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Abstract—A series of extensions of the index coding
schemes based on time sharing by Birk and Kol, by Blasiak,
Kleinberg, and Lubetzky, and by Shanmugam, Dimakis,
and Langberg are presented. Each extension strictly im-
proves upon the previous extensions as well as the existing
schemes. The main idea behind these extensions is local
time sharing over subproblems introduced by Shanmugam
et al., in which the local side information available at each
receiver is exploited to send the subproblm indices with a
fewer number of transmissions. The final extension, despite
being the best in this class of coding schemes, is shown to
be still suboptimal, characterizing the fundamental limit of
local time sharing.

I. INTRODUCTION

Consider a communication scenario, referred to as

index coding, in which a sender wishes to communicate

a tuple of n messages, xn = (x1, . . . , xn), xi ∈ {0, 1}t,
to their corresponding receivers using a shared noise-

less channel. Receiver j ∈ [n] := {1, 2, . . . , n} has

prior knowledge of a subset x(Aj) := (xi : i ∈ Aj),
Aj ⊆ [n] \ {j}, of the messages and wishes to recover

xj . It is assumed that the sender is aware of A1, . . . , An.

The goal is to minimize the amount of information that

should be broadcast from the sender to the receivers so

that every receiver can recover its desired message.

Originally introduced by Birk and Kol [1], [2] in

the context of satellite communication, the index coding

problem has received significant attention from various

disciplines such as theoretical computer science [3]–

[6], information theory [7], [8], network coding [9],

[10], and wireless communication [11], [12]. In ad-

dition to satellite communication, applications of in-

dex coding include peer-to-peer video distribution [5],

wireless network interference management [11], [12],

and distributed caching [13]. More importantly, index

coding is a representative instance of the multiple-unicast

network coding problem (see Figure 1), and in fact, every

multiple-unicast network coding problem corresponds to

an index coding problem [10].

As a shorthand notation, we represent an index coding

problem by (1|A1), . . . , (n|An). It can be also repre-

sented by a directed graph G = (V,E), referred to as the
side information graph,1 where V = [n] and (i, j) ∈ E
iff i ∈ Aj ; see Figure 1 for an illustration.

1Some papers use the opposite convention in which the directions
of the edges are reversed.
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Fig. 1. (a) The graph representation for the index coding problem
(1|2), (2|1, 3), (3|1). (b) The equivalent network coding problem.

Given an index coding problem, a t-bit index code

C = (φ, {ψj}) is defined by

• an encoder φ : {0, 1}nt → {0, 1}r that maps n-
tuple of t-bit messages to an r-bit index and

• n decoders, where the jth decoder ψj : {0, 1}r ×
{0, 1}|Aj |t → {0, 1}t maps the received index

φ(xn) and the side information x(Aj) to a t-bit
message estimate

such that for all xn ∈ {0, 1}nt and all j ∈ [n],

ψj(φ(x
n), x(Aj)) = xj .

The performance of a code C is measured by its broad-

cast rate β(C) = r/t. The optimal broadcast rate of the

index coding problem is defined as

β = inf
t
inf
C
β(C),

where the second infimum is over all t-bit index codes.

Thus, β characterizes the fundamental limit on the

broadcast rate of index codes such that every message

can be recovered exactly.

A computable characterization of β is not known in

general. Consequently, numerous coding schemes have

been proposed in the literature with varying degrees of

generality and performance [1]–[8], [14]. Among these,

we focus on the coding schemes by Birk and Kol [1],

by Blasiak, Kleinberg, and Lubetzky [6] and by Shan-

mugam, Dimakis, and Langberg [8] that can be viewed
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as time sharing over subproblems of a given index coding

problem. As we will review in Section II, these schemes

can be implemented rather easily using linear parity-

check codes such as maximum distance separable (MDS)

codes [15], and the corresponding broadcast rates can

be characterized as simple graph-theoretic quantities. In

particular, the coding scheme by Shanmugam et al. [8]

further reduces the rates needed for time sharing by

applying the very idea of index coding to transmission

of subproblem indices, which in essence achieves the

effect of time sharing “locally” at each receiver over

subproblem indices it cannot infer from side information.

Motivated by this local time sharing idea, we explore

potential extensions of these coding schemes [1], [6], [8]

and study the fundamental limit on such extensions. In

Section III, we first combine the key ideas of the existing

time-sharing schemes to develop a coding scheme called

“fractional local partial clique covering” that is stronger

than all of them (Theorem 3). We then develop a

coding scheme that recursively decomposes the problem

to subproblems and applies local time sharing at every

level (Theorem 4). It is shown that this recursive coding

scheme strictly improves upon fractional local partial

clique covering. Pushing this idea further, we investigate

local time sharing over the optimal subproblem broadcast

rates and show that this scheme is still suboptimal.

In Section IV, we develop a recursive coding scheme

that allows asymmetric message rates for subproblems

(Theorem 6) and show that such asymmetric coding

strictly improves upon symmetric coding discussed in the

previous section. As the culmination of all time-sharing

coding schemes previously developed in the literature

and newly developed in this paper, we investigate local

time sharing over the subproblem capacity regions and

the corresponding upper bound on the optimal broadcast

rate, which constitutes the fundamental limit of local

time sharing for index coding. Rather anticlimactically,

this bound is shown to be loose in general. In Section V,

we conclude the paper with a discussion on the main

deficiency of local time sharing and potential improve-

ments.

Throughout the paper, we use G|S = (S, {(i, j) ∈
E : i, j ∈ S}) to denote the directed subgraph induced

by the subset S of the vertices of G = (V,E).

II. EXISTING TIME-SHARING SCHEMES

The first and simplest approach to index coding is to

partition the side information graph G by cliques and

transmit the binary sums (parities) of all the messages

in each clique. This coding scheme by Birk and Kol [1]

achieves a broadcast rate equal to the minimum number

of cliques that partition G (or equivalently, the chromatic

number of the undirected complement of G) which is the

solution to the integer program

minimize
∑

S∈K

ρS

subject to
∑

S∈K:j∈S

ρS ≥ 1, j ∈ [n],

ρS ∈ {0, 1}, S ∈ K,

(1)

where K is the collection of all cliques in G.
This coding scheme, which can be viewed as time

division over a clique partition (one parity bit per clique),

has been extended in several directions. First, Birk and

Kol [1] showed that one can use an MDS code over a

finite field and perform time division over arbitrary sub-

graphs (partial cliques) instead of cliques. The number of

parity symbols needed for a subgraph H is characterized

by the difference κ(H) between the number of vertices

in H and the minimum indegree within H .

Theorem 1 (Birk and Kol [1]). If G1, . . . , Gm partition

G, then the optimal broadcast rate is upper bounded by

bPC(G1, . . . , Gm) =

m
∑

i=1

κ(Gi) (2)

and thus by

bPC(G) = min
G1,...,Gm

bPC(G1, . . . , Gm),

where the minimum is over all partitions.

As another extension of (1), Blasiak, Kleinberg, and

Lubetzky [6] considered time sharing over all cliques

(fractional parity bits per clique) so that the combined

rate of each message over all parities it participates in

is at least one. The resulting rate corresponds to the

solution to the linear program obtained by relaxing the

integer constraint ρS ∈ {0, 1} in (1) to ρS ∈ [0, 1], which
is equivalent to the fractional chromatic number of the

undirected complement of G.
Shanmugam, Dimakis, and Langberg [8] further ex-

tended this scheme by fractional local clique covering,

whereby an MDS code is applied to parity symbols for

cliques. This improves upon the previous time-sharing

scheme since each receiver can recover some parity

symbols from its side information and thus the total

transmission time is now shared only among those parity

symbols not available locally at each receiver.

Theorem 2 (Shanmugam, Dimakis, and Langberg [8]).

The optimal broadcast rate is upper bounded by the

solution bFL(G) to the linear program

minimize max
j∈[n]

∑

S∈K:S 6⊆Aj

ρS

subject to
∑

S∈K:j∈S

ρS ≥ 1, j ∈ [n],

ρS ∈ [0, 1], S ∈ K.

(3)

2014 IEEE International Symposium on Information Theory

287



The improvement over time sharing is captured by

the summation of ρS over cliques S 6⊆ Aj compared

to the summation over all cliques S in (1) and can be

strict [8]. It can be shown [16] that bFL(G) in Theorem 2

and bPC(G) in Theorem 1 are not comparable.

III. SYMMETRIC CODING SCHEMES

We now develop several extensions of the time-sharing

coding schemes in the previous section based on local

time sharing. As a first exercise, we combine the ideas of

partial clique covering (Theorem 1) and fractional local

clique covering (Theorem 2) to establish the following

fractional local partial clique covering bound.

Theorem 3. The optimal broadcast rate is upper

bounded by the solution bFLP(G) to the linear program

minimize max
j∈[n]

∑

S⊆[n]:S 6⊆Aj

ρS · κ(G|S)

subject to
∑

S⊆[n]:j∈S

ρS ≥ 1, j ∈ [n],

ρS ∈ [0, 1], S ⊆ [n].

(4)

Clearly this bound contains partial clique covering and

fractional local clique covering bounds as its special

cases. The 5-node example in Figure 2 shows that

bFLP(G) is strictly tighter than the minimum of bFL(G)
and bPC(G).

1

2
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5

Fig. 2. An index coding problem with bFLP(G) = 7/2 < bFL(G) =
bPC(G) = 4. Here the rate bPC(G) = 4 is achieved by partitioning
the graph into the partial cliques {1}, {4}, and {2, 3, 5}. The rate
bFL(G) = 4 is achieved by assigning weight 1 to the cliques
{1, 2}, {3}, {4}, and {5}, and the rate bFLP(G) = 7/2 is achieved
by assigning weight 1/2 to the partial cliques {1, 2}, {1, 3, 5}, and
{2, 3, 5}, and weight 1 to the partial clique {4} (note that we have
κ(G|{1,3,5}) = κ(G|{2,3,5}) = 2). The optimality of each case is
verified by solving the respective linear program.

The main idea behind fractional local partial clique

covering is to perform local time sharing over all sub-

graphs. It can be further extended by applying local time

sharing recursively for each subgraph.

Theorem 4. The optimal broadcast rate β of an index

coding problem with side information graph G is upper

bounded by bR(G) which is recursively defined as the

solution to the linear program

minimize max
j∈[n]

∑

S([n]:S 6⊆Aj

ρSbR(G|S)

subject to
∑

S([n]:j∈S

ρS ≥ 1, j ∈ [n], (5)

ρS ∈ [0, 1], S ( [n],

where bR(G|S) is the solution for the subgraph G|S
and bR(G|{j}) = 1, j ∈ [n].

As expected, this bound is tighter than the fractional

local partial clique covering bound (Theorem 3).

Theorem 5. bR(G) ≤ bFLP(G).

Proof: First note that for every directed graph G, we
have bR(G) ≤ κ(G). This can be verified by assigning

nonzero rates only to subsets of cardinality one. Let

(ρS , S ⊆ [n]) be a feasible solution to (4) such that

bFLP(G) = max
j∈[n]

∑

S⊆[n]:S 6⊆Aj

ρS · κ(G|S).

If ρ[n] = 0, (ρS , S ( [n]) is feasible to (5) and the proof
is complete, since for every subset S ( [n], bR(G|S) ≤
κ(G|S). If ρ[n] > 0, define

ρ′S =











0, if S = [n],

min{ρS + ρ[n], 1}, if |S| = 1,

ρS , otherwise.

Then it can be checked that (ρ′S , S ( [n]) is a feasible
solution to (5). In addition, for all j ∈ [n],

∑

S([n]:S 6⊆Aj

ρ′SbR(G|S)

=
∑

S([n]:S 6⊆Aj

ρSbR(G|S) +
∑

k∈[n]:k 6∈Aj

ρ[n]bR(G|{k})

≤
∑

S([n]:S 6⊆Aj

ρS · κ(G|S) + ρ[n] · κ(G)

=
∑

S⊆[n]:S 6⊆Aj

ρS · κ(G|S).

Therefore,

bR(G) ≤ max
j∈[n]

∑

S([n]:S 6⊆Aj

ρ′SbR(G|S)

≤ max
j∈[n]

∑

S⊆[n]:S 6⊆Aj

ρS · κ(G|S) = bFLP(G).

The inequality in Theorem 5 is sometimes strict, as

demonstrated by the 5-node problem in Figure 3.

Remark 1. Both bR(G) and bFLP(G) can be shown

to be tight for all index coding problems with up to 4

messages.

The upper bound bR(G) is, however, not tight in gen-
eral. In fact, we can use the optimal index code for every

subproblem S ( [n], or equivalently, we can replace

bR(G|S) with β(G|S) in (5). This establishes an even
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Fig. 3. An index coding problem with bR(G) = 3 < bFLP(G) =
7/2. The rate bR(G) = 3 is achieved by assigning weight 1 to subsets
{1, 2, 3, 4} and {5} (note that β(G|{1,2,3,4}) = 2, achieved by

composite coding [14]). The rate bFLP(G) = 7/2 is achieved by
assigning weight 1/2 to the partial cliques {1, 2, 3}, {1, 2, 4}, and
{3, 4} and weight 1 to the partial clique yields bFLP(G) = 7/2 (note
that κ(G|{1,2,3}) = κ(G|{1,2,4}) = 2). The optimality of each case
is verified by solving the respective linear program.

tighter bound bLTS(G) achieved by local time sharing

between the optimal broadcast rates of the subgraphs.

A natural question arises: whether bLTS(G) is tight. The
following example shows that the answer to this question

is negative.

Example 1. Consider the 7-node index coding problem

(1|2, 3, 4, 6, 7), (2|1, 3, 6, 7), (3|1, 4, 5, 7), (4|1, 2, 5, 6),

(5|3, 4, 6, 7), (6|2, 4, 5, 7), (7|2, 3, 5, 6).

For this example, we have β = 5/2 < bLTS(G) = 8/3,
with β achieved by subspace interference alignment [11].

One reason behind the suboptimality of local time

sharing over optimal broadcast rates could be that the

fractional message rates for each subproblem are unnec-

essarily restricted to be identical. Therefore, one way to

improve bLTS(G) could be to consider the entire tradeoff
between the fractional message rates in the subproblems,

which we investigate in the next section.

IV. ASYMMETRIC CODING SCHEMES

We first extend our definition of the index coding

problem in Section I to the case of asymmetric message

rates [6], in which the sender wishes to communicate n
messages xj ∈ {0, 1}tRj , j ∈ [n], by broadcasting t bits.
The goal is to characterize the optimal tradeoff between

the individual rates Rj , j ∈ [n], that are the reciprocals
of the individual broadcast rates βj .
Given an index coding problem, a (2tR1 , . . . , 2tRn , t)

index code C = (φ, {ψj}) is defined by

• an encoder φ : {0, 1}
∑n

j=1
tRj → {0, 1}t that maps

n-tuple of messages to a t-bit index, and
• n decoders, where the jth decoder ψj : {0, 1}t ×

{0, 1}
∑

k∈Aj
tRk → {0, 1}tRj maps the received

string yt = φ(x1, . . . , xn) and the side information
x(Aj) to a tRj-bit message estimate,

such that for all xn ∈ {0, 1}
∑n

j=1
tRj , we have

ψj(φ(x
n), x(Aj)) = xj for all j ∈ [n]. A rate tuple

(R1, . . . , Rn) is said to be achievable if there exists a

(2tR1 , . . . , 2tRn , t) index code C. The capacity region C

of the index coding problem is the closure of the set

of achievable rate tuples (R1, . . . , Rn). The following

relation holds between the broadcast rate characterization

of the problem and the capacity region characterization:

β = β(C ) := min{(1/R) : (R, . . . , R) ∈ C }.

Continuing our program of local time sharing in the

previous section, we establish the following recursive

inner bound on the capacity region.

Theorem 6. The capacity region C of the index coding

problem with side information graph G contains the rate

region RR(G) that is recursively defined as the set of

rate tuples (R1, . . . , Rn) such that

Rj =
∑

S([n]

Tj,S , j ∈ [n],
(6)

for some (Tj,S : j ∈ S) and γS , S ( [n], satisfying
∑

S([n]:S 6⊆Aj

γS ≤ 1, j ∈ [n],

(Tj,S : j ∈ S) ∈ γS · RR(G|S), S ( [n],

γS ≥ 0, S ( [n],

Tj,S ≥ 0, S ( [n], j ∈ S,

(7)

where RR(G|S) is the rate region for the subgraph G|S
and RR(G|{j}) = [0, 1]. Here, a · R := {aR : R ∈ R}.

Let b(RR(G)) = min{(1/R) : (R, . . . , R) ∈ RR(G)}
be the minimum broadcast rate associated with RR(G).
Without symmetric rate constraints on subproblems, re-

cursion over rate regions (Theorem 6) is richer than re-

cursion over broadcast rates (Theorem 4). The following

proposition confirms this intuition formally.

Proposition 1. For the index coding problem with side

information graph G, we have

b(RR(G)) ≤ bR(G). (8)

Proof: We use induction on the number n of mes-

sages. The induction base is trivially true. Assume that

(8) holds for all index coding problems with n − 1 or

less messages. Let (ρS , S ( [n]) be a feasible solution
to (5) such that

bR(G) = max
j∈[n]

∑

S([n]:S 6⊆Aj

ρSbR(G|S).

For all S ( [n], define

γS =
ρSbR(G|S)

bR(G)
and Tj,S =

{

ρS

bR(G) if j ∈ S,

0 otherwise.

Then, for all j ∈ [n] we have

∑

S([n]:S 6⊆Aj

γS =
∑

S([n]:S 6⊆Aj

ρSbR(G|S)

bR(G)
≤ 1, (9)
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Rj =
∑

S([n]

Tj,S =
∑

S([n]:j∈S

ρS
bR(G)

≥
1

bR(G)
. (10)

In addition, since (1/bR(G|S), . . . , 1/bR(G|S)) ∈
RR(G|S) and γS/bR(G|S) = ρS/bR(G), by the induc-

tion hypothesis, we have (Tj,S : j ∈ S) ∈ γS ·RR(G|S),
which completes the proof.

However, The inner bound RR(G) and the associated
broadcast rate b(RR(G)) are not tight in general and

can be improved by using the capacity region C (G|S)
of the subgraph G|S instead of RR(G|S) in (6). This

establishes a tighter inner bound RLTS(G) and the as-

sociated broadcast rate b(RLTS(G)), the latter of which
is the tightest upper bound on the optimal broadcast rate

achieved by local time sharing.

Following similar steps to the proof of Proposition 1,

we can establish:

Proposition 2. b(RLTS(G)) ≤ bLTS(G).

This inequality can be strict. For the 7-node index

coding problem in Example 1, solving the corresponding

linear programs yields β = b(RLTS(G)) = 5/2 <
bLTS(G) = 8/3. This shows that asymmetric coding of

subproblems is necessary even when the problem is on

the optimal symmetric rate.

Now the natural question becomes whether RLTS(G)
and b(RLTS(G)) are tight in general. The 5-node ex-

ample in Figure 4 shows that local time sharing over

the capacity regions of subproblems yields neither the

capacity region nor the optimal broadcast rate.

V. DISCUSSION

In this paper, we considered the class of index coding

schemes based on time sharing and presented a series

of extensions of the existing schemes in this class. It is

shown that even the best scheme in this class, namely,

local time sharing between capacity regions of subprob-

lems, is not optimal, which demonstrates a fundamental

limitation of the concept of local time sharing.

The main performance bottleneck (and the main cul-

prit behind the suboptimality) is that in local time shar-

ing, each receiver is required to recover all subproblem

indices, even those that are not needed to recover its own

message.2 Hence, relaxing this unnatural requirement

would be crucial to improve upon local time sharing,

but any immediate solution seems to be tantamount to

solving an index coding problem with a larger number

of messages.

Another weakness of local time sharing could be that,

through explicit rate splitting, the problem is divided into

a set of subproblems that have no interaction among

themselves. In comparison, composite coding [14] uti-

2Note that a similar performance bottleneck also arises in the
composite coding scheme for recovering composite indices [14].

1

2

34

5

Fig. 4. An index coding problem with β = 3 < b(RLTS(G)) =
bLTS(G) = 7/2. Here β is achieved by composite coding [14].

lizes all relevant composite indices simultaneously to

encode and decode. (Note that neither composite coding

nor local time sharing over capacity regions of subprob-

lems outperform the other scheme.) Vector linear coding

(or more specifically interference alignment [7]) takes

a more holistic approach, that leads to a globally better

linear solution (which is in general very difficult to find).
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