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Abstract—Recent studies by Padakandla and Pradhan, and by
Lim, Feng, Pastore, Nazer, and Gastpar built the framework of
nested coset codes for the computation problem, namely, comput-
ing a desired linear combination of sources over a multiple access
channel. This paper presents an outer bound on the optimal rate
region for the computation problem when the encoding strategy
is restricted to random ensembles of homologous codes, namely,
structured nested coset codes from the same generator matrix and
individual shaping functions based on joint typicality encoding.
The optimal rate region is characterized when the desired linear
combination and the channel structure are matched. Under this
condition, a suboptimal joint typicality decoding rule is shown
to achieve the optimal rate region. This result implies that the
performance of random homologous code ensembles cannot be
improved by using the optimal maximum likelihood decoder for
the aforementioned class of computation problems.

I. INTRODUCTION

Consider a communication problem over a two-sender mul-
tiple access channel (MAC) where the receiver is interested in
computing a function of the transmitted sources. One trivial
approach to this computation problem would be to decode
for the arguments of the function, i.e., individual sources, and
then compute the function from the recovered sources. For the
first communication step of this approach, the conventional
random independently and identically distributed (i.i.d.) code
ensembles achieve the optimal performance [1]–[3]. Studying
the dual problem of encoding modulo-two sum of distributed
binary sources, however, Körner and Marton [4] showed that
using the same linear code at multiple users can achieve strictly
better performance than random i.i.d. code ensembles for a
class of source distributions. Building on this observation,
Nazer and Gastpar [5] developed a channel coding technique
for the computation problem over linear MACs that is based
on linear codes and outperforms previously known schemes.

Nested coset codes [6], [7] bring a new dimension to such
structured coding schemes. Using these codes, Padakandla and
Pradhan [7] developed a linear computation scheme for an
arbitrary MAC. In this coding scheme, a coset code of a rate
higher than the target is first generated randomly. A codeword
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of a desired property (such as type or joint type) is then
selected from a subset (a coset of a subcode). Similar selection
techniques were also developed in the context of lattice codes
in [8]. Although reminiscent of the multicoding scheme in
Gelfand–Pinsker coding for channels with state and Marton
coding for broadcast channels, this construction is more fun-
damental in the sense that the scheme is useful even for
single-user communication. When dealing with multiple users,
the structure between users’ codebooks can be controlled via
common and individual parts of the underlying linear code.
Recent efforts exploited the benefit of nested coset codes for
a broader class of applications: such as interference channels
[9], [10], multiple access channels [11], [12], and multiple
access channels with state [13].

With the main motivation of developing a unified compute–
forward framework for relay networks, Lim, Feng, Pastore,
Nazer, and Gastpar [14], [15] generalized the nested coset
codes of the same generator matrix (which we referred to as
homologous codes [11]) for asymmetric rate pairs. They also
developed stronger analysis tools for simultaneous decoding
of random homologous code ensembles that led to a unified
scheme with performance improvement from its predecessors
within the context of linear computation problems. The re-
sulting performance of homologous codes, when adapted to
the Gaussian case, improves upon the lattice codes, another
structured coding scheme proposed for compute–forward [16].

We are now equipped with random homologous codes—
superior alternatives to conventional random codes—the use
of which brings us one step closer to understanding the fun-
damental limits of computation problems. Nonetheless, several
questions remain open: What is the simultaneously achievable
rate pairs for reliable computation (even linear computation)?
Which scheme achieves this computation capacity region? The
answers require a joint optimization of encoder and decoder
designs, which is in terra incognita.

In this paper, we instead concentrate on the performance
of the optimal maximum likelihood decoder for linear com-
putation when the encoder is restricted to realizations of a
given random homologous code ensemble. We characterize
the optimal rate region when the desired linear combination
and the channel structure are matched, which is the case in
which the benefit of computation can be realized to the full
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extent as indicated by [17]. This result, inter alia, implies that
the suboptimal joint typicality decoding rule proposed in [14],
[15] achieves this optimal rate region. Thus, the performance
of random homologous code ensembles cannot be improved
by the maximum likelihood decoder for the aforementioned
class of linear computation problems.

We adapt the notation in [1], [2]. The set of integers
{1, 2, . . . , n} is denoted by [1 : n]. For a length-n sequence
(vector) xn = (x1, x2, . . . , xn) ∈ Xn, we define its type as
π(x|xn) = |{i : xi = x}|/n for x ∈ X . Upper case letters,
e.g., X,Y , denote random variables. For ε ∈ (0, 1), we define
T (n)
ε (X) = {xn : |p(x) − π(x|xn)| ≤ εp(x), x ∈ X}. The

function 1S : X → {0, 1} is defined as 1S(x) = 1 if x ∈ S
and 0 otherwise. A length-n vector of all zeros is denoted
by 0n, where the subscript is omitted when it is clear in the
context. Fq denotes a finite field of size q, where F̂q

.
= Fq\{0}.

For set A, cl(A) denotes the closure of A. We use εn ≥ 0 to
denote a generic function of n that tends to zero as n → ∞.
Throughout information measures are in log base q.

II. FORMAL STATEMENT OF THE PROBLEM

Consider the two-sender finite-field input memoryless mul-
tiple access channel (MAC)

(X1 ×X2, p(y |x1, x2),Y),

which consists of two sender alphabets X1 = X2 = Fq ,
where Fq denotes a finite field of size q, a receiver alphabet
Y , and a collection of conditional probability distributions
pY |X1,X2

(y|x1, x2).
Each sender j = 1, 2 encodes a message Mj ∈ FnRjq

into a codeword Xn
j = xnj (Mj) ∈ Fnq and transmits Xn

j

over the channel. The goal of communication is to convey a
linear combination of the codewords rather than the messages.
Hence, the receiver finds an estimate Ŵn

a = ŵna (Y
n) ∈ Fnq of

Wn
a , a1X

n
1 ⊕ a2Xn

2 ,

for a desired (nonzero) vector a = [a1 a2] over Fq . The
encoding maps xnj (mj), j = 1, 2, and the decoding map
ŵna (y

n) define an (n, nR1, nR2) computation code of the
multiple access channel. The set Cn = {(xn1 (m1), x

n
2 (m2)) :

m1 ∈ F(nR1)×(nR2)
q } is referred to as the codebook associated

with the (n, nR1, nR2) code.
Remark 1: For the simplicity of presentation, we consider

the case X1 = X2 = Fq , but our arguments can be extended
to arbitrary X1 and X2 through the channel transformation
technique by Gallager [18, Sec. 6.2]. Given a pair of symbol-
by-symbol mappings ϕj : Fq → Xj , j = 1, 2, consider
the virtual channel with finite field inputs, p(y|v1, v2) =
pY |X1,X2

(y|ϕ1(v1), ϕ2(v2)), for which a computation code is
to be defined. The goal of the communication is to convey
Wa = a1V

n
1 ⊕ a2V

n
2 , where V nj = vnj (Mj) ∈ Fnq is the

virtual codeword mapped to message Mj at sender j = 1, 2.
The results can be applied to this computation problem defined
on the virtual channel.

The performance of a computation code is measured by the
average probability of error

P (n)
e (Cn) = P(Ŵn

a 6=Wn
a |Cn),

when M1 and M2 are independent and uniformly distributed.
A rate pair (R1, R2) is said to be achievable if there exists a
sequence of (n, nR1, nR2) computation codes such that

lim
n→∞

P (n)
e (Cn) = 0

and

lim
n→∞

H(Mj |xnj (Mj),Cn) = 0, j ∈ {1, 2} with aj 6= 0.

(1)
Note that without the condition in (1), the problem is trivial
and an arbitrarily large rate pair is achievable.

We now consider a random ensemble of computation codes
with the following structure. Let p = p(x1)p(x2) be a given
input pmf on Fq × Fq , and let ε > 0. Suppose that the code-
words Xn

1 (m1), m1 ∈ FnR1
q , and Xn

2 (m2), m2 ∈ FnR2
q that

constitute the codebook are generated randomly as follows:
• Let R̂j = D(pXj ||Unif(Fq)) + ε, j = 1, 2.
• Let κ = max{nR1 + nR̂1, nR2 + nR̂2}. Randomly

generate a κ× n matrix G, and two vectors Dn
1 and Dn

2

such that elements of G,Dn
1 , and Dn

2 are i.i.d. Unif(Fq).
• Given realizations G, dn1 , and dn2 for random matrix G,

and random dithers Dn
1 and Dn

2 , let

unj (mj , lj) = [mj lj 0]G+dnj , mj ∈ FnRjq , lj ∈ FnR̂jq ,

for j = 1, 2. At sender j = 1, 2, assign the code-
word Xn

j (mj) = Unj (mj , Lj(mj)) to each message
mj ∈ FnRjq , where Lj(mj) is drawn uniformly at random
among lj indices satisfying unj (mj , lj) ∈ T (n)

ε (Xj) if

there exists one, or among FnR̂jq otherwise.
With a slight abuse of terminology, we refer to the random
tuple Cn = (G,Dn

1 , D
n
2 , (L1(m1) : m1 ∈ FnR1

q ), (L2(m2) :
m2 ∈ FnR2

q )) as the random homologous codebook. Each
realization of the random homologous codebook Cn results in
one instance {xn1 (m1), x

n
2 (m2) : (m1,m2) ∈ FnR1

q ×FnR2
q } of

such generated codebooks, which constitutes an (n, nR1, nR2)
computation code along with the optimal decoder. The random
code ensemble generated in this manner is referred to as an
(n, nR1, nR2; p, ε) random homologous code ensemble. A rate
pair (R1, R2) is said to be achievable by the (p, ε)-distributed
random homologous code ensemble if there exits a sequence of
(n, nR1, nR2; p, ε) random homologous code ensembles such
that

lim
n→∞

ECn [P
(n)
e (Cn)] = 0

and

lim
n→∞

H(Mj |Xn
j (Mj), Cn) = 0, j ∈ {1, 2} with aj 6= 0,

where the expectation is with respect to the random homol-
ogous codebook Cn. Given (p, ε), let R∗(p, ε) be the set
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of all rate pairs achievable by the (p, ε)-distributed random
homologous code ensemble. We define the limit

lim
ε→0

R∗(p, ε) =
⋃
ε>0

⋂
0<γ<ε

R∗(p, γ)
(a)
=

⋂
ε>0

⋃
0<γ<ε

R∗(p, γ),

(2)
which exists if (a) holds. Given p, the optimal rate region
R∗(p), when it exists, is defined as

R∗(p) = cl
[
lim
ε→0

R∗(p, ε)
]
.

III. THE MAIN RESULT

A linear combination Wa = a1X1 ⊕ a2X2 is said to be
natural if

H(Wa |Y ) = min
b6=0

H(Wb |Y ),

where b = [b1 b2], and Wb = b1X1 ⊕ b2X2. In a sense, a
natural combination Wa is the best matched to the channel
structure and thus the easiest to recover at the receiver.

Theorem 1: Given an input pmf p = p(x1)p(x2), the optimal
rate region R∗(p) for computation of a natural combination
Wa is the set of rate pairs (R1, R2) such that

Rj ≤ I(Xj ;Y |Xjc),

Rj ≤ I(X1, X2;Y )−min{Rjc , I(Xjc ;Wa, Y )},

for every j ∈ {1, 2} with aj 6= 0, where jc = {1, 2} \ {j}.
We present an equivalent characterization of the optimal

rate region in Theorem 1. Let RCF(p) be the set of rate pairs
(R1, R2) such that

Rj ≤ H(Xj)−H(Wa |Y ), ∀j ∈ {1, 2} : aj 6= 0.

Let RMAC(p) be the set of rate pairs (R1, R2) such that

R1 ≤ I(X1;Y |X2),

R2 ≤ I(X2;Y |X1),

R1 +R2 ≤ I(X1, X2;Y ).

Proposition 1 ([19]): Given an input pmf p = p(x1)p(x2),
the optimal rate region R∗(p) for computation of a natural
combination Wa can be equivalently expressed as

R∗(p) = [RCF(p) ∪RMAC(p)].

IV. PROOF OF THEOREM 1

We prove Theorem 1 in three steps: 1) we first prove the
achievability in Section IV-A, where we follow the results in
[14], [15] that studied the rate region achievable by random
homologous code ensemble using a suboptimal joint typical-
ity decoding rule, 2) we then show by Lemma 1 that the
achievable rate region is equivalent to R∗(p) in Proposition
1 if Wa is a natural combination, and 3) we present the
proof of the converse in Section IV-B by showing that if
a rate pair (R1, R2) is achievable by the (p, ε)-distributed
random homologous code ensemble for arbitrarily small ε,
then (R1, R2) must lie in R∗(p).

A. Proof of Achievability

The performance of random homologous code ensembles
was studied using a suboptimal joint typicality decoder by Lim
et al. in [14], [15]. We prove the achievability of R∗(p) using
the results in [14], [15]. For completeness, we first describe
the joint typicality decoding rule and then characterize the rate
region achievable by the (p, ε)-distributed random homologous
code ensemble when decoder is specialized to the joint typi-
cality decoder. We then concentrate on arbitrarily small ε to
provide a lower bound on the rate region R∗(p).

Upon receiving yn, the ε′-joint typicality decoder, ε′ > 0,
looks for a unique vector s ∈ Fκq such that

s = a1[m1 l1 0]⊕ a2[m2 l2 0],

for some (m1, l1,m2, l2) ∈ FnR1
q ×FnR̂1

q ×FnR2
q ×FnR̂2

q that
satisfies

(un1 (m1, l1), u
n
2 (m2, l2), y

n) ∈ T (n)
ε′ (X1, X2, Y ).

If the decoder finds such s, then it declares ŵna = sG⊕a1dn1⊕
a2d

n
2 as an estimate; otherwise, it declares an error.

To describe the performance of the joint typicality decoder,
we define RCF(p, δ) for a given input pmf p and δ ≥ 0 as the
set of rate pairs (R1, R2) such that

Rj ≤ H(Xj)−H(Wa |Y )− δ, ∀j ∈ {1, 2} : aj 6= 0.

Similarly, we define R1(p, δ) as the set of rate pairs (R1, R2)
such that

R1 ≤ I(X1;Y |X2)− δ,
R2 ≤ I(X2;Y |X1)− δ,

R1 +R2 ≤ I(X1, X2;Y )− δ,
R1 ≤ I(X1, X2;Y )−H(X2) + min

b∈F̂1×2
q

H(Wb |Y )− δ,

and R2(p, δ) as the set of rate pairs (R1, R2) such that

R1 ≤ I(X1;Y |X2)− δ,
R2 ≤ I(X2;Y |X1)− δ,

R1 +R2 ≤ I(X1, X2;Y )− δ,
R2 ≤ I(X1, X2;Y )−H(X1) + min

b∈F̂1×2
q

H(Wb |Y )− δ,

where b = [b1 b2], and Wb = b1X1⊕b2X2. We are now ready
to state the rate region achievable by the random homologous
code ensembles, which follows by [14] and [15].

Theorem 2 ([14], [15]): Let p = p(x1)p(x2) be an input
pmf and δ > 0. Then, there exists η(δ) < δ such that for every
ε < η(δ), a rate pair

(R1, R2) ∈ RCF(p, δ) ∪R1(p, δ) ∪R2(p, δ)

is achievable by the (p, ε)-distributed random homologous
code ensemble along with the ε′-joint typicality decoder for
some ε′ such that ε < ε′ < δ.

Taking the union over all δ > 0, Theorem 2 implies⋃
δ>0

[RCF(p, δ)∪R1(p, δ)∪R2(p, δ)] ⊆
⋃
ε>0

⋂
0<γ<ε

R∗(p, γ).
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Therefore, the closure of the left hand side, which is equal to
the rate region RCF(p)∪R1(p)∪R2(p), constitutes an inner
bound on the optimal rate region R∗(p), where the region
RCF(p) = RCF(p, δ = 0) is as defined in Section III, and
Rj(p) denotes the region Rj(p, δ = 0) for j = 1, 2.

The achievability proof of Theorem 1 (for the equivalent
rate region in Proposition 1) finally can be established by the
next lemma.

Lemma 1 ([19]): If the desired linear combination Wa =
a1X1 ⊕ a2X2 for (a1, a2) 6= (0, 0) is natural, then

[RCF(p) ∪R1(p) ∪R2(p)] = [RCF(p) ∪RMAC(p)].

B. Proof of the Converse

We first present an outer bound on the rate region R∗(p, ε)
for a fixed input pmf p and ε > 0. We then discuss the limit
of this outer bound as ε → 0 to establish an outer bound on
the rate region R∗(p). Throughout this section, δi(ε) ≥ 0,
i ∈ Z+, denotes a continuous function of ε that tends to zero
as ε→ 0. Given an input pmf p and δ > 0, we define the rate
region ROUT(p, δ) as the set of rate pairs (R1, R2) such that

Rj ≤ I(Xj ;Y |Xjc) + δ,

Rj ≤ I(X1, X2;Y )−min{Rjc , I(Xjc ;Wa, Y )}+ δ, (3)

for every j ∈ {1, 2} with aj 6= 0, where jc = {1, 2} \ {j}.
We are now ready to state the main theorem that leads to

the proof of the converse for the optimal rate region R∗(p).
Theorem 3: Let p = p(x1)p(x2) be an input pmf and

ε > 0. If a rate pair (R1, R2) is achievable by the (p, ε)-
distributed random homologous code ensemble, then there
exists a continuous δ′(ε) that monotonically tends to zero as
ε→ 0 such that

(R1, R2) ∈ ROUT(p, δ
′(ε)).

Proof: Let ε′ > ε. Define the indicator random variable

En = 1{(Xn1 (M1),Xn2 (M2))∈T (n)

ε′ (X1,X2)}
. (4)

Since R̂i = D(pXi ||Unif(Fq)) + ε, i = 1, 2, by Lemma 12
in [14], P(En = 0) tends to zero as n→∞ if ε′ ∈ (ε δ1(ε))
is sufficiently large. Let j ∈ {1, 2} such that aj 6= 0. Then,
for n sufficiently large, we have

nRj = H(Mj |Mjc , Cn)
= I(Mj ;Y

n |Mjc , Cn) +H(Mj |Y n,Mjc , Cn)
(a)

≤ I(Mj ;Y
n |Mjc , Cn, En = 1) + nεn

=
n∑
i=1

I(Mj ;Yi |Y i−1,Mjc , Cn, Xjci, En = 1) + nεn

≤
n∑
i=1

I(M1,M2, Xji, Y
i−1, Cn;Yi |Xjci, En = 1) + nεn

(b)
=

n∑
i=1

I(Xji;Yi |Xjci, En = 1) + nεn

(c)

≤ n(I(Xj ;Y |Xjc) + δ2(ε)) + nεn, (5)

where (a) follows for large n by the fact that En is a
binary random variable with P(En = 0) → 0 as n →
∞, and by Lemma 3 in Appendix A, (b) follows since
(M1,M2, Y

i−1, Cn)→ (X1i, X2i)→ Yi form a Markov chain
for i ∈ [1 : n], and (c) follows by Lemma 4 in Appendix A.

For the proof of (3), we start with

nRj = H(Mj |Mjc , Cn)
(a)

≤ I(Mj ;Y
n |Mjc , Cn) + nεn

= I(M1,M2;Y
n |Cn)− I(Mjc ;Y

n |Cn) + nεn, (6)

where (a) follows by Lemma 3 in Appendix A. Following
arguments similar to (5), the first term can be bounded as

I(M1,M2;Y
n |Cn) ≤ n(I(X1, X2;Y ) + δ3(ε)) + nεn. (7)

For the second term in (6), we need the following lemma,
which is proved in Appendix B.

Lemma 2: For every ε′′ > ε′, for n sufficiently large,

I(Mjc ;Y
n |Cn) ≥ n[min{Rjc , I(Xjc ;Wa, Y )}−δ4(ε′′)]−nεn.

Combining (6), (7), and Lemma 2 with ε′′ = δ1(ε), we have

nRj ≤n(I(X1, X2;Y ) + δ3(ε))

− n[min{Rjc , I(Xjc ;Wa, Y )} − δ5(ε)] + 2nεn, (8)

for n sufficiently large. Letting n → ∞ in (5) and (8)
establishes

Rj ≤ I(Xj ;Y |Xjc) + δ2(ε),

Rj ≤ I(X1, X2;Y )−min{Rjc , I(Xjc ;Wa, Y )}+ δ6(ε).

The claim follows by taking a continuous monotonic function
δ′(ε) ≥ max{δ2(ε), δ6(ε)} that tends to zero as ε→ 0.

The proof of the converse for the optimal rate region R∗(p)
in Theorem 1 follows by letting ε→ 0 since

lim
ε→0

ROUT(p, δ
′(ε)) = R∗(p),

where the limit on the left hand side is defined in a similar
manner to (2).

Remark 2: Given an input pmf p, the rate region defined in
Theorem 1 is in general an outer bound on the optimal rate
region R∗(p) for the computation problem of an arbitrary
linear combination (not necessarily natural).

APPENDIX A

Next lemma is a variation of Fano’s inequality for random
homologous code ensembles.

Lemma 3 ([19]): Suppose that the average probability
of error ECn [P

(n)
e (Cn)] and the entropy H(Mi|Xn

i (Mi), Cn)
tends to zero as n→∞ for i ∈ {1, 2} such that ai 6= 0. Then,

H(Wn
a |Y n, Cn) ≤ nεn,

and for every j ∈ {1, 2} with aj 6= 0

H(Mj |Y n,Mjc , Cn) ≤ nεn,

for some εn → 0 as n→∞.
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The permutation invariance of the distribution of random
homologous codewords implies the following.

Lemma 4 ([19]): Let (X,Y ) ∼ p(x, y) on Fq × Y and
fix ε > 0. Let Xn(m) be the random codeword assigned
to message m ∈ FnRq by (n, nR; p(x), ε) random homolo-
gous code ensemble. Further let Y n be a random sequence
distributed according to

∏n
i=1 pY |X(yi|xi). Then, for every

(x, y) ∈ Fq × Y , and for every i ∈ [1 : n],

(1− ε)p(x, y) ≤ P(Xi = x, Yi = y |Xn ∈ T (n)
ε (X))

≤ (1 + ε)p(x, y).

APPENDIX B: PROOF OF LEMMA 2

Let ε′′ > ε′. Let j ∈ {1, 2} be such that aj 6= 0, and
jc = {1, 2} \ {j}. First, by Lemma 3, we have

I(Mjc ;Y
n |Cn) ≥ I(Mjc ;W

n
a , Y

n |Cn)− nεn.

Therefore, it suffices to prove that for n sufficiently large,

I(Mjc ;W
n
a ,Y

n |Cn)
≥ n[min{Rjc , I(Xjc ;Wa, Y )} − δ4(ε′′)− 2εn].

Similar to [20], we will show that given Wn
a , Y

n and Cn, a
relatively short list L ⊆ FnRjcq can be constructed that contains
Mjc with high probability. Define a random set

L = {m ∈ FnRjcq : (Xn
jc(m),Wn

a , Y
n) ∈ T (n)

ε′′ (Xjc ,Wa, Y )}.

It can be shown [19] that for each m 6=Mjc ,

P(m ∈ L, En = 1) ≤ q−n(I(Xjc ;Wa,Y )−δ4(ε′′)),

where random variable En is as defined in (4). Since P(En =
1) tends to one as n→∞, for n sufficiently large, we have

E(|L| |En = 1) ≤ 1 +
∑

m6=Mjc

P(m ∈ L|En = 1)

≤ 1 + qn(Rjc−I(Xjc ;Wa,Y )+δ4(ε
′′)+εn). (9)

Define another indicator random variable Fn = 1{Mjc∈L}.
Since ε′′ > ε′ and P(En = 1) tends to one as n→∞, by the
conditional typicality lemma in [1, p.27], P(Fn = 1) tends to
one as n→∞. Then, for n sufficiently large, we have

H(Mjc |Cn,Wn
a , Y

n)

≤ H(Mjc |Cn,Wn
a , Y

n, Fn = 1, En) + nεn.

We now use the fact that if Mjc ∈ L, then the conditional
entropy cannot exceed log(|L|):

H(Mjc |Cn,Wn
a , Y

n, Fn = 1, En)

(a)
= H(Mjc |Cn,Wn

a , Y
n, Fn = 1, En,L, |L|)

≤ H(Mjc |Fn = 1, En,L, |L|)

(b)

≤
q
nRjc∑
l=0

P(|L| = l|En = 1) log(l) + nεn

= E[log(|L|)|En = 1] + nεn
(c)

≤ log(E[|L| |En = 1]) + nεn

(d)

≤ max{0, n(Rjc − I(Xjc ;Wa, Y ))}+ nδ4(ε
′′) + nεn,

where (a) follows since the set L and its cardinality |L|
are functions of (Cn,Wn

a , Y
n), (b) follows for large n since

P(En = 0) tends to zero as n → ∞, (c) follows by
Jensen’s inequality, and (d) follows by (9) and the soft-
max interpretation of the log-sum-exp function [21, p.72].
Substituting back gives

I(Mjc ;W
n
a , Y

n |Cn)
= H(Mjc |Cn)−H(Mjc |Cn,Wn

a , Y
n)

= nRjc −H(Mjc |Cn,Wn
a , Y

n)

≥ n[Rjc −max{0, (Rjc − I(Xjc ;Wa, Y ))} − δ4(ε′′)− 2εn]

= n[min{Rjc , I(Xjc ;Wa, Y )} − δ4(ε′′)− 2εn].
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