proof of Proposition D.1], who developed a

geometric approach for sending a bi-variate Gaussian source

over a Gaussian multiple access channel. For a detailed proof

of the achievability of hybrid coding with nonstandard analysis

that overcomes this difficulty, refer to [9].

III. JOINT SOURCE-CHANNEL CODING OVER THE

INTERFERENCE CHANNEL

The problem of lossy communication of a pair of corre-

lated discrete memoryless sources (S1, S2) ∼ p(S1, S2) over
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the discrete memoryless interference channel p(y1, y2|x1, x2)
depicted in Fig. 3 is the most general communication problem
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Fig. 3. Communication of a 2-DMS over a DM-IC.

for single-hop networks, i.e., networks where each nodes can

be either a source or a destination but not both, and in fact it

includes as special cases the problems of lossy communication

over the two-user multiple access and broadcast channels. Here

each sender j = 1, 2 wishes to communicate its source Sj

over the channel so that receiver j can compute a function

Tj of the sources with desired distortion. We assume, for

simplicity, that the sources S1 and S2 have no common part

in the sense of Gács–Körner [10] and Witsenhausen [11]

and consider the block coding setting in which the source

sequences Sn
1 = (S11, . . . , S1n) and Sn

2 = (S21, . . . , S2n) are

communicated by n transmissions over the channel. Formally,

a (|S1|n, |S2|n, n) joint source–channel code for this problem

consists of

• two encoders, where encoder j = 1, 2 assigns a sequence

xn
j (s

n
j ) to each source sequence snj , and

• two decoders, where decoder j = 1, 2 assigns an estimate

t̂nj to each channel output sequence ynj .

Let d1(s1, s2, t̂1) and d2(s1, s2, t̂2) be two distortions mea-

sures. The average per-letter distortion dj(s
n
1 , s

n
2 , t̂

n
j ), j = 1, 2,

is defined as dj(s
n
1 , s

n
2 , t̂

n
j ) = (1/n)

∑n

i=1 dj(s1i, s2i, t̂ji). A

distortion pair (D1, D2) is said to be achievable for commu-

nication of the sources (S1, S2) over the interference channel

p(y1, y2|x1, x2) if there exists a sequence of (|S1|n, |S2|n, n)
joint source–channel codes such that

lim sup
n→∞

E(dj(S
n
1 , S

n
2 , T̂

n
j )) ≤ Dj , j = 1, 2.

The optimal distortion region is the closure of the set of all

achievable distortion pairs (D1, D2). A computable charac-

terization of the optimal distortion region for this problem is

not known. Even the simpler question of characterizing the

capacity region when sending independent messages over this

channel is a long-standing open problem.

The hybrid coding architecture outlined above can be used

to characterize a computable inner bound on the optimal dis-

tortion region. At a high level, the proposed approach consists

in concatenating the lossy version of the coding scheme of

Gray and Wyner [12] for source coding with a generalized

version of the channel coding scheme of Han and Kobayashi

for the interference channel [13]. Specifically, consider the

hybrid coding architecture depicted in Fig. 4, wherein each

source sequence Sn
j , j = 1, 2, is mapped to one of 2nRj

sequences Wj(mj), then each pair (Sn
j ,W

n
j (mj)) is mapped

to one of 2nR1j+R2j sequence pairs (Un
j (mj , lj), V

n
j (mj , kj)).

As in the source coding scheme scheme of Gray and Wyner,

Wn
j (mj) encodes common (digital) information decoded by

both receivers, while Un and V n serve as satellite codewords

used to transmit additional private information. Encoding

is performed using joint typicality encoding and standard

information theoretic techniques can be used to determine

the conditions for successful encoding. Then, the source and

the codewords corresponding to the three (digital) messages

(mj , lj , kj) are mapped symbol-by-symbol to the sequence

Xn
j that is transmitted over the interference channel. Upon

receiving Y n
j , decoder j recovers

Wn
j (mj), U

n(mj , kj),W
n
jc(mjc ), U

n(mjc , kjc)

by joint typicality decoding. Here and throughout, we use the

notation jc = {1, 2} \ {j}. Notice that decoder j decodes part

of the information transmitted by encoder jc as in the channel

coding theorem of Han and Kobayashi for the interference

channel. Once we ignore the issue of the dependence between

the indices and the codebook that we have mentioned in the

discussion of the point-to-point channel, the conditions for

successful decoding the covering indexes can be obtained by

applying the packing lemma to the multiple access channel

p(yj |wj , uj, wjc , vjc). Then, decoder j reconstructs T̂j by

mapping symbol-by-symbol the analog channel output Y n
j

and the codewords corresponding to four decoded digital

messages.

A. Main Result

Hybrid coding yields the following inner bound on the

optimal distortion region.

Theorem 1: A distortion pair (D1, D2) is achievable for

communication of the sources (S1, S2) over the interference

channel p(y1, y2|x1, x2) if there exist a pmf

p(q)p(w1, u1, v1 |s1, q)p(w2, u2, v2 |s2, q),

two encoding functions xj(wj , uj, vj , sj , q), and two decoding

functions t̂j(wj , uj, wjc , vjc , yj , q) such that, for each j =
1, 2,

E(dj(S1, S2, T̂j)) ≤ Dj

and the inequalities in (3) on the top of the last page are

satisfied for some rate tuple (R0j , R1j , R2j : j ∈ {1, 2}).

Remark 1: The above sufficient condition generalized sev-

eral previous results in the literature including the ones of

Berger [14] and Tung [15] for distributed lossy source coding,

Lapidoth and Tinguely [4] for lossy communication of a

bivariate Gaussian source over a Gaussian multiple access

channel, Han and Costa [16] for lossless communication of

correlated sources over a broadcast channel, and the result of

Tian, Diggavi, and Shamai [5] for lossy communication of a

bivariate Gaussian source over a Gaussian broadcast channel,

and of Han and Kobayashi [13] for communication of inde-

pendent messages over the interference channel. Furthermore,

the above theorem improves upon the previous result by Liu

and Chen [17] on lossy communication over the interference

channel.
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Fig. 4. System architecture for the problem of lossy communicating over an interference channel.

Remark 2: When specialized to the problem of lossless

communication of correlated sources over multiple access

channels, the sufficient condition in Theorem 1 reduces to

the one by Cover, El Gamal, and Salehi [1]. Hence, Dueck’s

counterexample [18] shows that in general this sufficient

condition is not necessary.

B. Outline of the achievability proof

In the following, we provide an outline for the achievability

proof in the special case Q = ∅. Achievability for an arbitrary

Q can be proved using coded time sharing technique [19].

Codebook generation: We randomly and independently gener-

ate a codebook for each j = 1, 2. Fix a pmf p(wj , uj, vj |sj),
an encoding function xj(wj , uj, vj , sj), and a reconstruc-

tion function t̂j(wj , uj, wjc , vjc , yj) such that the average

distortion constraints are satisfied. Randomly and indepen-

dently generate 2nR0j sequences wn
j (mj), mj ∈ [1 :

2nR0j ], each according to
∏n

i=1 pWj
(wji). For each mj ,

randomly and conditionally independently generate 2nR1j

sequences un
j (mj , lj), lj ∈ [1 : 2nR1j ], each ac-

cording to
∏n

i=1 pUj |Wj
(uji|wji(mj)). For each mj , ran-

domly and conditionally independently generate 2nR2j se-

quences vnj (mj , kj), kj ∈ [1 : 2nR2j ], each according to∏n

i=1 pVj |Wj
(vji|wji(mj)).

Encoding: Fix ǫ > ǫ′ > 0. Upon observing snj , encoder j =
1, 2 finds an index triple (mj , lj , kj) ∈ [1 : 2nR0j ] × [1 :
2nR1j ]× [1 : 2nR2j ] such that

(wn
j (mj), u

n
j (mj , lj), v

n
j (mj , kj), s

n
j ) ∈ T

(n)
ǫ′ .

If there is more than one such index triple, choose

one of them at random. Otherwise, declare an error and

choose an index triple at random. Encoder j transmits

xji = xj(wji(mj), uji(mj , lj), vji(mj , kj), sji) at time i =
1, · · · , n.

By the mutual covering lemma [19], the source encoding is

successful if

R0j > I(Wj ;Sj) + δ(ǫ′),

R1j > I(Uj ;Sj |Wj) + δ(ǫ′),

R2j > I(Vj ;Sj |Wj) + δ(ǫ′),

R1j +R2j > I(Uj ;Sj |Wj) + I(Vj ;Sj |Wj)

+ I(Uj ;Vj |Wj , Sj) + δ(ǫ′)

for j = 1, 2.

Decoding: Upon observing the sequence ynj , decoder j = 1, 2

finds the unique index tuple (m̂1, m̂2, l̂j , k̂jc) such that

(wn
j (m̂j), u

n
j (m̂j , l̂j), w

n
jc (m̂jc), v

n
jc (m̂jc , k̂jc), y

n
j ) ∈ T (n)

ǫ .

Then, decoder j declares

t̂ji = t̂j(wji(m̂j), uji(m̂j , l̂j), wjci(m̂jc ), vjci(m̂jc , k̂jc), yji),

i ∈ [1 : n] as its estimate of tji, i = 1, · · · , n.

In the following we outline the probability of error analysis

for decoder 1. The analysis for decoder 2 follows simi-

larly. Assume that the source encoding is successful and let

(M1, L1,K1) and (M2, L2,K2) be the random variables de-

noting the chosen indices at the encoders 1 and 2, respectively.

Then, the error event for decoder 1 can be partitioned into two

events,

E1 = {(Sn
1 , S

n
2 ,W

n
1 (M1), U

n
1 (M1, L1),

Wn
2 (M2), V

n
2 (M2,K2), Y

n
1 ) 6∈ T (n)

ǫ },

E2 = {(Sn
1 , S

n
2 ,W

n
1 (m1), U

n
1 (m1, l1),

Wn
2 (m2), V

n
2 (m2, k2), Y

n
1 ) ∈ T (n)

ǫ

for some (m1,m2, l1, k2) 6= (M1,M2, L1,K2)}.

By the Markov lemma [19, Lecture Note 13], P(E1) tends to

zero as n → ∞. To bound P(E2), let

Ẽ(m1, l1,m2, k2) = {(Sn
1 , S

n
2 ,W

n
1 (m1), U

n
1 (m1, l1),

Wn
2 (m2), V

n
2 (m2, k2), Y

n
1 ) ∈ T (n)

ǫ }.

Then, the event E2 can be divided into the events that

Ẽ(m1, l1,m2, k2) occurs for the following cases.

1) m̂1 6= M1, l̂1 6= L1, m̂2 6= M2, and k̂2 6= K2: The

probability of this event tends to zero as n → ∞ if

R01 +R11 +R02 +R22 < I(W1, U1,W2, V2;Y1)

+ I(W1, U1;W2, V2)− δ(ǫ).

2) m̂1 = M1, l̂1 6= L1, m̂2 6= M2, and k̂2 6= K2: The

probability of this event tends to zero as n → ∞ if

R11 +R02 +R22 < I(U1,W2, V2;Y1 |W1)

+ I(W1, U1;W2, V2)− δ(ǫ).

3) m̂1 = M1, l̂1 = L1, m̂2 6= M2, and k̂2 6= K2: The

probability of this event tends to zero as n → ∞ if

R02 +R22 < I(W2, V2;Y1,W1, U1)− δ(ǫ).
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R0j > I(Wj ;Sj |Q),

R1j > I(Uj ;Sj |Wj , Q),

R2j > I(Vj ;Sj |Wj , Q),

R1j +R2j > I(Uj ;Sj |Wj , Q) + I(Vj ;Sj |Wj , Q) + I(Uj ;Vj |Wj , Sj, Q),

R1j < I(Uj ;Yj ,Wjc , Vjc |Wj , Q),

R2jc < I(Vjc ;Yj ,Wj , Uj |Wjc , Q),

R0j +R1j < I(Wj , Uj ;Yj ,Wjc , Vjc |Q), (3)

R0jc +R2jc < I(Wjc , Vjc ;Yj ,Wj , Uj |Q),

R1j +R2jc < I(Uj , Vjc ;Yj |Wj ,Wjc , Q) + I(Wj , Uj;Wjc , Vjc |Q)− I(Wj ;Wjc |Q),

R1j +R0jc +R2jc < I(Uj ,Wjc , Vjc ;Yj |Wj , Q) + I(Wj , Uj;Wjc , Vjc |Q),

R0j +R1j +R2jc < I(Wj , Uj , Vjc ;Yj |Wjc , Q) + I(Wj , Uj;Wjc , Vjc |Q),

R0j +R1j +R0jc +R2jc < I(Wj , Uj ,Wjc , Vjc ;Yj |Q) + I(Wj , Uj;Wjc , Vjc |Q).

4) m̂1 6= M1, l̂1 6= L1, m̂2 = M2, and k̂2 6= K2: The

probability of this event tends to zero as n → ∞ if

R01 +R11 +R22 < I(W1, U1, V2;Y1 |W2)

+ I(W1, U1;W2, V2)− δ(ǫ).

5) m̂1 = M1, l̂1 6= L1, m̂2 = M2, and k̂2 6= K2: The

probability of this event tends to zero as n → ∞ if

R11 +R22 < I(U1, V2;Y1 |W1,W2)

+ I(W1, U1;W2, V2)− I(W1;W2)− δ(ǫ).

6) m̂1 = M1, l̂1 = L1, m̂2 = M2, and k̂2 6= K2: The

probability of this event tends to zero as n → ∞ if

R22 < I(V2;Y1,W1, U1 |W2)− δ(ǫ).

7) m̂1 = M1, l̂1 6= L1, m̂2 = M2, and k̂2 = K2: The

probability of this event tends to zero as n → ∞ if

R11 < I(U1;Y1,W2, V2 |W1)− δ(ǫ).

Therefore, P(E2) tends to zero as n → ∞ if the inequalities

for all cases are satisfied. Finally, by the law of total expec-

tation and the typical average lemma the desired distortion is

achieved.
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