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Abstract—A new coding scheme for multicasting a mes-
sage over a general relay network is presented that extends
both network coding for graphical networks by Ahlswede,
Cai, Li, and Yeung, and partial decode–forward for relay
channels by Cover and El Gamal. For the N -node Gaussian
multicast network, the scheme achieves within 0.5N bits
from the capacity, improving upon the best known capacity
gap results. The key idea is to use multicoding at the source
as in Marton coding for broadcast channels. Instead of
recovering a specific part of the message as in the original
partial decode–forward scheme, a relay in the proposed
distributed decode–forward scheme recovers an auxiliary
index that implicitly carries some information about the
message and forwards it in block Markov coding. This
scheme can be adapted to broadcasting multiple messages
over a general relay network, extending and refining a
recent result by Kannan, Raja, and Viswanath.

I. INTRODUCTION

Relays are fundamental building blocks for communi-

cation networks. By propagating desired messages over

the network—either directly or indirectly—they help in-

crease throughput, improve reliability, and expand range,

the effects of which are most pronounced in wireless

networks with high path loss at low signal-to-noise ratio.

Since van der Meulen [1] studied the 3-node relay

channel model in the context of mathematical com-

munication theory, numerous relaying schemes have

been proposed in the literature. Among these, decode–

forward, compress–forward, and amplify–forward are

particularly well studied and form a basis, along with

direct transmission, for most other relaying schemes. In

the decode–forward coding scheme, originally proposed

by Cover and El Gamal [2], the relay recovers, re-

encodes, and forwards the transmitted message. This

digital-to-digital interface can be further combined with

direct transmission via superposition coding, leading to

the partial decode–forward coding scheme [2], [3].

Alternatively, the relay can communicate the received

sequence itself instead of decoding it for all or part of the

message. In the compress–forward coding scheme, pro-

posed again by Cover and El Gamal [2], the relay serves

as an analog-to-digital interface and compresses its re-

ceived sequence via vector quantization and forwards the

compression index. Going further in this direction, in the

amplify–forward coding scheme, originally proposed by

Schein and Gallager [4], and popularized by Laneman,

Tse, and Wornell [5], the relay serves as an analog-to-

analog interface and simply sends a scaled version of

its received sequence. All three schemes are known to

achieve the capacity within 1 bit for the single-antenna

Gaussian relay channel [6], [7].

These schemes have been extended beyond relay

channels with varying degrees of generality (in opera-

tion) and scalability (in performance). Amplify–forward

can be readily applied to turn an arbitrary Gaussian

multihop network into a single-hop network with in-

tersymbol interference, but fails to bring in scalability

as its achievable rate can have an unbounded gap from

capacity. Noisy network coding [8], [9], a variant of

compress–forward, provides a scalable performance for

general multimessage multicast networks with a bounded

gap from capacity; see also [6]. But it suffers from

noise propagation (as relays do not decode for the

message) and does not provide a scalable performance

for multiple-unicast networks.

An extension of decode–forward has been devel-

oped [10], [11] for single-message multicast networks,

whereby the relays form a route from the source to

destinations, and an intermediate node recovers the code-

words from all its predecessors en route and forwards the

corresponding message to the next hop. The decoding

requirement, however, is often too restrictive and the

resulting achievable rate can have an unbounded gap

from capacity. In principle, potential extensions of partial

decode–forward (if any) would alleviate this issue, but

with a notable exception of Aref’s results on classes

of deterministic networks [12, Sections 3.4 and 3.5],

partial decode–forward has rarely been studied beyond

the 3-node relay channel, as it is unclear which relay

should be assigned to forward which part of the message.

This problem seems even more intractable when multiple

messages are to be communicated.

With these limitations of the existing relaying schemes

in mind, our goal is to develop a scalable coding

scheme for general broadcast networks (i.e., a single

source with multiple independent messages for multiple

destinations). The main difficulty for developing such

a scheme can be perhaps recognized from the fact
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that the crucial component of Marton coding [13] for

the (single-hop) broadcast channel is careful coordi-

nation between the codewords for different messages.

For multihop networks, similar coordination becomes

far more challenging since the source should control

the codewords transmitted from multiple nodes. This

coordination requirement excludes amplify–forward and

noisy network coding for broadcast, as the behavior of

the relays is not available at the source in these coding

schemes, leaving decoding-based schemes as the only

feasible alternatives.

Motivated by the need for a scalable extension of

decode–forward to general broadcast networks, we de-

velop the distributed decode–forward coding scheme in

this paper. As in [13], [12], the coding scheme uses

multicoding as a basis for coordination among distributed

nodes. To some extent, the idea of “pruning” superletter

codewords by Anand and Kumar [14] for multicast and

extended by Kannan, Raja, and Viswanath [15] to broad-

cast is also reminiscent of multicoding. By encoding

the message with compatible codewords via multicoding,

the source can coordinate and control the transmission

over the entire network, which results in a scalable

performance. With streamlined operations and single-

letter achievable rates for general broadcast networks,

the proposed scheme can be viewed as an extension and

refinement of the coding scheme of Kannan et al. [15].

To best explain the source-centric coordination aspect

of the distributed decode–forward scheme, our main

focus in this 5-page paper is on explaining how the

multicoding approach can be applied to the single-

message multicast network; see Sections II and III. For

the special case of the relay channel, the achievable

rate coincides with that of partial decode–forward. In

this sense, the proposed coding scheme is an extension

of partial decode–forward to networks. Unlike (partial)

decode–forward whereby the source node controls the

behavior of the relays by routing (parts of) the message

itself with superposition coding over multiple hops, how-

ever, the source node in distributed decode–forward con-

trols the relays by communicating auxiliary indices that

carry information about the message rather implicitly and

are forwarded in two hops. Although this multicoding-

based coordination results in some noise propagation,

one is rewarded by a scalable coding scheme for general

networks with an arbitrary number of hops. For example,

when applied to deterministic multicast networks, dis-

tributed decode–forward extends and improves upon the

result by Avestimehr, Diggavi, and Tse [6]. In particular,

it recovers network coding for graphical networks by

Ahlswede, Cai, Li, and Yeung [16]. When applied to

Gaussian multicast networks, the scheme achieves within

0.5N bits from the capacity, which improves upon the

previously known tightest gap of 0.63N bits [8].

This two-hop multicoding approach can be adapted to

broadcast, our stated goal of this study. In Section IV,

we briefly describe how the multicast coding scheme can

be modified to broadcast and present the resulting rate

region for general broadcast networks.

Throughout the paper, we use the notation in [17].

In particular, a sequence of random variables with node

index k and time index i ∈ [1 : n] := {1, . . . , n} is

denoted as Xn
k := (Xk1, . . . , Xkn). A tuple of random

variables is denoted as X(A) := (Xk : k ∈ A).

II. PROBLEM SETUP AND MAIN RESULTS

Consider the N -node discrete memoryless multicast

network (DM-MN) p(yN |xN ) [17, Section 18.1]. Sup-

pose that source node 1 wishes to send a message M to

a set of destination nodes D ⊆ [2 :N ]. A (2nR, n) code

for the DM-MN consists of

• a message set [1 : 2nR],
• a source encoder that assigns a code symbol

x1i(m, yi−1
1 ) to each message m ∈ [1 : 2nR] and

received sequence yi−1
1 ∈ Yi−1

1 for i ∈ [1 : n],
• a set of relay encoders, where encoder k ∈ [2 :N ]

assigns a xki(y
i−1
k ) to each yi−1

k for i ∈ [1 : n],
and

• a set of decoders, where decoder d ∈ D assigns an

estimate m̂d or an error message e to each ynd .

We assume that the message M is uniformly distributed

over the message set. The average probability of error

is defined as P
(n)
e = P{M̂d 6= M for some d ∈ D}. A

rate R is said to be achievable if there exists a sequence

of (2nR, n) codes such that limn→∞ P
(n)
e = 0. The

capacity of the DM-MN is the supremum of the set of

achievable rates.

We are ready to state the main theorem of the paper.

Theorem 1. The capacity of the DM-MN p(yN |xN ) with

a set D of destination nodes is lower bounded as

C ≥ maxmin
d∈D

min
[

I(X(S);U(Sc), Yd |X(Sc))

−
∑

k∈Sc

I(Uk;U(Sc
k), X

N |Xk, Yk)
]

,

(1)

where Sc
k = Sc ∩ [2 : k − 1] for k ∈ [2 : N ] and the

second minimum is over all S ⊆ [1 :N ] such that 1 ∈ S
and d ∈ Sc. The maximum in (1) is over all pmfs of the

form (
∏N

k=2 p(xk))p(x1|xN
2 )p(uN

2 |xN ).

The proof of Theorem 1 along with the description and

analysis of the associated distributed decode–forward

coding scheme is deferred to Section III. Here we

illustrate the utility of Theorem 1 via three canonical

examples.

Example 1 (Relay channels). Consider the discrete

memoryless relay channel p(y2, y3|x1, x2), in which the
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sender (node 1) communicates a message to the receiver

(node 3) with the help of the relay (node 2). This

corresponds to a DM-MN with N = 3, D = {3}, and

Y1 = X3 = ∅. For this case, Theorem 1 simplifies as

C ≥ max
p(x1,x2,u2)

min
{

I(X1, X2;Y3),

I(U2;Y2 |X2) + I(X1;Y3 |X2, U2)
}

,

which coincides with the partial decode–forward lower

bound [2, Theorem 7]; see also the standalone version

in [3] and [17, Theorem 16.3].

Example 2 (Deterministic networks). Suppose Yk =
gk(X1, . . . , XN ), k ∈ [1 :N ]. Then, by setting Uk = Yk,

k ∈ [2 :N ] in (1), Theorem 1 simplifies as

C ≥ max min
S:1∈S,Sc∩D6=∅

H(Y (Sc)|X(Sc)), (2)

where the maximum is over all pmfs

(
∏N

k=2 p(xk))p(x1|xN
2 ). This bound has the same

form as the cutset bound (see, for example, [17,

Section 18.3.1], whereby the maximum is taken over

all joint pmfs p(xN ). Thus, if the maximum of

the cutset bound is attained by a pmf of the form

(
∏N

k=2 p(xk))p(x1|xN
2 ), which includes product pmfs,

then the lower bound in (2) is tight. In particular, it

recovers the celebrated results by Ahlswede, Cai, Li, and

Yeung [16] for graphical networks and by Avestimehr,

Diggavi, and Tse [6] for linear deterministic networks,

but from a completely different path. See Section IV

for further discussions.

Example 3 (Gaussian networks). Consider the additive

white Gaussian noise network, in which the channel out-

puts are Yk = gk1X1+· · ·+gkNXN+Zk, k ∈ [1 :N ].
Here gkj is the channel gain from node j to node k and

Z1, . . . , ZN are independent Gaussian noise components

with zero mean and unit variance. We assume average

power constraint P on each Xk [17, Section 19.1]. On

the one hand, the cutset bound on the capacity leads to

C ≤ I(X(S);Y (Sc)|X(Sc))

=
1

2
log

∣

∣

∣
I +G(S)KX(S)G

T(S)
∣

∣

∣

=
1

2
log

∣

∣

∣
I +KX(S)G

T(S)G(S)
∣

∣

∣

≤
1

2
log

(∣

∣

∣
I + PGT(S)G(S)

∣

∣

∣

∣

∣

∣
I +

1

P
KX(S)

∣

∣

∣

)

(a)

≤
1

2
log

∣

∣I + PG(S)GT(S)
∣

∣ +
|S|

2
,

for all S ⊆ [1 :N ] such that 1 ∈ S and Sc∩D 6= ∅. Here

KX(S) is the covariance matrix of X(S) and (a) follows

by the Hadamard inequality. On the other hand, in the

lower bound (1) we set Xk, k ∈ [1 : N ], i.i.d. N(0, P ),
and Uk = gk1X1 + · · · + gkNXN + Ẑk, k ∈ [2 : N ],

where Ẑk ∼ N(0, 1) are independent of each other and

of (XN , Y N ). Then,

I(X(S);U(Sc), Yd |X(Sc))

≥ I(X(S);U(Sc)|X(Sc))

=
1

2
log

∣

∣I + PG(S)GT(S)
∣

∣

and

I(Uk;U(Sc
k), X

N |Xk, Yk) = I(Uk;X
N |Xk, Yk)

=
1

2
log

(

1 + 2Sk

1 + Sk

)

≤
1

2
,

where Sk =
∑

j 6=k g
2
kjP . Hence, Theorem 1 simplifies

as

C ≥ min
S:1∈S,Sc∩D6=∅

1

2
log

∣

∣I + PG(S)GT(S)
∣

∣−
|Sc|

2
.

Comparing the upper and lower bounds we can conclude

that distributed decode–forward achieves within 0.5N
bits from the cutset bound and thus from the capacity.

Note that this establishes the tightest known gap for

single-message Gaussian multicast networks.

III. PROOF OF THEOREM 1

We use a block Markov coding scheme in which a

sequence of b i.i.d. messages Mj , j ∈ [1 : b], is sent

over b blocks each consisting of n transmissions. For

each block, we generate codewords Uk, k ∈ [2 : N ], to

be recovered at relay k. Using multicoding [17, Sections

7.8 and 8.3], we design these codewords to be dependent

among themselves and on the transmitted codewords

X1, . . . , XN . The key difference from multicoding for

single-hop networks is that here multicoding is per-

formed using backward encoding over all blocks and the

dependence among the codewords are satisfied simul-

taneously among them. Unlike partial decode–forward,

there is no need for these codewords to have any layered

superposition structure. In fact, the scheme does not keep

track of which relay recovers exactly which part of the

message from which node; relay k recovers some part

of the message rather implicitly by recovering Uk. The

recovered part of the message, captured by an auxiliary

index, is then forwarded to the destination nodes in the

next block. The details are as follows.

Codebook generation. Fix the pmf (
∏N

k=2 p(xk)) ·
p(x1|xN

2 )p(uN
2 |xN ) that attains the maximum in (1). For

block j ∈ [1 : b], randomly and independently generate

2nR̂k sequences xn
k (lk,j−1), lk,j−1 ∈ [1 : 2nR̂k ], each

according to
∏n

i=1 pXk
(xki), k ∈ [2 : N ]. For each

lk,j−1 ∈ [1 : 2nR̂k ], randomly and independently gen-

erate 2nR̂k sequences un
k (lkj |lk,j−1), lkj ∈ [1 : 2nR̂k ],

each according to
∏n

i=1 pUk|Xk
(uki|xki(lk,j−1)). For

each lj−1 = (l2,j−1, . . . , lN,j−1), randomly and inde-

pendently generate 2n(R+R̃) sequences xn
1 (mj , tj|lj−1),
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Block 1 2 · · · b− 1 b

Multicoding (t1, l0) ← (t2, l1) . . . ← (tb−1, lb−2) ← (tb, lb−1)

X1 xn
1 (m1, t1|l0) xn

1 (m2, t2|l1) . . . xn
1 (mb−1, tb−1|lb−2) xn

1 (mb, tb|lb−1)

Yk un
k (lk1|lk0) un

k (lk2|lk1) . . . un
k (lk,b−1|lk,b−2) un

k (lkb|lk,b−1)

Xk xn
k (lk0) xn

k (lk1) . . . xn
k (lk,b−2) xn

k (lk,b−1)

Yd m̂1 ← (m̂2, l1) . . . ← (m̂b−1, lb−2) ← (m̂b, lb−1)

TABLE I
ENCODING AND DECODING OF THE DISTRIBUTED DECODE–FORWARD CODING SCHEME.

(mj , tj) ∈ [1 : 2nR] × [1 : 2nR̃], each according to
∏n

i=1 pX1|X2,...,XN
(x1i|x2i(l2,j−1), . . . , xNi(lN,j−1)).

Encoding. For j = b, b − 1, . . . , 1 and for each mj ,

find an index tuple (tj , lj−1) such that

(xn
1 (mj , tj |lj−1), x

n
2 (l2,j−1), . . . , x

n
N (lN,j−1),

un
2 (l2j |l2,j−1), . . . , u

n
N(lNj |lN,j−1)) ∈ T

(n)
ǫ′

successively with the initial condition l2b = · · · =
lNb = 1. If there is more than one such index tuple,

select one of them arbitrarily. If there is none, select

one from [1 : 2nR̃] × [1 : 2nR̂2 ] × · · · × [1 : 2nR̂N ]
arbitrarily. By direct application of the properties of

multivariate typicality [17, Section 2.5], induction on

backward encoding, and steps similar to those of the

multivariate covering lemma [17, Lemma 8.2], it can be

shown that encoding is successfully with high probability

if

R̃+

N
∑

k=2

R̂k >

N
∑

k=2

I(Uk;U
k−1, XN |Xk) + δ(ǫ′), (3)

R̂(T ) >
∑

k∈T

I(Uk;U(Tk), X(T )|Xk) + δ(ǫ′)

(4)

for all T ⊆ [2 :N ], where Tk = T ∩ [2 : k − 1].

Before the actual transmission of the messages, we

use additional (N − 1)2 blocks to transmit each lk0
to node k ∈ [2 : N ] using multi-hop coding, as in

the initialization phase for short-message noisy network

coding in [18]. The additional transmission needed for

this phase is in the order of O(nN2), independent of

b. Thus, the realized transmission rate converges to R

as b → ∞. In the following, we assume that all lk0 is

known prior to transmission.

To send message mj in block j, the source node

transmits xn
1 (mj , tj |lj−1), where (tj , lj−1) is the chosen

index tuple.

Relay encoding. Let ǫ > ǫ′. At the end of block j,

node k finds a unique index l̃kj ∈ [1 : 2nR̂k ] such that

(un
k (l̃kj | l̃k,j−1), x

n
k (l̃k,j−1), y

n
k (j)) ∈ T (n)

ǫ .

By the packing lemma [17, Lemma 3.1], this is success-

ful with high probability if

R̂k < I(Uk;Yk |Xk)− δ(ǫ). (5)

In block j + 1, the relay then transmits xn
k (l̃kj).

Decoding. We use backward decoding. For j =
b, . . . , 1, decoder d ∈ D finds a unique index tuple

(m̂j , l̂j−1) = (m̂j , l̂2,j−1, . . . , l̂N,j−1) with l̂d,j−1 =
ld,j−1 such that

(xn
1 (m̂j , tj | l̂j−1), x

n
2 (l̂2,j−1), . . . , x

n
N (l̂N,j−1),

un
2 (l̂2j | l̂2,j−1), . . . , u

n
N(l̂Nj | l̂N,j−1), y

n
d (j)) ∈ T (n)

ǫ

for some tj ∈ [1 : 2nR̃], successively with the initial

condition l̂2b = · · · = l̂Nb = 1. By the independence of

the codebooks, the Markov lemma [17, Lemma 12.1],

the joint typicality lemma, and induction on backward

decoding, this step is successful with high probability if

R+ R̃+ R̂(T ) < I(X1, X(T );U(T c), Yd |X(T c))

+
∑

k∈T

I(Uk;U(Tk), U(T c), XN , Yd |Xk)− δ(ǫ) (6)

for some T ⊆ [2 :N ] such that d ∈ T c.

By identifying T = {1} ∪ S and eliminating the

auxiliary rates R̂2, . . . , R̂N , and R̃ from (3)–(6), we

obtain the inequalities in (1) and

min
[

I(X(S);U(Sc)|X(Sc))

−
∑

k∈Sc

I(Uk;U(Sc
k), X

N |Xk, Yk)
]

≥ 0, (7)

where the minimum is over all S ⊆ [1 : N ] such

that 1 ∈ S and Sc ∩ D 6= ∅. Finally, noting that the

maximizing input pmf must satisfy (7) completes the

proof of Theorem 1.

IV. DISCUSSION

Our coding scheme can be adapted to broadcast by

merging the role of the auxiliary variables for Marton

coding (broadcast) with that of the auxiliary variables

for relaying. This results in the following inner bound

on the capacity region of a general broadcast network.
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Theorem 2. For the discrete memoryless network

p(yN |xN ) with N−1 messages broadcast to receivers 2
through N , a rate tuple (R2, . . . , RN ) is achievable if

R(Sc) < I(X1, X(S);U(Sc)|X(Sc))

−
∑

k∈Sc

I(Uk;U(Sc
k), X

N |Xk, Yk)

for some pmfs (
∏n

k=2 p(xk))p(x1, u
N
2 |xN

2 ), where Sc
k =

Sc ∩ [2 : k − 1].

Once again the source node controls the relays by

auxiliary indices Lk that carry some information about

all messages. For deterministic networks, Theorem 2

simplifies to the same rate expression as the cutset outer

bound [15, Eq. (9)] except that input pmfs are of the form

p(x1|xN
2 )(

∏n

k=2 p(xk)). For Gaussian networks, Theo-

rem 2 simplifies to the cutset outer bound within 0.5N
bits per dimension. Details of this coding scheme and the

proof of Theorem 2 will be presented elsewhere [19].

It is gratifying to observe that decode–forward and

compress–forward—two fundamental coding schemes

for relay channels—are now generalized to arbitrary net-

works by distributed decode–forward (DDF) and noisy

network coding (NNC). For single-message multicast,

both schemes achieve similar performance; both achieve

the Gaussian network capacity within a finite gap and

the max-flow min-cut capacity for graphical networks.1

Operationally, the two coding schemes have several

distinct (and somewhat dual) features. In destination-

centric NNC, the source and the relays are relatively

simple, but the major burden is on the destinations

that need to recover the messages and the compres-

sion indices from the entire network over multiple

blocks. This scheme fits well with (and currently is

the only reasonable solution to) general multiple access

and multimessage multicast relay networks. In source-

centric DDF, the relays and the destinations are rela-

tively simple, but the source needs to precode dependent

codewords for the entire network over multiple blocks.

The scheme fits well with (and currently is the only

reasonable solution to) general broadcast relay networks.

This operational reciprocity in the roles of source and

destination for multiple access and broadcast has been

well noted by Kannan, Raja, and Viswanath [15], which

was the key intuition for their coding scheme that par-

allels the quantize–map–forward scheme by Avestimehr,

Diggavi, and Tse [6]. Compared to these nested multi-

letter schemes [6], [15], however, NNC and DDF provide

a more conclusive example on the duality between mul-

tiple access and broadcast—NNC achieves the capacity

region of the (single-hop) multiple access channel, while

1For general deterministic multicast networks, DDF performs
better than NNC in general, due to input pmfs of the form

p(x1|xN
2
)
∏N

k=1
p(xk) instead of product pmfs used in NNC.

DDF achieves Marton’s inner bound for the broadcast

channel. It remains to be seen how this duality can

be exploited in building scalable schemes for multiple

unicast beyond single-hop interference channels.
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