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Abstract—Motivated by the emerging interests in non-volatile
solid-state computer memories such as flash memories, this
paper studies the problem of repeatedly storing information
on memory cells with noise and state. The goal is to reliably
convey t messages by writing Xn

j on an n-cell noisy memory
p(yj |xj , yj−1), which stores Y n

j at the j-th write. We model this
problem as a channel with state and introduce the multiple-write
noisy memory model, which includes the write-once memory and
flash memory models as special cases. The t-write sum-capacity
for the multiple-write noisy memory is established as

Csum(t) = max
[

I(X1;Y1) +
t

∑

j=2

(I(Uj ;Yj)− I(Uj ;Yj−1))
]

,

where the maximum is over all pmfs p(x1)
∏t

j=2
p(uj |yj−1)

and functions xj(uj , yj−1), j = 2, . . . , t. We derive three outer
bounds on the capacity region and discuss their extension to
other classes of memory models. These results extend Wolf,
Wyner, Ziv, and Körner’s work on the binary write-once
memory and Fu and Vinck’s work on the generalized write-
once memory to noisy memories.

I. INTRODUCTION AND MAIN RESULT

A write-once memory (WOM) [12] is a binary information

storage medium, where each cell of the memory is initialized

at 0-state and is allowed to change from 0-state to 1-state,

but not vice versa. Suppose we wish to reliably store t
independent messages by writing t times on an n-cell WOM.

The goal is to maximize the total number of bits stored

per cell. One way to deal with this problem is to design

codewords such that in any two consecutive writes, there is

no transition from 1 to 0 in the same cell position. The total

number of codewords satisfying such property characterizes

the limit on storing information on the WOM. An underlying

assumption in this combinatorial approach is that the memory

cell always faithfully store the written codewords.

An alternative (probabilistic) way to attack this problem

is through channel coding for communication over a DMC

with state. Codewords are assumed to be arbitrary without

any constraint, while the memory cell may not always record

the input faithfully. Specifically in the WOM, when a cell is

at 0-state, it records what is written. When a cell is at 1-state,

it always stores 1 regardless of what the encoder writes (see

Figure 1). Clearly, the knowledge of the cell state information

help to make the communication more reliable. How much do

the encoder and the decoder know about the cell state? The

cell state in the WOM is the output of the previous write and

before each write, the encoder has access to the whole output

sequence, while the decoder does not. Hence, the problem is

readily recognized as a channel with state where the state

information is available noncausally only at the encoder.

XX S = 0 Y YS = 1

0 0 0 0

1 1 1 1

Fig. 1. Binary write-once memory

Many attempts have been made to determine the theoretical

limit of maximum number of bits stored per cell. Several code

constructions for the binary WOM were proposed by Rivest,

Shamir [12] and Cohen, Godlewski, and Merkx [3]. Wolf,

Wyner, Ziv, and Körner [13] established the (zero-error)

capacity region of the binary WOM. Fiat and Shamir [5]

generalized the binary WOM by allowing q-ary alphabet and

extending the legal state transitions to any directed acyclic

graph. This model has been suggested as a good model

for flash memories [9]. Practical code constructions based

on the generalized WOM have been proposed by Zémor,

Cohen [15], Jiang, Bruck [9], Yaakobi, Siegel, Vardy, and

Wolf [14] among others. Fu and Vinck [6] established the

(zero-error) capacity region of the generalized WOM. Further

generalizing the deterministic models for memories, Heegard

[8] considered noisy memories and found the capacity region

for the WOM with symmetric noise.

The main goal of this paper is to establish the capacity

region of noisy memories. Toward this goal, we focus on the

memories of the form

t
∏

j=1

p(yj |xj , yj−1),

where y0 = ∅ by convention. This model is simple, yet

still captures the major challenge in updating information

on memory cells such as the issue of spatial dependence of

the memory state. It is general enough to include all the

aforementioned models of WOM, generalized WOM, noisy

WOM as special cases.

More specifically, we consider the multiple-write

noisy memory (MWNM) model (X1 × X2 × · · · × Xt,

p(y1|x1)p(y2|x2, y1) · · · p(yt|xt, yt−1), Y1 ×Y2 × · · · × Yt),
as shown in Figure 2.

A (2nR1 , . . . , 2nRt , n) code for the MWNM consists of

• t message sets [1 : 2nR1 ], . . . , [1 : 2nRt ],
• t encoders, where encoder 1 assigns a codeword xn

1 (m1)
to each message m1 ∈ [1 : 2nR1 ] at the first write and
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Fig. 2. multiple-write noisy memory

encoder j ∈ [2 : t] assigns a codeword xn
j (mj , y

n
j−1)

to each message mj ∈ [1 : 2nRj ] with side information

ynj−1 at the j-th write, and

• t decoders, where decoder j ∈ [1 : t] assigns an estimate

m̂j or an error e to each received sequence ynj at the

j-th write.

The average probability of error is defined as

P (n)
e = P{(M̂1, . . . , M̂t) 6= (M1, . . . ,Mt)}.

A rate tuple (R1, . . . , Rt) is said to be achievable for the

MWNM if there exists a sequence of (2nR1 , . . . , 2nRt , n)

codes such that limn→∞ P
(n)
e = 0. The capacity region C is

the closure of all achievable rate tuples (R1, . . . , Rt). The t-
write sum-capacity Csum(t) of the MWNM is the maximum

achievable sum-rate
∑t

j=1 Rj .

As the main result of this paper, we will prove the

following theorem in Section III.

Theorem 1: The t-write sum-capacity of the MWNM is

Csum(t) = max
[

I(X1;Y1)+

t
∑

j=2

(I(Uj ;Yj)− I(Uj ;Yj−1))
]

,

where the maximum is over all pmfs p(x1)
∏t

j=2 p(uj|yj−1)
and functions xj(uj , yj−1) for j ∈ [2 : t].
The achievability proof follows directly by using the

Gelfand–Pinsker coding scheme [7]. The main challenges in

establishing the sum-capacity lie in the proof of the converse.

Note that here the channel state sequence is the output of the

previous write and hence may not be i.i.d. over space. Such

spatial correlation in the state sequence makes this problem

different from the standard setup of channels with discrete

memoryless state. However, in our proof of the converse, by

carefully combining the standard techniques such as Fano’s

inequality, Csiszár sum identity [4], and auxiliary random

variables identification, we can cancel out such correlation

cumulatively. In addition to the sum-capacity, three outer

bounds on the capacity region are established in Sections II

and III. We discuss their optimality in special cases. The

inner and outer bounds recover all existing capacity results.

Heegard [8] considered a more general memory model
∏t

j=1 p(yj , sj |xj , sj−1), where sj , xj , and yj denote the

channel state, input, and output at the j-th write, respectively.

However, as a cost of generality, it is extremely hard to

characterize the capacity region or even the sum-capacity.

The capacity region of Heegard’s model remains open after

more than three decades.

Recently, the phase-change memory (PCM) has received

considerable attention as the next generation non-volatile

solid-state memory technology. A PCM cell stores data

using its amorphous and crystalline states. The cell changes

between these two states through high temperature. However,

due to the sensitivity of the cells to temperature, it is

important to balance the heat in both time and space when

programming the cells. Several models have been proposed

to study the PCM. Jiang, Bruck, and Li [10] introduced the

(α, β, p) space-time constrained codes for the PCM, where

each segment of β cells can be programmed at most p times

in any α consecutive writes, which can be viewed as a

special case of Heegard’s model. As an alternative, Ahlswede

and Zhang’s model of write-efficient memory [2] has been

suggested as a good model for the PCM [11]. In their model,

cost functions are introduced based on the assumption that

transitions from 0 to 1 or 1 to 0 are costly, while writing

the same symbol is cheap. These two models differ from our

MWNM model in that the encoder may have only partial

access to the state information and that cost functions are

introduced. Nonetheless, we will briefly discuss how our

results on the MWNM can be applied to the models for

phase-change memories in Section IV.

II. TWO-WRITE MEMORY

We establish three outer bounds on the capacity region.

The sum-capacity of the MWNM will be established along

the way. For brevity, we first consider the 2-write case in this

section and provide its extension to t writes in Section III.

We first recall the following.

Proposition 2.1 (Special case of [8, Theorem 2]): A rate

pair (R1, R2) is achievable for the 2-write MWNM

p(y1|x1)p(y2|x2, y1) if

R1 ≤ I(X1;Y1),

R2 ≤ I(U2;Y2)− I(U2;Y1)

for some pmf p(x1)p(u2|y1) and function x2(u2, y1).

Remark 2.1: This inner bound does not become larger if

we evaluate it for general pmf p(x1)p(u2, x2|y1, x1). To see

this, we first note that the inner bound does not become larger

if evaluated over p(x1)p(u2, x2|y1), which follows similar

arguments as in the Gelfand–Pinsker coding scheme. Then,

it suffices to show for any rate pair (I(X1;Y1), I(U2;Y2)−
I(U2;Y1)) attained by p∗(x1)p

∗(u2, x2|y1, x1), there exist

some pmf p̃(x1)p̃(u2, x2|y1) attaining the same rate pair. For

any p∗(x1)p
∗(u2, x2|y1, x1), let p̃(x1) = p∗(x1) and

p̃(u2, x2 |y1) =
∑

x1

p∗(u2, x2 |y1, x1)p(x1 |y1)

=
∑

x1

p∗(u2, x2 |y1, x1)
p(y1|x1)p

∗(x1)
∑

x1
p(y1|x1)p∗(x1)

.
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Then, p∗(x1, y1) = p̃(x1, y1), p
∗(u2, y2) = p̃(u2, y2), and

p∗(u2, y1) = p̃(u2, y1), which fully determine the achievable

rate pair (I(X1;Y1), I(U2;Y2)− I(U2;Y1)).
We establish three outer bounds on the capacity region.

Proposition 2.2: If a rate pair (R1, R2) is achievable for

the 2-write MWNM p(y1|x1)p(y2|x2, y1), then it must satisfy

R1 ≤ I(X1;Y1),

R1 +R2 ≤ I(X1;Y1) + I(U2;Y2)− I(U2;Y1)

for some pmf p(x1)p(u2, x2|y1, x1).
Proof: To establish the first inequality, consider

nR1 = H(M1) ≤ I(M1;Y
n
1 ) + nǫn

=

n
∑

i=1

I(M1;Y1i |Y
n
1,i+1) + nǫn

=

n
∑

i=1

(

I(M1, Y
n
1,i+1;Y1i)− I(Y n

1,i+1;Y1i)
)

+ nǫn

(a)
=

n
∑

i=1

(

I(M1, Y
n
1,i+1, X1i;Y1i)− I(Y n

1,i+1;Y1i)
)

+ nǫn

(b)
=

n
∑

i=1

(

I(X1i;Y1i)− I(Y n
1,i+1;Y1i)

)

+ nǫn (1)

≤
n
∑

i=1

I(X1i;Y1i) + nǫn,

where (a) follows since X1i is a function of M1 and (b)
follows since (M1, Y

n
1,i+1) → X1i → Y1i form a Markov

chain. For the second inequality, the key is to identify U2i

such that U2i → (X2i, Y1i) → Y2i form a Markov chain for

each i ∈ [1 : n]. Let U2i = (M2, Y
i−1
2 , Y n

1,i+1). Then

nR2 ≤
n
∑

i=1

I(M2;Y2i |Y
i−1
2 ) + nǫn

≤
n
∑

i=1

I(M2, Y
i−1
2 ;Y2i) + nǫn

=

n
∑

i=1

(

I(M2, Y
i−1
2 , Y n

1,i+1;Y2i)

− I(Y n
1,i+1;Y2i |M2, Y

i−1
2 )

)

+ nǫn
(a)
=

n
∑

i=1

(

I(M2, Y
i−1
2 , Y n

1,i+1;Y2i)

− I(Y1i;Y
i−1
2 |M2, Y

n
1,i+1)

)

+ nǫn

=

n
∑

i=1

(

I(M2, Y
i−1
2 , Y n

1,i+1;Y2i)

− I(Y1i;Y
i−1
2 ,M2, Y

n
1,i+1) + I(Y1i;Y

n
1,i+1)

)

+ nǫn

=

n
∑

i=1

(

I(U2i;Y2i)− I(U2i;Y1i)

+ I(Y1i;Y
n
1,i+1)

)

+ nǫn, (2)

where (a) follows from the Csiszár sum identity. Now

combining (1) and (2), we have the bound for sum-rate

n(R1 +R2)

≤
n
∑

i=1

(

I(X1i;Y1i) + I(U2i;Y2i)− I(U2i;Y1i)
)

+ nǫn.

Using the standard time sharing random variable and taking

n → ∞ completes the proof of Proposition 2.2.

Remark 2.2: The sum-rate outer bound in Proposition 2

together with the inner bound in Proposition 2.1 establishes

the 2-write sum-capacity

Csum(2) = max
(

I(X1;Y1) + I(U2;Y2)− I(U2;Y1)
)

,

where the maximum is over all pmfs p(x1)p(u2|y1) and

function x2(u2, y1).

Remark 2.3: The outer bound in Proposition 2.2 is tight

for any sum-rate R1 + λR2 with λ ∈ [0, 1] and

max(R1 + λR2)

= max
[

I(X1;Y1) + λ(I(U2;Y2)− I(U2;Y1))
]

,

where the maximum is over all pmfs p(x1)p(u2|y1) and

functions x2(u2, y1).

We now present the second outer bound.

Proposition 2.3: If a rate pair (R1, R2) is achievable for

the 2-write MWNM p(y1|x1)p(y2|x2, y1), then it must satisfy

R1 ≤ I(X1;Y1), and R2 ≤ I(U2;Y2 |Y1)

for some p(x1)p(u2, x2|y1, x1).

Proof: The first inequality is exactly the same as in

Proposition 2.2. To establish the second inequality, choose

U2i = (M2, Y
i−1
2 , Y n

1,i+1, Y
i−1
1 ). Again U2i → (X2i, Y1i) →

Y2i, i ∈ [1 : n], as desired. Consider

nR2 ≤ I(M2;Y
n
2 |Y n

1 ) + nǫn

=
n
∑

i=1

I(M2;Y2i |Y
i−1
2 , Y n

1 ) + nǫn

≤
n
∑

i=1

I(M2, Y
i−1
2 , Y n

1,i+1, Y
i−1
1 ;Y2i |Y1i) + nǫn

=

n
∑

i=1

I(U2i;Y2i |Y1i) + nǫn.

Using standard time sharing random variable and taking n →
∞ completes the proof.

Remark 2.4: The auxiliary random variable U2 identified

in Proposition 2.3 is different from the one in Proposition

2.2. As a result, we do not have a nontrivial bound on the

sum-rate in Proposition 2.3.

Remark 2.5: The outer bound in Proposition 2.3 is tight

when p(yj|xj , yj−1) is deterministic, i.e., the generalized

WOM. Taking U2 = Y2, we have R1 ≤ I(X1;Y1) =
H(Y1) and R2 ≤ I(U2;Y2|Y1) = H(Y2|Y1) for some

p(x1)p(x2|y1), which recovers the capacity region of the

generalized write-once memories established by Fu and

Vinck [6]. This outer bound follows essentially from the

fact that the capacity when side information is available only

at the encoder is upper bounded by the capacity when side

information is available at both the encoder and the decoder.

In the deterministic case, these two capacities coincide.

We now present the third outer bound.
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Proposition 2.4: If a rate pair (R1, R2) is achievable for

the 2-write MWNM p(y1|x1)p(y2|x2, y1), then it must satisfy

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2 |Y1, U1),

R1 +R2 ≤ I(U1;Y1) + I(U2;Y2)− I(U2;Y1)

for some p(u1, x1)p(u2, x2|y1, u1, x1).

Proof: In this outer bound, we introduce a new auxiliary

random variable U1. To establish the first inequality, we

expand Y n
1 differently way from the previous proofs. Identify

U1i = (M1, Y
i−1
1 ). Then

nR1 =

n
∑

i=1

I(M1;Y1i |Y
i−1
1 ) + nǫn

=
n
∑

i=1

(

I(M1, Y
i−1
1 ;Y1i)− I(Y i−1

1 ;Y1i)
)

+ nǫn

(a)
=

n
∑

i=1

(

I(U1i;Y1i)− I(Y n
1,i+1;Y1i)

)

+ nǫn, (3)

where (a) follows from the fact that
∑n

i=1 I(Y
i−1
1 ;Y1i) =

∑n

i=1 H(Y1i)−H(Y n
1 ) =

∑n

i=1 I(Y
n
1,i+1;Y1i).

To establish the second inequality, identify U2i =
(M2, Y

i−1
2 , Y n

1,i+1). Then

nR2 = H(M2 |Y
n
1 ,M1)

≤ I(M2;Y
n
2 |Y n

1 ,M1) + nǫn

=
n
∑

i=1

I(M2;Y2i |Y
i−1
2 , Y n

1 ,M1) + nǫn

≤
n
∑

i=1

I(M2, Y
i−1
2 , Y n

1,i+1;Y2i |Y1i,M1, Y
i−1
1 ) + nǫn

=

n
∑

i=1

I(U2i, Y2i |Y1i, U1i) + nǫn.

Since we use the same U2i as in Proposition 2.2, the

inequality in (2) continues to hold. Combining (3) and (2)

establishes the third inequality

n(R1 +R2) ≤
n
∑

i=1

(

I(U1i;Y1i) + I(U2i;Y2i)− I(U2i;Y1i)
)

.

Using the standard time sharing random variable completes

the proof of Proposition 2.4.

Remark 2.6: The outer bound in Proposition 2.4 is tight

both for any sum-rate R1 + λR2, where λ ∈ [0, 1], and

for the deterministic case. Taking U1 = X1, this outer

bound recovers the outer bound in Proposition 2.2. In the

deterministic case, this outer bound recovers the outer bound

in Proposition 2.3. However, it is not clear whether this is

true in general.

III. EXTENSION TO MORE THAN TWO WRITES

The inner bound and outer bounds for the 2-write MWNM

extend naturally to the general t-write MWNM.

Proposition 3.1 (Special case of [8, Theorem 2]): A rate

tuple (R1, · · · , Rt) is achievable for the t-write MWNM

p(y1|x1)
∏t

j=2 p(yj |xj , yj−1) if

R1 ≤ I(X1;Y1),

R2 ≤ I(U2;Y2)− I(U2;Y1),
...

Rt ≤ I(Ut;Yt)− I(Ut;Yt−1)

for some pmf p(x1)
∏t

j=2 p(uj|yj−1) and functions

xj(uj , yj−1) for j ∈ [2 : t].
Remark 3.1: For a similar reason as in Remark 2.1, this

inner bound does not become larger when evaluated for

general pmfs p(u1, x1)
∏t

j=2 p(uj , xj |yj−1, uj−1, xj−1).
We now extend Proposition 2.2 to the t-write MWNM.

Proposition 3.2: If a rate tuple (R1, · · · , Rt) is achievable

for the t-write MWM p(y1|x1)
∏t

j=2 p(yj |xj , yj−1), then it

must satisfy the conditions

R1 ≤ I(U1;Y1),

R1 +R2 ≤ I(U1;Y1) + I(U2;Y2)− I(U2;Y1),
...

R1 + · · ·+Rt ≤ I(U1;Y1) +

t
∑

j=2

(

I(Uj ;Yj)− I(Uj ;Yj−1)
)

for some p(u1, x1)
∏t

j=2 p(uj, xj |yj−1, uj−1, xj−1).
Proof: To bound the sum-rate, the key is still to cancel

the nonnegative terms
∑n

i=1 I(Y
i−1
j−1 ;Yj−1,i). We play a

similar trick as in the proof of Proposition 2.4 to cancel

them cumulatively. For each j ∈ [2 : t], identify Uji =
(Mj , Y

i−1
j , Y n

j−1,i+1) and assume Y n
0 = ∅. We have

nRj ≤
n
∑

i=1

I(Mj ;Yji |Y
i−1
j ) + nǫn

=

n
∑

i=1

(

I(Mj , Y
i−1
j , Y n

j−1,i+1;Yji)− I(Y i−1
j ;Yji)

− I(Y n
j−1,i+1;Yji |Mj, Y

i−1
j )

)

+ nǫn

=

n
∑

i=1

(

I(Mj , Y
i−1
j , Y n

j−1,i+1;Yji)− I(Y i−1
j ;Yji)

− I(Yj−1,i;Y
i−1
j |Mj, Y

n
j−1,i+1)

)

+ nǫn

=

n
∑

i=1

(

I(Mj , Y
i−1
j , Y n

j−1,i+1;Yji) + I(Y n
j−1,i+1;Yj−1,i)

− I(Yj−1,i;Y
i−1
j ,Mj , Y

n
j−1,i+1)− I(Y i−1

j ;Yji)
)

+ nǫn

=
n
∑

i=1

(

I(Uji;Yji)− I(Uji;Yj−1,i)

+ I(Y n
j−1,i+1;Yj−1,i)− I(Y i−1

j ;Yji)
)

+ nǫn
(a)
=

n
∑

i=1

(

I(Uji;Yji)− I(Uji;Yj−1,i)

+ I(Y i−1
j−1 ;Yj−1,i)− I(Y i−1

j ;Yji)
)

+ nǫn,

where (a) follows from the fact
∑n

i=1 I(Y
n
j−1,i+1;Yj−1,i) =

∑n

i=1 H(Yj−1,i) − H(Y n
j−1) =

∑n

i=1 I(Y
i−1
j−1 ;Yj−1,i).

It can be readily observed that the nonnegative terms
∑n

i=1 I(Y
i−1
j−1 ;Yj−1,i), j = 2, . . . , t, telescope and thus will

be canceled in the sum-rate. Using the standard time sharing

random variable and taking n → ∞ completes the proof.
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Remark 3.2: The inner bound in Proposition 3.1 and the

outer bound in Proposition 3.2 are tight for sum-rate, which

is the main result stated in Theorem 1.

We now extend Proposition 2.3 to the t-write MWNM.

Proposition 3.3: If a rate tuple (R1, · · · , Rt) is achievable

for the t-write MWNM p(y1|x1)
∏t

j=2 p(yj |xj , yj−1), then it

must satisfy the inequalities

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2 |Y1),
...

Rt ≤ I(Ut;Yt |Yt−1)

for some p(u1, x1)
∏t

j=2 p(uj , xj |yj−1, uj−1, xj−1).
Proof sketch: The proof follows similar arguments as

in Proposition 2.3 with Uji = (Mj , Y
i−1
j , Y n

j−1,i+1, Y
i−1
j−1 )

for j ∈ [1 : t] and Y n
0 = ∅.

Remark 3.3: This bound is tight for the deterministic case.

We now extend Proposition 2.4 to the t-write MWNM.

Proposition 3.4: If a rate tuple (R1, · · · , Rt) is achievable

for the t-write MWNM p(y1|x1)
∏t

j=2 p(yj |xj , yj−1), then it

must satisfy the inequalities

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2 |Y1, U1),...
Rt ≤ I(Ut;Yt |Yt−1, Ut−1),

R1 +R2 ≤ I(U1;Y1) + I(U2;Y2)− I(U2;Y1),...

R1 + · · ·+Rt ≤ I(U1;Y1) +

t
∑

j=2

(

I(Uj ;Yj)− I(Uj ;Yj−1)
)

for some p(u1, x1)
∏t

j=2 p(uj , xj |yj−1, uj−1, xj−1).
Proof sketch: The proof follows similar arguments as

in Proposition 2.4 with Uji = (Mj, Y
i−1
j , Y n

j−1,i+1) for j ∈
[1 : t] and Y n

0 = ∅.

Remark 3.4: This bound is tight for the deterministic

channels and for the sum-rate of arbitrary channels.

IV. EXTENSION TO PHASE-CHANGE MEMORY

In [10], Jiang, Bruck, and Li introduced the (α, β, p)
space-time constrained codes for the PCM. Unlike in the

MWNM, there is a hidden memory state that is not avail-

able at the encoder. Thus, to find the sum-capacity for

rewriting on such memories, we look into Heegard’s model
∏t

j=1 p(yj , sj+1|xj , sj), where S1 = ∅ for convention.

Throughout our proof of the converse, the techniques we

used are Fano’s inequality, Csiszár sum identity, and the chain

rule for mutual information, which are valid for Heegard’s

model as well. The only difference that needs to be checked

is whether our identification of auxiliary random variables

still guarantees the right Markov chain condition Uji →
(Xji, Sji) → (Yji, Sj+1,i) for i ∈ [1 : n], j ∈ [2 : t]. This can

be verified for all our three identifications. Thus Proposition

3.2 – 3.4 can be readily extended to Heegard’s general model.

In particular, the sum-capacity is upper bounded as

Csum(t) ≤ max
[

I(X1;Y1)+

t
∑

j=2

(I(Uj ;Yj)− I(Uj ;Yj−1))
]

,

where the maximum is over p(x1)
∏t

j=2 p(uj , xj |sj), and

lower bounded using the same expression as

Csum(t) ≥ max
[

I(X1;Y1)+

t
∑

j=2

(I(Uj ;Yj)− I(Uj ;Yj−1))
]

,

except that the maximum is over p(x1)
∏t

j=2 p(uj , xj |yj−1).
These two bounds can be different in general, however.

In [2], Ahlswede and Zhang proposed the write-efficient

memory. They introduced a cost function to characterize

whether there is a change in a memory cell. Motivated by

this result, we can incorporate a cost function b(X,S) in

the MWNM model. By the monotonicity, concavity, and

continuity of the capacity-cost function Csum(t, B) in B
and the typicality average lemma [1], our results on the

MWNM model can be extended to the sum-capacity with

cost constraint B as

Csum(t, B)

= max
[

I(X1;Y1) +

t
∑

j=2

(I(Uj ;Yj)− I(Uj ;Yj−1))
]

,

where the maximum is over p(x1)
∏t

j=2 p(uj , xj |yj−1) such

that (1/t)E
[
∑t

j=1 b(Xj , Yj−1)
]

≤ B.
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