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Abstract—Motivated by the recently developed hybrid coding
scheme for joint source–channel coding, this paper proposes a
new coding scheme for noisy relay networks. The proposed coding
scheme operates in a similar manner to the noisy network coding
scheme, except that each relay node uses the hybrid coding
interface to transmit a symbol-by-symbol function of the received
sequence and its quantized version. This coding scheme unifies
both amplify–forward and noisy network coding and can strictly
outperform both. The potential of the hybrid coding interface
for relaying is demonstrated through the diamond relay network
and two-way relay channel examples.

I. INTRODUCTION

Over the past decade, analog/digital hybrid coding has

been proposed as an alternative to Shannon’s source–channel

separation architecture [1], [2], for example,

• when the source should be encoded systematically [3],

• when the channel state information is available at the

encoder [4], or

• when multiple sources are to be transmitted over a

multiuser channel [5], [6].

In most cases, the focus has been on communication of

Gaussian sources over an additive Gaussian noise channel

under squared error (quadratic) distortion measures, for which

separate source and channel coding performs rather poorly.

Motivated by recent developments on hybrid coding [7], [8]

for joint source–channel coding over a single-hop network,

we explore a new application of hybrid coding in relaying

over noisy networks. There have been three dominant relaying

paradigms: decode–forward, compress–forward, and amplify–

forward.

• In decode–forward [9], the relay recovers the message

either fully or partially and forwards it (digital-to-digital

interface) while coherently cooperating with the source

node. Decode–forward has been generalized to multiple

relay networks, for example, in [10], [11] and further

improved by combining with structured coding [12], [13].

• In amplify–forward [14], the relay sends a scaled version

of its received sequence and forwards it (analog-to-analog

interface).

• In compress–forward [9], the relay vector-quantizes its

received sequence and forwards it (analog-to-digital in-

terface). Compress–forward has been generalized to ar-

bitrary noisy networks in [15] as noisy network coding,

which also extends network coding [16].

In this paper we propose a new coding scheme for a

noisy network that uses hybrid coding at relay nodes. The

proposed scheme naturally extends both noisy network coding

(single-letter performance bound that resembles the cutset

bound) and amplify–forward (coherent transmission at the

relays). More important than this conceptual unification is

the performance improvement of hybrid coding. As will be

demonstrated via Gaussian network examples, hybrid coding

can strictly outperform the existing coding schemes, not only

amplify–forward and noisy network coding, but also decode–

forward and its extensions. Moreover, since the coding scheme

is developed for a general (not necessarily Gaussian) network,

the resulting performance is better than blindly applying the

scalar Gaussian hybrid coding interfaces used in [5], [6].

Since the main objective of this paper is to explore the

potential of hybrid coding in relay networks, we would rather

focus on concrete examples. In particular, we consider the

two-relay diamond network in Section III and the two-way

relay channel in Section IV, and compare hybrid coding with

existing coding schemes. Coding theorems for a general noisy

network will be given in a separate occasion [17]. In the

next section, we develop the necessary background on hybrid

coding. Throughout the paper, we use the notation in [18].

II. HYBRID CODING

Consider the general point-to-point communication system

depicted in Fig. 1, where the source S ∼ p(s) is to be

communicated over the discrete memoryless channel p(y|x).
What is the sufficient and necessary condition such that the

Sn
Source–channel Source–channel

encoder decoder
p(y|x)

Xn Y n Ŝ
n

Fig. 1. Point-to-point communication system.

source can be reconstructed with expected distortion satisfying

1

n

n
∑

i=1

E(d(Si, Ŝi)) ≤ D?

Shannon [1], [2] showed that a distortion D is achievable if

R(D) < C, (1)

where R(D) = minp(ŝ|s):E(d(S,Ŝ))≤D I(S; Ŝ) is the rate–

distortion function for the source S and distortion measure
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d(s, ŝ) and C = maxp(x) I(X ;Y ) is the capacity of the

channel p(y|x). The proof of this result uses separate source

and channel coding, as illustrated in Fig. 2. Under this separate

Sn MSource Channel SourceChannel
encoderencoder decoderdecoder

p(y|x)
Xn Y n M̂ Ŝ

n

Fig. 2. Separate source and channel coding system architecture.

source and channel coding architecture, the source sequence

is mapped into one of 2nR indices M and then this index is

mapped into a channel codeword Xn, which is transmitted

over the channel. Upon receiving Y n, the decoder finds an

estimate M̂ of M and reconstructs Ŝn from M̂ . The index M
provides a digital interface between the source code and the

channel code, which can be designed and operated separately.

By the lossy source coding theorem and the channel coding

theorem, the desired distortion D can be achieved, provided

that the index rate R satisfies R > R(D) and R < C.

As another extreme point of communication, we can con-

sider uncoded transmission as depicted in Fig. 3. In this simple

Sn

x(s) ŝ(y)p(y|x)
Xn Y n Ŝ

n

Fig. 3. Uncoded transmission.

analog interface between the source and the channel, the

encoder transmits a symbol-by-symbol mapping of the source

sequences. Despite its simplicity, this uncoded transmission

can be sometimes optimal, for example, when communicating

a Gaussian source over a Gaussian channel under a squared

error (quadratic) distortion measure [19] or communicating

a binary source over a binary symmetric channel under a

Hamming distortion measure. In these two cases, the desired

distortion D can be achieved if C ≥ R(D). The optimality

conditions for uncoded transmission is studied by Gastpar,

Rimoldi, and Vetterli [20].

Hybrid coding combines separate source and channel cod-

ing and uncoded transmission (see Fig. 4). Under this new

Sn Un

Source Channelx(u, s) ŝ(u, y)
encoder

p(y|x)
decoder

Xn Y n Un Ŝ
n

Fig. 4. Hybrid coding.

architecture, the source sequence Sn is mapped to one of 2nR

sequences Un(M) and then this sequence Un(M) (along with

Sn) is mapped to Xn symbol-by-symbol, which is transmitted

over the channel. Upon receiving Y n, the decoder finds an

estimate Un(M̂) of Un(M) and reconstructs Ŝn from Un

(and Y n) again by a symbol-by-symbol mapping. Thus, the

codeword Un(M) plays the roles of both the source codeword

Ŝn(M) and the channel codeword Xn(M) simultaneously.

This dual role of Un(M) allows simple symbol-by-symbol

interfaces x(u, s) and ŝ(u, y) that replace the channel en-

coder and the source decoder in the separation architecture.

Moreover, the source encoder and the channel decoder can

be operated separately. Roughly speaking, again by the lossy

source coding theorem, the condition R > I(U ;S) guarantees

a reliable source encoding operation and by the channel coding

theorem, the condition R < I(U ;Y ) guarantees a reliable

channel decoding operation (over the channel p(y|u) =
∑

s p(y|x(u, s))p(s)). Thus, a distortion D is achievable if

I(S;U) < I(U ;Y ) (2)

for some pmf p(u|s) and functions x(u, s) and ŝ(u, y) such

that E(d(S, Ŝ)) ≤ D. By taking U = (X, Ŝ) where Ŝ ∼
p(ŝ|s), X ∼ p(x) is independent of S and Ŝ, and using the

memoryless property of the channel, it can be easily shown

that this condition simplifies to (1). On the other hand, by

taking U = ∅, hybrid coding reduces to uncoded transmission.

Conceptually speaking, this hybrid coding scheme is as

simple as separate source and channel coding. The precise

analysis of its performance, however, involves a technical

subtlety. In particular, because Un(M) is used as a source

codeword, the index M depends on the entire codebook

C = {Un(M) : M ∈ [1 : 2nR]}. But the conventional random

coding proof technique for a channel codeword Un(M) is de-

veloped for situations in which the index M and the (random)

codebook C are independent of each other. For a detailed proof

of achievability using hybrid coding with nonstandard analysis

that overcomes this difficulty, refer to [7].

In the following, we show how hybrid coding can be used

at the relays to achieve higher rates than the existing coding

schemes.

III. DIAMOND RELAY NETWORK

As our first example, we consider the diamond relay net-

work p(y2, y3|x1)p(y4|x2, x3) depicted in Fig. 5. Node 1

wishes to send a message M ∈ [1 : 2nR] to node 4 with

the help of the relay nodes 2 and 3.

M M̂Xn
1 p(y2, y3|x1) p(y4|x2, x3)

Y n
4

Y n
2

Y n
3

Xn
2

Xn
3

1 4

2

3

Fig. 5. Diamond network.

We can use hybrid coding at the relay nodes as depicted in

Fig. 6. This coding scheme yields the following lower bound

on the capacity.

Y n
j Un

j (Mj)Source
xj(uj , yj)

encoder

Xn
j

Fig. 6. Hybrid coding interface for relays.
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Theorem 1: The capacity of the diamond network

p(y2, y3|x1)p(y4|x2, x3) is lower bounded as

C ≥ maxmin{I(X1;U2, U3, Y4),

I(X1, U2;U3, Y4) + I(X1;U2)− I(U2;Y2),

I(X1, U3;U2, Y4) + I(X1;U3)− I(U3;Y3),

I(X1, U2, U3;Y4) + I(X1;U2)

+I(X1, U2;U3)− I(U2;Y2)− I(U3;Y3)},
where the maximum is over all conditinal pmfs

p(x1)p(u2|y2)p(u3|y3) and functions x2(u2, y2), x3(u3, y3).
Setting Uj = ∅ for j = 2, 3 recovers the generalized

amplify–forward rate R = max I(X1;Y4), where the max-

imum is over all p(x1), x2(y2), x3(y3). On the other hand,

if we take Uj = (Xj , Ŷ j) with p(xj)p(ŷj |yj), Theorem 1

reduces to the noisy network coding lower bound

C ≥ maxmin{I(X1; Ŷ 2, Ŷ 3, Y4 |X2, X3),

I(X1, X2; Ŷ 3, Y4 |X3)− I(Y2; Ŷ 2 |X1, X2, X3, Ŷ 3, Y4),

I(X1, X3; Ŷ 2, Y4 |X2)− I(Y3; Ŷ 3 |X1, X2, X3, Ŷ 2, Y4),

I(X1, X2, X3;Y4)− I(Y2, Y3; Ŷ 2, Ŷ 3 |X1, X2, X3, Y4)},
where the maximum is over all conditional pmfs

p(x1)p(x2)p(x3) p(ŷ2|y2)p(ŷ3|y3).
As a special case, suppose that the multiple access chan-

nel p(y2, y3|x1) and the broadcast channel p(y4|x2, x3) are

deterministic. Then, the cutset bound [21] simplifies to

C ≤ max
p(x1)p(x2,x3)

R(Y2, Y3, Y4 |X2, X3)

where R(Y2, Y3, Y4|X2, X3) = min{H(Y2, Y3), H(Y2) +
H(Y4|X3), H(Y3) + H(Y4|X2), H(Y4)}. On the other hand,

the general lower bound by Avestimehr, Diggavi, and Tse [22]

simplifies to

C ≥ max
p(x1)p(x2)p(x3)

R(Y2, Y3, Y4 |X2, X3).

Note that the cutset bound and the general lower bound differ

only in maximizing input pmfs. Now it can be easily shown

that the hybrid coding lower bound in Theorem 1 simplifies

to the expression of the same form

C ≥ max
p(x1)p(x2|y2)p(x3|y3)

R(Y2, Y3, Y4 |X2, X3),

which is between the cutset bound and the general lower

bound in general. The following example demonstrates that

the inclusion can be strict.

Example 1: Suppose that p(y2, y3|x1) is the Blackwell

broadcast channel (i.e., X1 ∈ {0, 1, 2} and pY2,Y3|X1
(0, 0|0) =

pY2,Y3|X1
(0, 1|1) = pY2,Y3|X1

(1, 1|2) = 1) and p(y4|x2, x3)
is the binary erasure multiple access channel (i.e., X2, X3 ∈
{0, 1} and Y4 = X2 +X3 ∈ {0, 1, 2}). It can be easily seen

that the general lower bound reduces to C ≥ 1.5, while the

capacity is C = log 3, which coincides with the hybrid coding

lower bound (with X2 = Y2 and X3 = Y3). Thus, hybrid

coding strictly outperforms the coding scheme by Avestimehr,

Diggavi, and Tse [22] (and noisy network coding [15]).

In the above example, the capacity is achieved by the

extreme case of hybrid coding, namely, amplify–forward.

In general, hybrid coding can strictly outperform amplify–

forward as well, as demonstrated in the following.

Example 2: Consider the Gaussian diamond channel

Y2 = g21X1 + Z2,

Y3 = g31X1 + Z3,

Y4 = g42X2 + g43X3 + Z4,

where the noise components Zk, k = 2, 3, 4, are i.i.d. N(0, 1).
We assume power constrain P on each sender and denote the

SNR for the signal from node k to node j as Sjk = g2jkP .

Let X1 ∼ N(0, P ). For j = 2, 3, let Ŷ j = Yj + Ẑj and

Uj = (Vj , Ŷ j), where Vj ∼ N(0, 1) and Ẑj ∼ N(0, σ2
j ) are

independent of each other and of (X1, Y2, Y3). For αj , βj ∈
[0, 1] such that αj + βj ≤ 1, let Xj =

√

αjP

S1j + 1
Yj +

√

βjP

σ2

j

Ẑj+
√

(1− αj − βj)PVj so that Xj ∼ N(0, P ). Then

under this choice of the conditional distribution, the hybrid

coding lower bound in Theorem 1 simplifies as

C ≥ min
{

1

2
log

N1

D
+ C

(

S21(1 + σ2
3) + S31(1 + σ2

2)

(1 + σ2
2
)(1 + σ2

3
)

)

,

1

2
log

N2

D
+ C

(

S31

1 + σ2
3

)

− C

(

1

σ2
2

)

,

1

2
log

N3

D
+ C

(

S21

1 + σ2
2

)

− C

(

1

σ2
3

)

,

1

2
log

N4

D
− C

(

1

σ2
2

)

− C

(

1

σ2
3

)}

, (3)

where N1 = KỸ 4
−KỸ 4|Ŷ 2,Ŷ 3

K−1

Ŷ 2,Ŷ 3

K ′
Ỹ 4|Ŷ 2,Ŷ 3

with

KỸ 4|Ŷ 2,Ŷ 3
=

[

√

α2S42(S21 + 1) +
√

β2S42σ2
2

+

√

α3S43S21S31

S31 + 1
,
√

α3S43(S31 + 1)

+
√

β3S43σ2
3 +

√

α2S42S21S31

S21 + 1

]

,

KŶ 2,Ŷ 3
=

[

S21 + σ2
2 + 1

√
S21S31√

S21S31 S31 + σ2
3 + 1

]

,

KỸ 4
= 1 + (α2 + β2)S42 + (α3 + β3)S43

+ 2

√

α2α3S43S42S21S31

(S31 + 1)(S21 + 1)
,

N2 =1 + S42

(

1− α2S21S31

(S21 + 1)(S31 + 1 + σ2
3
)

)

+
S43

S31 + σ2
3
+ 1

(

√

α3σ2
3 −

√

β3(S31 + 1))
)2

+
2

S31 + σ2
3
+ 1

√

α2S42S43S21S31σ
2
3

(S21 + 1)(S31 + 1)

×
(

√

α3σ2
3 −

√

β3(S31 + 1)
)

,
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N3 is defined as N2 with subscript ‘2’ replaced by ‘3’,

N4 = 1 + S42 + S43 + 2

√

α2α3S21S31S42S43

(S21 + 1)(S31 + 1)
,

D =
S42

σ2
2
+ 1

(

√

σ2
2α2

S21 + 1
−
√

β2

)2

+
S43

σ2
3
+ 1

(

√

σ2
3α3

S31 + 1
−
√

β3

)2

+1.

for some αj , βj ∈ [0, 1] such that αj + βj ≤ 1 and σ2
j > 0,

j = 1, 2. If we let αj = βj = 0, j = 1, 2, then this bound

reduces to the noisy network coding lower bound

C ≤ min
{

C

(

S21(1 + σ2
3) + S31(1 + σ2

2)

(1 + σ2
2
)(1 + σ2

3
)

)

,

C(S21) + C

(

S31

1 + σ2
3

)

− C

(

1

σ2
2

)

,

C(S31) + C

(

S21

1 + σ2
2

)

− C

(

1

σ2
3

)

,

C(S42 + S43)− C

(

1

σ2
2

)

− C

(

1

σ2
3

)}

,

for some σ2
j > 0, j = 1, 2. On the other hand, if we let αj = 1,

βj = 0, and σ2
j → ∞ for j = 1, 2, then the hybrid coding

lower bound reduces to the amplify–forward lower bound that

consists of all rates R such that

C ≥ C

( (
√

S21S42(S31 + 1) +
√

S31S43(S21 + 1)
)2

S42(S31 + 1) + S43(S21 + 1) + (S21 + 1)(S31 + 1)

)

.

Note that our choice of Uj is richer than traditional Gaussian

hybrid coding [5], [6]. This follows since our coding scheme

is developed for a general discrete memoryless network.

Fig. 7 compares the amplify–forward, noisy network cod-

ing, and hybrid coding lower bounds on the capacity (with

optimized parameters) when g21 = g43 = g, g31 = g42 = 1,

and P = 1. Hybrid coding strictly outperforms both amplify–

forward and noisy network coding for this choice of pa-

rameters. Note that hybrid coding also outperforms decode–

forward, which achieves RDF = C(S31) = 1/2 (not shown).
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Fig. 7. Comparison of the amplify–forward lower bound RAF, noisy network
coding lower bound RNNC, and hybrid coding lower bound RHC on the
capacity for the Gaussian diamond network as a function of the channel gain
g = g21 = g43, when g31 = g42 = 1 and P = 1.

IV. TWO-WAY RELAY CHANNEL

As another example to illustrate the hybrid coding scheme,

we consider the discrete memoryless two-way relay channel

(DM-TWRC) without direct links p(y3|x1, x2)p(y1, y2|x3).
Node 1 wishes to send message M1 ∈ [1 : 2nR1 ] to node 2

and node 2 wishes to send message M2 ∈ [1 : 2nR2 ] to node 1

with the help of the relay node 3.

Hybrid coding at the relay node 3 yields the inner bound

on the capacity region that consists of all rate pairs (R1, R2)
such that

R1 < I(X1;Y2, U3 |X2),

R1 < I(X1, U3;X2, Y2) + I(X1;U3)− I(Y3;U3),

R2 < I(X2;Y1, U3 |X1),

R2 < I(X2, U3;X1, Y1) + I(X2;U3)− I(Y3;U3)

(4)

for some pmf p(x1)p(x2)p(u3|y3) and function x3(u3, y3). By

setting U3 = (Ŷ 3, X3) for p(ŷ3, x3|y3) = p(ŷ3|y3)p(x3), this

inner bound reduces to the noisy network coding inner bound

consisting of all rate pairs (R1, R2) such that

R1 < I(X1;Y2, Ŷ 3 |X2, X3),

R1 < I(X3;Y2)− I(Y3; Ŷ 3 |X1, X2),

R2 < I(X2;Y1, Ŷ 3 |X1, X3),

R2 < I(X3;Y1)− I(Y3; Ŷ 3 |X1, X2)

for some p(x1)p(x2)p(u3|y3) and x3(u3, y3).
Example 3: Now consider the Gaussian TWRC

Y1 = g13X3 + Z1,

Y2 = g23X3 + Z2,

Y3 = g31X1 + g32X2 + Z3,

where the noise components Zk, k = 1, 2, 3, are i.i.d. N(0, 1)
noise. We assume expected power constraint P on each sender.

Denote the received SNR Sjk = g2jkP .

Let X1 ∼ N(0, P ) and X2 ∼ N(0, P ) be independent of

each other. Let Ŷ 3 = Y3+Ẑ3 and U3 = (V3, Ŷ 3), where V3 ∼
N(0, 1) and Ẑ3 ∼ N(0, σ2) are independent of each other and

of (X1, X2, Y3). For α, β ∈ [0, 1] such that α+ β ≤ 1, let

X3 =

√

αP

S31 + S32 + 1
Y3+

√

βP

σ2
Ẑ3+

√

(1− α− β)P V3,

so that X3 ∼ N(0, P ). Then under this choice of the con-

ditional distribution, the hybrid coding inner bound in (4)

simplifies to the set of all rate pairs (R1, R2) such that the

inequalities in (5) are satisfied for some α, β ∈ [0, 1] such

that α+ β ≤ 1 and σ2 > 0. It can be easily shown that, if we

let α = β = 0, then the hybrid coding inner bound reduces to

the noisy network coding inner bound [15]. On the other hand,

if we let α = 1, β = 0, and σ2 → ∞, then the hybrid coding

inner bound reduces to the amplify–forward inner bound [23].

Fig. 8 compares the cutset bound to the decode–forward,

amplify–forward, noisy network coding, and hybrid coding

bounds on the sum-capacity (with optimized parameters). Here

nodes 1 and 2 are unit distance apart and node 3 is at distance

1949



R1 <
1

2
log

(

αS23(S31+1)
S31+S32+1 + βS23 + 1

)

(S31 + 1 + σ2)− S23

(

√

α(S31+1)
S31+S32+1 +

√

βσ2

)2

(

αS23

S31+S32+1 + βS23 + 1
)

(1 + σ2)− S23

(
√

α
S31+S32+1 +

√

βσ2
)2 ,

R1 <
1

2
log

(

αS23(S31+1)
S31+S32+1 + (1− α)S23 + 1

)

(1 + σ2)
(

αS23

S31+S32+1 + βS23 + 1
)

(1 + σ2)− S23

(
√

α
S31+S32+1 +

√

βσ2
)2 − C(1/σ2),

R2 <
1

2
log

(

αS13(S32+1)
S31+S32+1 + βS13 + 1

)

(S32 + 1 + σ2)− S13

(

√

α(S32+1)
S31+S32+1 +

√

βσ2

)2

(

αS13

S31+S32+1 + βS13 + 1
)

(1 + σ2)− S13

(
√

α
S31+S32+1 +

√

βσ2
)2 ,

R2 <
1

2
log

(

αS13(S32+1)
S31+S32+1 + (1− α)S13 + 1

)

(1 + σ2)
(

αS13

S31+S32+1 + βS13 + 1
)

(1 + σ2)− S13

(
√

α
S31+S32+1 +

√

βσ2
)2 − C(1/σ2)

(5)

r ∈ [0, 1] from node 1 along the line between nodes 1 and 2;

the channel gain are of the form gjk = r
−3/2
jk , where rjk is the

distance between nodes j and k, hence g13 = g31 = r−3/2,

g23 = g32 = (1 − r)−3/2, and the power P = 10. Note that

hybrid coding strictly outperforms amplify–forward and noisy

network coding for every r. This result is surprising since

unlike the diamond network example, there is no coherence

gain for hybrid coding. Here the gain is due to the fact that

hybrid coding provides differentiated information to separate

receivers. Hybrid coding also outperforms decode–forward

when the relay is sufficiently far from both destination nodes.
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Fig. 8. Comparison of the cutset bound RCS , decode–forward lower bound
RDF, amplify–forward lower bound RAF, noisy network coding lower bound
RNNC, and hybrid coding lower bound RHC on the sum-capacity for the
Gaussian TWRC.
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