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Abstract—A problem of state information transmission over a

state-dependent discrete memoryless channel (DMC) with inde-

pendent and identically distributed (i.i.d.) states, known causally

at the transmitter is investigated. It is shown that block-Markov

encoding coupled with channel state estimation conditioned on

treating the decoded message and received channel output as side

information at the decoder yields the minimum state estimation

error. This same channel can also be used to send additional

independent information at the expense of a higher channel

state estimation error. It is shown that any optimal tradeoff pair

can be achieved via a simple rate-splitting technique, whereby

the transmitter appropriately allocates its rate between pure

information transmission and state estimation.

I. INTRODUCTION

The effect of channel estimation errors on channel capacity
has been long-studied in the context of wireless commu-
nications [1]. In these works, the focus is on maximizing
channel capacity through the design of channel estimation
strategies – the quality of the channel estimate is irrelevant. In
contrast, herein, we examine the problem of jointly estimating
an unknown channel and communicating over this channel.
In particular, we examine the case where the transmitter has
causal knowledge of the channel state and exploits this knowl-
edge in codebook design. This scenario was first considered in
the seminal work of [2] followed by that of [3], [4], [5]. There
are a host of modern applications which can benefit from this
analysis, including: multimedia information hiding [6], digital
watermarking [7], data storage over memory with defects
[3], [5], secret communication systems [8], dynamic spectrum
access systems [9], underwater acoustic/sonar applications
[10] etc.

In contrast to [4], [5], we study this problem of state
information transmission over a state-dependent discrete mem-
oryless channel; the transmitter has causal channel state infor-
mation (CSI) and wishes to help reveal it to the receiver with
some fidelity criteria. We show that block-Markov encoding
coupled with channel state estimation conditioned on treating
the decoded message and received channel output as side
information at the decoder is optimal for state information
transmission. We also examine the case where additional
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independent information is transmitted over the channel at
the expense of a higher channel state estimation error. There
is a natural tension between sending pure information and
revealing the channel state. We characterize the tradeoff be-
tween the amount of independent information that can be
reliably transmitted and the accuracy at which the receiver can
estimate the channel state via the capacity-distortion function

(first introduced in [11]), which is fundamentally different
from the rate-distortion function in lossy source coding [14].
We show that any optimal tradeoff pair can be achieved
via a simple rate-splitting technique, whereby the transmitter
is appropriately allocated its rate between pure information
transmission and state estimation.

At first glance, the work in [11] which examines the case
where the transmitter and the receiver are oblivious of the
channel state realization and [12] where the rate-distortion

trade-off for the state-dependent additive Gaussian channel is
considered for the case of the channel state being known non-

causally at the transmitter appear to be unrelated; however,
we show herein that these prior results can be recovered as
special cases of our results. Our current work builds upon
our prior efforts in [15] which treated the case where the
transmitter has strictly causal state information. We observe
that [13] considered the problem of transmitting data and state
over a state-dependent channel with state information available
both non-causally and causally at the sender. The optimal
tradeoff is characterized between the information transmission
rate and the state uncertainty reduction rate, in which the
decoder forms a list of possible state-sequences. There is a
fundamental difference between the state uncertainty reduction
rate and distortion, as under some distortion measure, it may
so happen that a state sequence not in the list of decoder may
yield a lower distortion.

Our current results reveal two key insights: (1) the optimal
strategy consists of non-coherently decoding the transmitted
data and employing the decoded data as training to estimate
the channel and (2) the additional degrees of freedom afforded
by causal state information versus strictly causal state infor-
mation at the transmitter provides a gain that is comparable to
that achieved when going from no channel state information to
strictly causal state information at the transmitter. We observe
that (1) is in sharp contrast to how modern wireless systems are
implemented, i.e. typically employing pilot sequences to aid
in channel state information coupled with coherent decoding
under the assumption that the estimated channel is close to the
true channel.

This paper is organized as follows. Section II provides
the channel model with discrete alphabets and formulates the
problem of characterizing the minimum achievable distortion
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at zero information rate. Section III determines the minimum
distortion, and Section IV presents a sketch of achievability
and the proof of the converse for the key theorem of the work.
Section V extends the results to the information rate-distortion
trade-off setting, wherein we define and evaluate the capacity-
distortion function. Section VI illustrates the application of the
capacity-distortion function through the example of an additive
state dependent binary channel. Finally, Section VII concludes
the paper.

Fig. 1. Channel model for joint communication and estimation with causal
(k = i) state information at transmitter.

II. BASIC PROBLEM FORMULATION

In this section, we formulate the channel state estimation
problem, where the receiver only wants to estimate the channel
state with minimum distortion, with the channel state available
causally at the transmitter.

Consider a discrete-memoryless channel (X ⇥
S, p(y|x, s),Y), which consists of a finite input alphabet
x 2 X , a finite output alphabet y 2 Y , a finite state alphabet
s 2 S , and a collection of conditional pmfs p(y|x, s) on Y
for each value of x 2 X and s 2 S . The state sequence {S

i

}
is an i.i.d. process with S

i

⇠p(s
i

) for each channel use. The
channel is memoryless in a sense that, without feedback,
p(yn|xn, sn) =

Q
n

i=1 p(yi|xi

, s
i

), for x
i

2 X , s
i

2 S and
y
i

2 Y . For any two channel states, the distortion is a
deterministic function, d : S ⇥ ˆS 7! R+

S
{0}. It is further

assumed that d(., .) is bounded, i.e., d(s
i

, ŝ
j

)  D
max

< 1
for any 1  i, j  |S|. For any two length-n state sequences,
the distortion is defined to be the average of the pairwise
distortions, 1

n

P
n

j=1 d(sj , ŝj).
A (f

i

, h
i

), 1  i  n code for the channel is defined as:

• Encoder: A deterministic function f
i

: Si 7! X for each
1  i  n. Note that the state sequence is available at
the encoder in a strictly causal manner.

• State Estimator: A deterministic function, h
i

: Yn 7! ˆS
i

.
We denote ˆS

i

= h
i

(Y n

) as the estimated channel states.

Distortion for channel state estimation: We consider the
average distortion

¯D(n)
= E

"
1

n

nX

i=1

d(S
i

, ˆS
i

)

#
,

where the expectation is over the conditional joint distribution
of (Sn, Y n

), noting that ˆSn is determined by Y n.

In this paper, we wish to characterize D
min

defined as

D
min

= lim inf

n!1
min

fi,hi,1in

E

"
1

n

nX

i=1

d(S
i

, ˆS
i

(Y n

))

#
,

which is the minimum distortion achievable for the channel
model.

III. ZERO INFORMATION RATE CASE

It is not obvious how to use the casual knowledge of the
channel state at the transmitter (TX). Motivated from our result
in [15], one strategy would be to perform a block-Markov
coding scheme, where at block j, the transmitter can use its
knowledge of the state sequence of block j�1 to select a code
that can be employed to estimate the state sequence of block
j�1 at the decoder after receiving the channel output of block
j. We could implement this by compressing the channel state
of block j�1 and then sending the compression index through
the channel at the capacity of the channel. This strategy can
be improved as the compression index can be sent at a much
lower rate by observing that the receiver has a side information
of (Xn

(j�1), Y n

(j�1)). Additionally, causal knowledge of
the state at the transmitter can be used to further increase
the rate compared with strictly causal state information by
correlating the input codeword with current state (see [2]).

To illustrate this strategy, we consider a simple state-
dependent Gaussian channel.

Y
i

= X
i

(Sk

) + S
i

+ Z
i

, 1  i  n,

where S
i

⇠N (0, Q), Z
i

⇠N (0, N), the transmitted signal has
a power constraint of P . The receiver wants to estimate the
channel state in minimum possible distortion. We consider the
mean-squared Error (MSE) distortion measure. We wish to
characterize the minimum achievable distortion D

min

.
When transmitter is oblivious of the channel state k = 0,

the minimum distortion is achieved by incohherent decoding,
.i.e., by decoding X first, and then use it as training symbol
to estimate S. The minimum distortion is given by D

min

=

Q N

Q+N

(proved in [11]).
With strictly causal knowledge of state k = i � 1, the

minimum distortion is achieved by quantizing the channel state
of the previous block and sending the quantization index across
the channel using X . The D

min

achieved with this strategy is
given by D

min

= Q N

P+Q+N

(see [15]).
The minimum distortion achievable for the state-dependent

Gaussian channel with causal state information at the trans-
mitter is given by

D
min

= Q
N

⇣p
P +

p
Q
⌘2

+N
.

Achievability can be shown by choosing X =

q
P

Q

S and
upon receiving the channel output, the receiver forms an
minimum mean-square estimate of the channel state given the
output to achieve the distortion D

min

. The converse follows
from the fact that D

min

is also the minimum distortion
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achieved when the channel state is known non-causally at the
transmitter (see [12]).

Fig. 2. Minimum achievable distortion with P = 1, Q = 1.2 and N varying
from 1 to 200 for strictly causal, causal and no state information at the Tx

Figure 2 compares the D
min

for the cases of strictly
causal, causal and no CSI at the transmitter with varying
N . It is evident that knowing channel state causally helps
in achieving less distortion compared to strictly causal and
no state information at the transmitter as then the channel
codeword X can be made to be correlated with the current
channel yielding a better estimate. For zero noise power N ,
D

min

for all cases can be shown to converge towards 0, as then
the decoded channel codeword can be effectively subtracted
from the received signal to determine the channel state with
zero distortion and hence a channel codeword correlated with
the state cannot provide any further improvement.

To characterize the minimum distortion, we need the fol-
lowing:

Definition 1: For a joint distribution P
SUV Y

, define the
minimum possible estimation error of S given (U, V, Y ) by

⇠(S|U, V, Y ) = min

g:U⇥V⇥Y 7!Ŝ
E [d(S, g(U, V, Y ))] ,

where d(., .) is a distortion measure.
With this definition, the minimum distortion with causal CSI
at the transmitter is given by the following theorem.

Theorem 1: The minimum achievable distortion for the
problem considered is

D
min

= min

P
⇠(S|U, V, Y ),

where

P =

�
P
U

, P
V |U,S

, X = h(U, S) : I(U, V ;Y )� I(U, V ;S) � 0

 

and U and V are auxiliary random variables of finite alphabet
size.

To minimize state estimation error, one might be tempted to
use the channel in such a way that the pure information rate
is maximized (i.e., is made equal to the channel capacity) and
then use this pure information to describe the channel state.
This technique can be shown to be suboptimal.

IV. PROOF OF THEOREM 1

In this section, we will give a sketch of the proofs of
achievability and converse for Theorem 1.

A. Achievability

We fix the distributions P
U

, P
V |U,S

and x =

h(u, s), ŝ(u, x, y) that achieve a distortion of D
min

/(1 + ✏).
Codebook generation:

• Choose 2

nR̂ i.i.d un each with probability P (un

) =Q
n

j=1 P (u
j

). Label these as un

(w), w 2 [1 : 2

nR̂

).
• Choose, for each un

(w), 2nR
0

i.i.d. vn each with prob-
ability P (vn|un

(w)) =

Q
n

j=1 P (v
j

|u
j

(w)), where for
u 2 U , v 2 V , we define

P (v|u) =

X

s2S
P (s)p(v|u, s).

Label these as vn(l|w), l 2 1 : 2

nR

0
), w 2 [1 : 2

nR̂

).
• Partition the set of indices l 2 [1 : 2

nR

0
) into equal-size

subsets B(w) := [(m�1)2

n(R0�R̂)
+1 : m2

n(R0�R̂)
], w 2

[1 : 2

nR̂

).
• The codebook is revealed to both the encoder and the

decoder.
Encoding: Let, un

(w
j�1) be the codeword sent in block

j � 1. Knowing sn(j � 1) at the beginning of block j,
the encoder looks for an index l

j

2 [1 : 2

nR

0
) such

that (vn(l
j

|w
j�1), s

n

(j � 1), un

(w
j�1)) are jointly typical.

If there is more than one such l
j

, the smallest index is
selected. If there is no such l

j

, select l
j

= 1. Determine
w

j

such that l
j

2 B(w
j

). Codeword un

(w
j

) is selected
for transmission in block j and it is transmitted to the
reciever via xn

(un

(w
j

), sn) by symbol-by-symbol mapping
x
i

(un

(w
j

), sn) = h(u
i

(w
j

), s
i

), 81  i  n.
Decoding: At the end of the block j, the receiver declares

ŵ
j

was sent by looking for the uniquely typical un

(w
j

) with
yn(j). The receiver then declares that ˆl

j

is sent if it is the
unique message such that (vn(ˆl

j

|ŵ
j�1), y

n

(j�1), un

(ŵ
j�1))

are jointly ✏-typical and ˆl
j

2 B(ŵ
j

); otherwise it declares an
error. The reconstructed state sequence of block j � 1 is then
given by

ŝ
i

(j � 1) = f(u
i

(l
j

|w
j�1), xi

(w
j�1), yi(j � 1))

81  i  n.

Following the analysis of [15] and [16], it can be easily
shown that the scheme achieves the distortion given in The-
orem 1 and the detailed proof is omitted. In comparing the
strictly causal to the causal case, we see that knowledge of
the current state provides an additional degree of freedom
as evidenced by the additional auxiliary variable V. In fact
the strictly causal results can be recovered from the causal
results by substituting U = X and V = U in Theorem 1,
yielding the result of Theorem 1 in [15]. Thus, the minimum
distortion achievable with causal state information at the
transmitter is upper bounded by D

min

of the strictly causal
case, ; the additional degree of freedom is exploited here by
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performing the encoding operation over the set of all functions
{x

u

(s) : S 7! X} indexed by u as the input alphabet. This
technique of coding over functions onto X instead of actual
symbols in X is referred to as the Shannon strategy and was
introduced in [2].

B. Proof of the converse

To prove the converse, we must show that for every code, the
achieved distortion D � D

min

. Before sketching the converse,
we review one key Lemma from [15], which can be interpreted
as the data-processing inequality for estimation of a random
variable in some distortion.

Lemma 1: For any three arbitrary random variables Z 2 Z ,
V 2 V and T 2 T , where Z � T � V form a Markov chain
and for a distortion function d : Z ⇥Z 7! R+

S
{0}, we have

E [d(Z, f(V ))] � min

g:T 7!Z
E [d(Z, g(T ))] ,

for some arbitrary function f : V 7! Z .
Now, consider a (f

i

, h
i

, n), 1  i  n-code with
distortion D. We have to show that D � D

min

. Define
U
i

:= Si�1, V
i

= Y n

i+1 with (S0, Yn+1) = (;, ;). Note that
as desired, U

i

� [X
i

, S
i

] � Y
i

, 1  i  n form a Markov
chain. Now using standard information theoretic inequalitites
and Lemma 1 (similar to the converse proof of Theorem 1 in
[15]), we can proof the converse of Theorem 1.

V. CAPACITY-DISTORTION TRADE-OFF

In this section, we consider a scenario where, in addition
to assisting the receiver in estimating the channel state, the
transmitter also wishes to send additional pure information,
independent of the state, over the discrete memoryless channel.
Formally, based on the message index m 2 [1, 2nR) and the
channel state Si, the transmitter chooses X

i

(m,Si

), 1  i 
n and transmits it over the channel. After receiving Y n, the
receiver decodes m̂ 2 [1, 2nR), and forms an estimate ˆSn

(Y n

)

of the channel state Sn.
The probability of a message decoding error and the state

estimation error are given by

�(n)
=

1

|M |
X

m2M

Pr

⇥
g
n

(Y n

) 6= m
��m is transmiited

⇤

and

¯D(n)
=

1

|M|
X

m2M
E

"
1

n

nX

i=1

d(S
i

, ˆS
i

)

��m is transmitted

#
,

where the expectation is over the conditional joint distribution
of (Sn, Y n

) conditioned on the message m 2 M.
A pair (R,D), denoting a transmission rate and a state

estimation distortion is said to be achievable if there exists
a sequence of (

⌃
2

nR

⌥
, n)-codes, indexed by n = 1, 2, · · · ,

such that lim

n!1 �(n)
= 0, and lim

n!1 ¯D(n)  D. We
wish to characterize the capacity-distortion function C

C

(D)

defined in [11].

Theorem 2: The capacity-distortion function for the prob-
lem considered is

C
C

(D) = max

PD
I(U, V ;Y )� I(U, V ;S),

where

PD =

�
P
U

, P
V |U,S

, X = h(U, S) : ⇠(S|U, V, Y )  D
 
.

where U 2 U and V 2 V are auxiliary random variables
with cardinality |U|  min {(|X |� 1)|S|+ 1, |Y|} and |V| 
|S|+ 1.

Note that by choosing U = ; and V = X , where X
is independent of S, we can recover the capacity-distortion
function results of [11], where it is assumed that both the
transmitter and receiver have no knowledge of the channel
state-sequence. And by choosing U = X , we recover our
results on strictly causal state amplification (see [15]).

Theorem 2 can be shown by splitting the rate between pure
information transmission and channel state estimation. The
proof is omitted for brevity. We summarize a few properties
of C

C

(D) in Corollary 1 (simliar to the Corollary 1 in [15])
without proof.

Corollary 1: The capacity-distortion function C
C

(D) in
Theorem 2 has the following properties:
(1) C

C

(D) is a non-decreasing concave function of D for all
D � D

min

.
(2) C

C

(D) is a continuous function of D for all D > D
min

.
(3) C

C

(D
min

) = 0 if D
min

6= 0 and C
SC

(D
min

) � 0 when
D

min

= 0.
(4) C

C

(1) is the unconstrained channel capacity and is given
by

C
C

(1) = max

PU ,X=h(U,S)
I(U ;Y ),

which is the capacity of state-dependent channel with causal
CSI at the transmitter only (see [2]).
(5) The condition for zero distortion at zero information rate is
given by max

PX|S I(X,S;Y ) � H(S), which is also proved
in [13].

Comparing with Corollary 1 of [15], we see that causal
state knowledge gives an improvement in the unconstrained
capacity of the channel as compared to the strictly causal
case. Also note that the condition for zero distortion at zero
information rate for the causal case is very similar to the
strictly causal case, the only difference is in the maximizing
distribution, as knowing the state sequence causally can be
utilized to make the channel codeword X correlated with the
current channel state S unlike the strictly causal case, where
X is independent of S.

VI. ILLUSTRATIVE EXAMPLE

We consider the example of a state-dependent additive
binary channel given by

Y
i

= X
i

� S
i

� Z
i

, 1  i  n,

where � is the binary addition, S
i

⇠Ber( 12 ), Zi

⇠Ber(q), q 2
[0, 1/2] and X

i

is a binary random variable, which is a
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function of the message m and the state-sequence Si. The
tradeoff between communication and channel estimation is
straightforward to observe if we consider this channel with
q = 0: for good estimation of S, we want deterministic X as
often as possible (X = 0 or 1 w.p. 1), whereas this would
reduce the achieved information rate.

We note the following regarding the computation of the
capacity-distortion function:

• p = 0 is a trivial case as under this condition, S = 0

with probability 1.
• When q = 0, we can achieve zero distortion (D

min

= 0)

by decoding X
i

at the decoder and then cancelling its
effect from the received Y

i

.
• If D � 1

2 , then the capacity distortion function is given
by the unconstrained capacity C

C

(D) = C
C

(1) = 1 �
H2(q).

• When q = 1/2, then the capacity-distortion function is
zero as the unconstrained capacity is zero in this case.
Under this condition, it is easy to see that D

min

= p.
For all other values of q, the capacity-distortion function

C
C

(D) is given by

C
C

(D) = max

�,t,�1,�2

�t(1�H2(p)�H2(�1 ⇤ q) +H2(�1))

+�(1� t)(1�H2(p))

+(1� �)(1�H2(q)�H2(p) +H2(�2))

subject to,

�t�1 + �(1� t)q + (1� �)�2  D.

The achievability of this capacity-distortion function uses
time sharing argument (see [17]) and the converse can be
shown by extending the converse proof of Wyner-Ziv rate-
distorion function of binary source (see [19] for details) and
is omitted here for brevity.

Note that substituing � = 1 retrieves the C
SC

(D) result
of state-dependent binary additive channel with strictly causal
state at encoder (see [15]), which could be easily explained
from the achievability, where in the first strategy we have to
choose X = U , independent of S and thus it is same as in the
strictly causal case. The improvement in the causal case comes
from the second strategy, where we leverage the benefits of
knowing the current channel state by choosing U = X � S.

VII. CONCLUDING REMARKS

In this work, we bridge the gap between two problems of
joint information transmission and channel state estimation
for state-dependent channels: the case where the transmitter
is oblivious to the channel [11] and that where the channel
state is available non-causally [12]. Our current work extends
our approach in [15] where strictly causal channel state is
available to the transmitter; herein we show that measurable
improvement is achieved by the knowledge of the current
channel state (the so-called causal case). In contrast to the
traditional practical system approach where training informa-
tion is sent to the receiver to estimate the channel which is
then employed for coherent decoding, our work shows that

non-coherent decoding should be employed as this decoded
data should be used to learn the channel at the receiver. In
particular we show that for the zero-information rate case,
block-Markov encoding coupled with channel state estimation
conditioned on treating the decoded message and received
channel output as side information at the decoder yields
the minimum state estimation error. For the transmission of
additional independent information, a higher channel state
estimation is achieved; however any optimal tradeoff pair can
be achieved via a simple rate-splitting technique, whereby
the transmitter appropriately allocates its rate between pure
information transmission and state estimation.
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