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Abstract—Coding schemes for asymmetric channels and chan-
nels with state are developed starting from a pair of linear
codes designed for symmetric channels. Guarantees on the block
error rate performance of the coding schemes are derived in
terms of the parameters of the constituent codes. Assuming the
constituent codes satisfy some properties on the rate, the error
probability, and the distribution of the Hamming distance to
decoded sequences, the performance guarantees hold irrespective
of other properties of the codes. This would allow one to lever-
age commercial off-the-shelf codes for point-to-point symmetric
channels to design codes for asymmetric channels and channels
with state known noncausally at the encoder.

I. INTRODUCTION

The problem of coding for channels with a state that is
known noncausally only at the encoder was initially formu-
lated by Gelfand and Pinsker in [1], and its capacity was
derived in the same paper. Their random coding scheme
based on multicoding and joint typicality encoding and de-
coding has had implications for several information-theoretic
problems, most notably the extension to Marton coding for
two-user broadcast channels with both private and common
messages [2], which yields tight inner bounds for all classes of
discrete memoryless broadcast channels with known capacity
regions. Gelfand and Pinsker’s random coding scheme did not
assume any structure in the code ensembles. In [3], Padakandla
and Pradhan show that the same capacity can be achieved
using random nested linear codes with joint typicality encoder
and decoder. Another important implication of Gelfand and
Pinsker’s coding scheme, which we exploit in this paper, is
its specialization to a capacity-achieving code for asymmetric
channels by setting the state as the all-zero sequence.

The formulation of the Gelfand–Pinsker problem and its
Gaussian counterpart, dirty paper coding [4], spurred the
quest for practical codes to solve the Gelfand–Pinsker prob-
lem as well as the two-user broadcast problem. Mondelli
et al. [5] presented a scheme to achieve Marton’s inner
bound for broadcast channels using polar codes based on
a chaining or block Markov construction, extending earlier
work on the lossy source coding problem [6] and on cod-
ing for compound channels [7]. Bennatan et al. [8] studied
the binary-input binary-state as well as the Gaussian-input
Gaussian-state Gelfand–Pinsker problems and applied nested
lattice codes. Other approaches explored for practical Gelfand–
Pinsker codes include variants of LDPC codes [9], [10], trellis

codes [11], and lattice codes [12]. In the context of asymmetric
channel coding, the “distribution shaping” problems have been
studied among others by [13]–[15]. In particular, Mondelli
et al. [16] performed a comparative study of various coding
approaches for asymmetric channels using polar codes and
spatially coupled codes.

In this paper, we design a coding scheme for the Gelfand–
Pinsker problem by taking a Lego-brick approach: We treat
encoders and decoders for symmetric channels as black boxes
or Lego bricks and assemble them with other simple Lego
bricks, such as dithers and interleavers, to form new coding
schemes. We ask the following question: Without knowing the
details of the encoding-decoding operations, can we express
the performance of the proposed coding scheme in terms of
simple properties of the constituent codes, such as the code
rate, the blocklength, the probability of error, and certain easy-
to-verify properties of the codewords? Such an approach was
explored for the problems of coding for the binary symmetric
channel and Slepian–Wolf coding [17], for a doubly symmetric
binary source by Wyner [18], for general channel coding and
general Slepian–Wolf coding in [19], [20], and for broadcast
and multiple access channels in [21].

More specifically, the proposed coding scheme for the
Gelfand–Pinsker problem starts from a pair of linear channel
codes. For one code, we consider its block error rate perfor-
mance in a desired symmetric channel. For the other code,
we consider the distribution of the Hamming distance to the
decoded sequences, a property referred to as the decoding
distance spectrum of the code. These properties can be easily
verified for off-the-shelf channel codes by simulations, and are
sufficient to provide performance guarantees of the proposed
scheme without knowing the specifics of the encoders and
decoders. The proposed scheme can be specialized to a coding
scheme for asymmetric channels by setting the state sequence
to be the all-zero sequence. Let us now set up the notation for
our discussion.

Channel Coding Problem. Consider a binary-input discrete
memoryless channel (B-DMC) p(y|x) with an input alphabet
X = {0, 1} and a finite output alphabet Y . A (k, n, ε) code
(f, φ) for this channel consists of

• a codebook C ⊆ {0, 1}n of size |C| = 2k,
• an encoder f : [2k] → C that maps each message m ∈
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[2k] to a codeword xn = f(m).
• a decoder φ : Yn → C that assigns a codeword estimate
x̂n = φ(yn) to each received sequence yn.

The rate of the code is R = k/n. Assuming the codeword
Xn is uniformly distributed over the codebook C, the average
probability of error of the code is P{X̂n 6= Xn} = ε.

A linear channel code can be defined by its parity check
matrix H(n−k)×n and its decoding function φ. We will refer
to such a linear code as a (k, n, ε) code (H,φ). For notational
convenience, we introduce the augmented parity check matrix
defined by

Hn×n =

[
0
H

]
,

where 0 corresponds to a k × n all-zero matrix.
We say a B-DMC p(y|x) is symmetric if there exists a

permutation π : Y → Y such that p(y|x) = p(π(y)|x ⊕ 1)
for all y ∈ Y and x ∈ {0, 1}. Given a symmetric channel
under permutation π, we define the � operation between two
sequences yn ∈ Yn and sn ∈ {0, 1}n as follows [19]. For
y ∈ Y and s ∈ {0, 1}, define

y � s =

{
y if s = 0,

π(y) if s = 1,
(1)

and let yn � sn be the element-wise � operation.

Slepian–Wolf Problem. A (binary) Slepian–Wolf problem
p(x, y) consists of two finite alphabets X = {0, 1}, Y
and a joint pmf p(x, y) over X × Y . The source X with
side information Y generate a jointly i.i.d. random process
{(Xi, Yi)} with (Xi, Yi) ∼ pX,Y (xi, yi). An (`, n, ε) code
(g, ψ) for the Slepian–Wolf problem p(x, y) consists of
• an index set I of size |I| = 2`,
• an encoder g : {0, 1}n → I that maps a source sequence
xn to an index m = g(xn), and
• a decoder ψ : I × Yn → {0, 1}n that assigns a source

estimate x̂n = ψ(m, yn) to each index m and side
information yn.

The rate of the code is R = `/n. The average probability of
error of the code is P{X̂n 6= Xn} = ε.

A Slepian–Wolf code is linear if the encoding function can
be defined as a matrix multiplication, i.e., g(xn) = Hxn for
some `×n matrix H . In this case, we refer to the code as an
(`, n, ε) code (H,ψ).

We say a Slepian–Wolf problem p(x, y) is symmetric under
permutation π if X ∼ Bern( 1

2 ) and the channel p(y|x) is
symmetric under permutation π.

Gelfand–Pinsker Problem. A binary-input binary-state dis-
crete memoryless channel p(y|x, s)p(s) consists of finite al-
phabets X = S = {0, 1} and Y , a collection of conditional
probability mass functions p(y|x, s) on Y for each x ∈ X and
s ∈ S , and a probability mass function p(s) on S, where the
state sequence (S1, S2, . . .) is i.i.d. with Si ∼ p(si) and is
available noncausally only at the encoder [1]. A (k, n, ε) code
(h, ξ) for the channel p(y|x, s)p(s) consists of

p(y|x, s)
Xn

Sn

h
M

ξ
Y n M̂

Fig. 1: Gelfand–Pinsker code.

• an encoder h : [2k]×Sn → Xn that assigns a codeword
xn = h(m, sn) to each message m and state sequence
sn, and

• a decoder ξ : Yn → [2k] that assigns an estimate m̂ =
ξ(yn) to each received sequence yn.

The average probability of error of the code is P{M̂ 6=
M} = ε. A Gelfand–Pinsker code is depicted in Fig. 1.
With similarity to the point-to-point channel coding problem,
where there is a target input pmf p(x), for the Gelfand–Pinsker
problem, there is a target conditional pmf p(x|s).

II. MAIN RESULT

Consider a binary-input binary-state Gelfand–Pinsker prob-
lem p(y|x, s)p(s) with S ∼ Bern(θ) for some θ ∈ [0, 1]. The
main contribution of this paper is a coding scheme for the
Gelfand–Pinsker problem when the target conditional distri-
bution p(x|s) is a BSC(α), a binary symmetric channel with
crossover probability α, for some α ∈ (0, 1). Starting from a
pair of linear codes that are designed for symmetric channels,
the encoder guarantees that the channel input distribution is
appropriately biased with respect to the state sequence, and
the decoder is able to reconstruct the transmitted messages
with some fidelity. Before we state our assumptions on the
constituent codes, we define the decoding distance spectrum
of a binary-input binary-output channel code.

Definition 1. Consider a code (f, φ) designed for a B-DMC
p̃(y|x) with binary output alphabet Y = {0, 1}. We define the
decoding distance spectrum of the code (f, φ) as the random
variable W such that

W = dH
(
V n, φ(V n)

)
,

where V n iid∼ Bern(1/2) and dH(., .) is the Hamming distance.

Notice that, for any w ∈ {0, 1, . . . , n}, we have

P{W = w} = 1
2n

∣∣{vn ∈ Fn
2 : dH

(
vn, φ(vn)

)
= w}

∣∣.
Moreover, since the alphabet size of W is linear in n, the
distribution of W can be estimated for any off-the-shelf
channel code (f, φ) via simulations, which aligns with the
spirit of this work, aiming to design coding schemes starting
from basic building blocks with easy-to-verify properties.

Now, we are ready to state the properties of the constituent
codes, as highlighted in the following three “axioms”.

Axiom 1. Suppose that there exists a (k1, n, ε1) linear code
(H1, φ1) with codebook C1 for the channel p(y, u|x) defined
over the input alphabet X = {0, 1} and output alphabet Y ×
{0, 1} by

p(y, u|x) =
∑
s∈S

pS(s)pX|S(x⊕ u|s)pY |X,S(y |x⊕ u, s),
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p(y|x, s)favg
H1Xn

(2) φavg
Ĥ1Xn

(2)

Sn
(1)

Fig. 2: Coding for the Gelfand–Pinsker channel in the first block using the
code (favg, φavg).

where pX|S is the target conditional distribution BSC(α).

Axiom 2. Suppose that there exists a (k2, n, ε2) linear code
(H2, φ2) with codebook C2 for BSC(α) and decoding distance
spectrum W2 satisfying

n∑
w=0

∣∣∣P{W2 = w} −
(
n

w

)
αw(1− α)n−w

∣∣∣ ≤ δ, (2)

for some δ > 0. We assume that k2 < k1.

Axiom 3. Suppose that there exists a (kavg, n, εavg)
code (favg, φavg) for the “average” channel pavg(y|x) =∑

s p(s)p(y|x, s).1

Remark 2. Without loss of generality, we assume that the
parity check matrices H1 and H2 are in systematic form, i.e.,
Hi =

[
Ai In−ki

]
, i ∈ {1, 2}, where Ai is an (n− ki)× ki

matrix and In−ki
is the (n− ki)× (n− ki) identity matrix.2

Notice that the channel p(y, u|x) in Axiom 1 is symmetric
under the permutation π(y, u) = (y, u ⊕ 1). On the other
hand, the condition (2) in Axiom 2 says that the distribution
of the decoding distance spectrum is at most δ/2-away in total
variation distance from a Binom(n, α) distribution3.

The main result of this paper can be stated as follows.
Starting from any pair of codes that satisfy Axioms 1 and
2 along with the code (favg, φavg), the paper presents a
construction of a coding scheme for the Gelfand–Pinsker
problem p(y|x, s)p(s). The coding scheme is defined upon
the transmission of b blocks of information, and achieves an
average probability of error over the b blocks that can be
bounded as

Pe ≤ (b− 1)(δ + ε1) + εavg.

III. GELFAND–PINSKER CODING

A. Encoding

Fig. 2 and Fig. 3 show the block diagrams of the encoder
to the Gelfand–Pinsker problem. Inspired by the chaining
construction of universal polar codes introduced in [7], our
encoding scheme is defined upon the transmission of b blocks
of information. For each t ∈ [b], let V n

(t)

iid∼ Bern(1/2) be a
random dither shared with the decoder, and let Γ(t) : [n]→ [n]

1Here, we assume that the average channel has a non-zero capacity. Note
that this code will be used only for the first few transmission blocks.

2Note that a parity check matrix that is in systematic form can be obtained
for any linear code by basic row operations and column permutations.

3As an example, polar codes designed for BSC(α) with successive
cancellation decoding using the “randomized rounding” rule satisfy condition
(2), where δ decays exponentially fast with the block length [6].

be a permutation chosen uniformly at random and shared with
the decoder. Also, let S̃n

(t) = Γ−1(t) (Sn
(t)) (see Fig. 3)4.

We now describe the encoding procedure starting from the
b-th block. Given a message M(b) ∈ Fn−k2

2 , the encoder
computes the sequence Zn

(b) as follows.

Zn
(b) =

[
0

M(b)

]
, (3)

where 0 consists of k2 zeros. Then, for each t = b, . . . , 2, the
encoder computes the sequences Xn

(t) and Zn
(t−1) as follows.

Xn
(t) = Γ(t)

(
φ2
(
Zn
(t) ⊕ S̃

n
(t) ⊕ V

n
(t)

)
⊕ Zn

(t) ⊕ V
n
(t)

)
,

Zn
(t−1) =

 0
H1X

n
(t)

M(t−1)

 , (4)

where M(t−1) ∈ Fk1−k2
2 for each t = 2, . . . , b. Since H2 is

in systematic form, the sequence Zn
(t) satisfies that H2Z(b) =

M(b) and

H2Z
n
(t−1) =

[
H1X

n
(t)

M(t−1)

]
for each t = 2, . . . , b. Finally, in the first block, the transmitter
uses the encoder favg to encode the syndrome vector H1X

n
(2),

where Xn
(2) is the transmitted sequence in the second block

(see Fig. 2)56. Note that a loss in the overall achievable rate is
incurred in the first block. However, this loss decays as 1/b,
and, thus, by choosing b large enough, the rate loss becomes
negligible.

Notice that, for each t = 2, . . . , b, since Zn
(t)⊕ S̃

n
(t)⊕V

n
(t)

iid∼
Bern(1/2), we have that

X̃n
(t) ⊕ S̃

n
(t) = φ2

(
Zn
(t) ⊕ S̃

n
(t) ⊕ V

n
(t)

)
⊕ Zn

(t) ⊕ S̃
n
(t) ⊕ V

n
(t)

satisfies that wt(X̃n
(t) ⊕ S̃

n
(t))

d
= W2, where wt(.) denotes the

Hamming weight function, d
= denotes equality in distribution

and W2 denotes the decoding distance spectrum of the code
(H2, φ2). The next lemma highlights the fact that when a
random permutation Γ(t) is applied to X̃n

(t) ⊕ S̃
n
(t), the total

variation distance between the distribution of the resulting
sequence Xn

(t) ⊕ Sn
(t) = Γ(t)(X̃

n
(t) ⊕ S̃n

(t)) and the i.i.d.
Bernoulli(α) distribution is at most δ/2.

Lemma 3. For the arrangement shown in Fig. 3, we have∑
un

∣∣∣P{Xn
(t) ⊕ S

n
(t) = un} − αwt(un)(1− α)n−wt(un)

∣∣∣ ≤ δ,
where Xn

(t)⊕S
n
(t) = Γ(t)(X̃

n
(t)⊕S̃

n
(t)) and Γ(t) is a permutation

chosen uniformly at random and independent from X̃n
(t)⊕S̃

n
(t).

4Note that S̃n
(t)

is independent of Γ(t).
5The assumption here is that n− k1 < kavg. Otherwise, one should send

the syndrome vector H1Xn
(2)

over multiple blocks.
6Note that the sequence Zn

(1)
is not used in this construction.
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Zn
(t)

Xn
(t)

V n
(t)

Γ(t) p(y|x, s)
X̃n

(t) Y n
(t)

φ2

Sn
(t)

Cn
(t)

V n
(t)

Γ−1
(t)

S̃n
(t)

Fig. 3: Encoder in the t-th block (2 ≤ t ≤ b).

Proof. For any sequence un with wt(un) = w, we have that

P{Xn
(t) ⊕ S

n
(t) = un}

=
∑

ũn:wt(ũn)=w

P{Γ(ũn) = un}P{X̃n
(t) ⊕ S̃

n
(t) = ũn}

=
∑

ũn:wt(ũn)=w

w!(n− w)!

n!
P{X̃n

(t) ⊕ S̃
n
(t) = ũn}

= 1

(n
w)

P{wt
(
X̃n

(t) ⊕ S̃
n
(t)

)
= w} = 1

(n
w)

P{W2 = w}.

It follows that∑
un

∣∣∣P{Xn
(t) ⊕ S

n
(t) = un} − αwt(un)(1− α)n−wt(un)

∣∣∣
=
∑
un

∣∣∣P{W2 = wt(un)}(
n

wt(un)

) − αwt(un)
(
1− α

)n−wt(un)
∣∣∣

=

n∑
w=0

∣∣∣P{W2 = w} −
(
n

w

)
αw(1− α)n−w

∣∣∣ ≤ δ,
where the last step holds since W2 satisfies Axiom 2.

Corollary 4. For the arrangement shown in Fig. 3, we have∑
xn

∣∣∣PXn
(t)
|Sn

(t)
(xn |sn)−αwt(xn⊕sn)(1−α)n−wt(xn⊕sn)

∣∣∣ ≤ δ
for each sn ∈ {0, 1}n.

Proof. The result follows from Lemma 3 and the fact that Sn
(t)

is independent of Xn
(t) ⊕ S

n
(t). To see the latter, notice that

Xn
(t)⊕S

n
(t) = Γ(t)

(
φ2
(
Zn
(t)⊕S̃

n
(t)⊕V

n
(t)

)
⊕Zn

(t)⊕S̃
n
(t)⊕V

n
(t)

)
,

which is independent of Sn
(t) since Zn

(t) ⊕ S̃n
(t) ⊕ V n

(t) is
independent of Sn

(t). Note that this result holds for each block
t = 2, . . . , b.

Lemma 3 and Corollary 4 say that the conditional distribu-
tion of Xn

(t) given Sn
(t) is δ/2-away in total variation distance

from that corresponding to a BSC(α).

B. Decoding

At the decoder side, the key point is to view (Xn, Y n)
as realizations of the Slepian–Wolf problem p(x, y), where
p(x, y) represents the desired joint distribution between the
channel inputs and outputs, i.e.,

p(x, y) =
∑

s∈S p(s)p(x|s)p(y|x, s).

The goal, therefore, is to construct a Slepian–Wolf decoder to
recover an estimate of the channel input Xn

(t) in the t-th block.

For this purpose, we utilize an implementation of a Slepian–
Wolf decoder using point-to-point channel codes introduced
in [19], which we review in the following two lemmas. The
first lemma states that any Slepian–Wolf problem can be
symmetrized by scrambling.
Lemma 5 (Lemma 3 [19]). Consider a general Slepian–
Wolf problem p̃(x, y). Let U ∼ Bern(1/2) be independent
of (X,Y ). Let X = X ⊕ U and Y = (Y,U). Then, the
Slepian–Wolf problem p̃(x, y) is symmetric under permutation
π(y, u) = (y, u⊕ 1). Furthermore, we have

p̃Y |X(y, u|x) = p̃X,Y (x⊕ u, y)

for each x, u ∈ {0, 1} and y ∈ Y .

The next lemma states that a decoder for a symmetric
Slepian–Wolf problem can be implemented using a symmetric
point-to-point channel code.
Lemma 6 (Lemmas 1,2 [19]). Consider a symmetric Slepian–
Wolf problem p̃(x, y) under permutation π, as defined in Sec-
tion I. Let (H,φ) be a channel code for p̃(y|x) with codebook
C such that H is in systematic form. Let (Xn, Y n)

iid∼ p̃(x, y).
If Cn = Xn ⊕HXn and Rn = Y n �HXn

(
where � is as

defined in (1)
)
, then

P(Cn = cn, Rn = rn) = 1
2k

∏n
i=1 p̃Y |X(ri|ci)

for every cn ∈ C and rn ∈ Yn. That is, Rn has the same
distribution as the output of the channel p̃(y|x) when the
input to the channel is a uniformly distributed codeword Cn.
It follows that, given the syndrome vector HXn, one can get
an estimate of the source vector Xn as

X̂n = φ(Y n �HXn)⊕HXn.

When combined together, the previous two lemmas provide
a construction of a decoder to any Slepian–Wolf problem
using point-to-point symmetric channel codes. This hints to
a possible construction of a decoder for the Gelfand–Pinsker
problem. In particular, we look at the symmetrized version of
the Slepian–Wolf problem p(x, y), as described in Lemma 5.
Then, a Slepian–Wolf decoder for the corresponding channel
using a point-to-point channel code is utilized, as outlined in
Lemma 6. Note that the code (H1, φ1) in Axiom 1 is designed
precisely for this channel.

Therefore, the decoding proceeds as follows. In the first
block, the receiver uses the decoder φavg to recover an estimate
of H1X

n
(2). In the t-th block (2 ≤ t ≤ b), the receiver uses

the code (H1, φ1) to implement a decoder for the symmetrized
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φ1 H2Γ−1
(t)

¯̂H1Xn
(t)

H̄1

X̂n
(t)Y n

(t)

Un
(t)

Un
(t)

[ ̂H1Xn
(t+1)

, M̂(t)]

V n
(t)

Ĉn
(t)

Fig. 4: Decoder in the t-th block (2 ≤ t ≤ b). The dotted box represents an implementation of a Slepian–Wolf decoder using a channel code.

Slepian–Wolf problem. More precisely, the decoder utilizes the
estimate of H1X

n
(t) from previous blocks and computes

X̂n
(t) = φ1

(
(Y n

(t), U
n
(t))� (H1U

n
(t) ⊕ Ĥ1Xn

(t))
)

⊕ (H1U
n
(t) ⊕ Ĥ1Xn

(t))⊕ U
n
(t),

where Un
(t)

iid∼ Bern(1/2) is generated independently at the
decoder. The decoder then computes Ĉn

(t) = Γ−1(t)

(
X̂n

(t)

)
⊕V n

(t),

and declares the first (n−k1) bits of H2Ĉ
n
(t) as an estimate of

the subsequent syndrome vector H1X
n
(t+1), and the last k1−k2

bits of H2Ĉ
n
(t) as an estimate of the message M(t) in the t-th

block7. Fig. 4 shows the block diagram of the decoder.

C. Analysis of the probability of error

To gain an intuitive understanding of the probability of error
of our coding scheme, consider a genie-aided decoder which
recovers an estimate of M(t) in the t-th block based on the
channel output Y n

(t) and the syndrome vector H1X
n
(t) (which

is supplied correctly by a genie regardless of any decoding
errors in previous blocks). Notice that such a decoder would
have the same probability of error over the b blocks as our
decoder8. A similar argument has been made in the analysis
of the successive cancellation decoding of polar codes [22].
Therefore, it suffices to analyze the error probability of the
genie-aided decoder over the b blocks of transmission.

To this end, let qSn,Xn,Y n be the true distribution of the
tuple (Sn, Xn, Y n). Let us focus first on one block. The
average probability of error of the genie-aided decoder in the
t-th block (2 ≤ t ≤ b) can be bounded as9

P{M̂ 6= M} ≤ P{X̂n 6= Xn}

=
∑
xn,sn

P{X̂n 6= Xn |Xn = xn, Sn = sn}qXn,Sn(xn, sn)

=
∑
xn,sn

P{X̂n 6= Xn |Xn = xn, Sn = sn}

·
(
qXn,Sn(xn, sn)− pXn,Sn(xn, sn)

)
+
∑
xn,sn

P{X̂n 6= Xn |Xn = xn, Sn = sn}pXn,Sn(xn, sn)

(a)

≤
∑
xn,sn

∣∣qXn,Sn(xn, sn)− pXn,Sn(xn, sn)
∣∣+ ε1

7Note that H2Cn
(t)

= H2Zn
(t)

(see Fig. 3).
8To see this, observe that a decoding error can propagate from one block to

another only through an error in the syndrome vector H1Xn
(t)

. Consider the
first block where such an error happens. Both decoders would make an error
in that block, which is precisely an error event over the b blocks, irrespective
of decisions made in subsequent blocks.

9For notational convenience, the subscript “(t)” corresponding to the t-th
block is dropped.

(b)

≤ δ + ε1,

where (a) follows since P{X̂n 6= Xn|Xn = xn, Sn = sn} ≤
1, P{X̂n 6= Xn|Xn = xn, Sn = sn} depends only on the
channel p(y|x, s), and the average probability of error of the
Slepian–Wolf decoder using the code (H1, φ1) is exactly ε1,
and (b) follows by Corollary 4. By the union bound, it follows
that the average probability of error of the genie-aided decoder
(and, therefore, our decoder) over the b blocks can be bounded
as

Pe ≤ (b− 1)(δ + ε1) + εavg,

where εavg is the average probability of error of the code used
in the first block. The rate of the coding scheme is

R =
(b− 1)(k1 − k2) + n− k1

nb
.

Remark 7. Note that the case θ = 0 (or, equivalently, setting
the state sequence to the constant all-zero sequence) gives a
coding scheme for the asymmetric channel.

Remark 8. If the pair of codes in Axioms 1 and 2 have rates
close to the capacity of their respective symmetric channels,
then, by choosing a large block length n and a large (but
fixed) number of transmission blocks b, our coding scheme
can approach a rate arbitrarily close to

H(X |S)−H(X |Y ) = I(X;Y )− I(X;S),

evaluated for the conditional pmf p(x|s) that is a BSC(α).

IV. CONCLUSION

In this paper, a construction of a coding scheme for the
Gelfand–Pinsker problem and for the asymmetric channel
using a pair of linear channel codes was developed. The pa-
rameters of the constituent channel codes (i.e., the probability
of error of the first code and the decoding distance spectrum
of the second code) can be easily estimated for any linear
code through simulations. Therefore, our construction enables
one to leverage existing codes for symmetric point-to-point
channels to build coding schemes for both the Gelfand–Pinsker
and the asymmetric channel problems.
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