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Abstract—This paper proposes a special variant of Laplacian
eigenmaps, whose solution is characterized by the underlying
density and the eigenfunctions of the associated Hilbert–Schmidt
operator of a similarity kernel function. In contrast to existing
kernel-based spectral methods such as kernel principal com-
ponent analysis and Laplacian eigenmaps, the new embedding
algorithm only involves estimating density at each query point
without any eigendecomposition of a matrix. A concrete example
of dot-product kernels over hypersphere is provided to illustrate
the applicability of the proposed framework.

I. INTRODUCTION

Finding a good embedding of data for discovering meaningful
structures is one of the fundamental problems in machine
learning and data science, with important applications such
as clustering, dimensionality reduction, and data visualization.
Among a myriad of algorithms which have been proposed in
the last few decades, we particularly focus on a class of kernel-
based spectral embedding algorithms, which find embedding
of data based on eigenvectors of data-dependent similarity
kernel matrices [2, 8]—this class subsumes kernel principal
component analysis (PCA) [19], Laplacian eigenmaps [1],
spectral clustering [15, 20], multidimensional scaling [4],
locally linear embedding [17], and Isomap [22]. Proven to
be extremely powerful in various applications, the common
disadvantage of such methods is the computational complexity
of eigendecomposition of a kernel matrix, which could be
prohibitively large in big data analysis.

As an attempt to resolve the computational bottleneck, in
this paper, we propose a new kernel embedding framework,
which suggests a sample based embedding algorithm without
eigendecomposition of a matrix for special choices of kernels.
To motivate our approach, we first review kernel PCA and
introduce Laplacian eigenmaps as a special case of kernel
PCA framework with a kernel with density regularization
in Section II. In Section III, we then propose and study a
new density-regularized kernel, which separates the underlying
density and spectral decomposition of the kernel operator.
We describe the resulting sample based algorithm, which
simply combines density estimates given sample and known
eigenfunctions of a kernel operator. In Section IV, dot-product
kernels over hypersphere are discussed as a concrete example
to which the proposed embedding framework may apply. We
briefly discuss relevant literature in Section VI.

Notation Throughout the paper, we assume that a random
vector X is drawn from density p over a closed subset X ⊂ Rd,

and data points x1:N := {x1, . . . ,xN} are independently and
identically distributed (i.i.d.) random variables drawn from p.
Given X ⊂ Rd and a density µ on X , we consider a Hilbert
space L2

µ(X ) := {f : X → C|
∫
|f(x)|2 dµ(x) < ∞} with

inner product 〈f, g〉µ :=
∫
f(x)g(x) dµ(x). For a kernel func-

tion k : X ×X → R, we denote the associated Hilbert–Schmidt
integral operator in boldface K : L2

µ(X )→ L2
µ(X ), which is

defined as (Kf)(x) :=
∫
X k(x, t)f(t) dµ(t). In what follows,

we always assume that a kernel is symmetric, i.e., k(x, t) =
k(t,x), and satisfies

∫∫
X×X k

2(x, t) dµ(x) dµ(t) < ∞, so
that the operator K is self-adjoint and compact.

II. REVIEW OF KERENL PCA AND LAPLACIAN EIGENMAPS

A. Kernel PCA

1) Feature space formulation: Kernel PCA [19] was pro-
posed as an efficient method to perform PCA over transformed
samples with a given nonlinear mapping. Let |φ(·)〉 : X → F
be a feature map that maps a data point x to a point in a feature
space |φ(x)〉 ∈ F , where F is a vector space with inner product
〈·|·〉.1 For simplicity, assume for now that E[|φ(X)〉] = |0〉.
Kernel PCA aims to perform PCA over the lifted random vector
|φ(X)〉, that is, to solve

maximize
|u`〉∈F

L∑
`=1

〈u` |Cφ |u`〉

subject to 〈u` |u`′〉 = δ``′

(1)

Here, Cφ := E[|φ(X)〉〈φ(X)|] denotes the covariance operator
of |φ(X)〉. We call this the (population) feature space problem
of kernel PCA.2 When F is high- or infinite-dimensional, it is
often not feasible to directly solve this problem.

2) Function space formulation: To avoid the issue with
high-dimensionality of the feature space F , we can convert
the feature space problem (1) into an equivalent optimization
problem over a function space by the so-called kernel trick
as follows. Define a symmetric kernel function k(x, t) :=
〈φ(x)|φ(t)〉. Consider the following optimization problem

maximize
f`∈L2

p(X )

L∑
`=1

〈f`,Kf`〉p

subject to 〈f`, f`′〉p = δ``′

(2)

1We use the bra-ket notation to note that F may be infinite dimensional.
2If |φ(x)〉 = x, it boils down to the original PCA.
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Since K is self-adjoint and compact, the solution is charac-
terized by the top-L eigenfunctions and eigenvalues of K;
see, e.g., [3, Proposition A.2.10]. The following proposition
establishes the equivalence between (1) and (2); the proof is
easy and thus omitted.

Proposition 1. Let λ1, . . . , λL and |u?1〉, . . . , |u?L〉 be the top-
L eigenvalues and orthonormal eigenvectors of the operator
Cφ, respectively. Let µ1, . . . , µL and f?1 , . . . , f

?
L be the top-L

eigenvalues and orthonormal eigenfunctions of the operator
K, respectively. Then, λ` = µ`,

f?` (x) =
1√
λ`
〈φ(x)|u?` 〉, and (3)

|u?` 〉 =
1√
λ`

∫
f?` (x)|φ(x)〉p(x) dx. (4)

for each ` ∈ [L].

Hence, we call this problem (6) as the (population) function
space problem of kernel PCA. If the top-L eigenfunctions
f?1 , . . . , f

?
L of the operator K are given, then the embedding

of a query point x by kernel PCA is the projection of the
lifted data |φ(x)〉 onto the principal directions |u?1〉, . . . , |u?L〉,
or equivalently in view of (3),

ψKPCA(x) := [
√
λ1f

?
1 (x), . . . ,

√
λLf

?
L(x)]T . (5)

3) Sample solution: The spectral decomposition of K in
L2
p(X ) cannot be performed directly in general even if the

density p is known. Given sample x1:N , we can approximately
solve (2) in practice. Let K ∈ RN×N denote the sample kernel
matrix whose (m,n)-th entry is (K)mn = k(xm,xn). Then,
we can solve

maximize
f`∈RN

L∑
`=1

fT`√
N

K

N

f`√
N

subject to
fT`√
N

f`′√
N

= δ``′

(6)

as a proxy to (2), which is equivalent to the eigendecomposition
of K. The optimal solution is characterized by the top-L
eigenvectors f?1 , . . . , f

?
L ∈ RN of the normalized sample

kernel matrix K/N with eigenvalues λ1, . . . , λL with norm
‖f?` ‖2 =

√
N . The L-dimensional embedding of a point x is

then

ψ̂KPCA(x) :=
1

N

N∑
i=1

k(x,xi)
[ (f?1 )i√

λ1
, . . . ,

(f?L)i√
λL

]T
. (7)

This is often referred to the Nyström formula; see, e.g., [2]. In
particular, for a sample point xn, the embedding is simply

ψ̂KPCA(xn) := [
√
λ1(f?1 )n, . . . ,

√
λL(f?L)n]T .

We refer to kernel PCA as the procedure consisting of the
eigendecomposition of the kernel matrix K and the embed-
ding (7).

Remark 2 (Centering). In (1), (2), (6), and (7), we assume
E[|φ(X)〉] = |0〉. Hence, given sample x1:N , we need to center

the sample kernel matrix K as Kc = (IN − 1N )K(IN − 1N ) ∈
RN×N , where 1N := 1

N 1N1
T
N ∈ RN×N .

Remark 3. In practice, any choice of symmetric kernel
function k can be deployed in kernel PCA. Note, however,
that the feature space formulation and PCA interpretation via
Proposition 1 remain valid if and only if the kernel is in the
form k(x, t) = 〈φ(x)|φ(t)〉 for some inner product space F
and function φ : X → F . Mercer’s theorem [12] establishes
positive definiteness of a kernel as an equivalent condition for
the existence of such a mapping.

B. Laplacian eigenmaps

Laplacian eigenmaps [1] is one of the most popular embed-
ding algorithm, which can be justified as an approximation
of the Laplacian–Beltrami operator or a relaxed solution to
the graph min-cut problem [20]. Here, we introduce Laplacian
eigenmaps as a special instance of kernel PCA. Given a base
symmetric kernel function k, we first define the kernelized
density pk(x) :=

∫
k(x, t)p(t) dt and define a new kernel

function as
kp(x, t) :=

k(x, t)√
pk(x)pk(t)

.

The (kernelized) Laplacian eigenmaps with the base kernel k
is characterized by the population function space optimization
problem (2) of kernel PCA with the kernel kp which is
the function space optimization problem (6) of kernel PCA
with the kernel kp(x, t). Let f?1 , . . . , f

?
L denote the top-L

orthonormal eigenfunctions of the operator Kp. Then, the
Laplacian eigenmaps of a point x is defined as the evaluations
of the eigenfunctions:

ψLE(x) := [f?1 (x), . . . , f?L(x)]T . (8)

As in kernel PCA, given samples x1:N , we perform eigen-
decomposition of the sample kernel matrix Kp defined as

(Kp)ij :=
k(xi,xj)√
p̂k(xi)p̂k(xj)

,

where p̂k(x) := 1
N

∑N
i=1 k(x,xi) denotes the empirical

estimate of the kernelized density pk(x). The embedding by
Laplacian eigenmaps of a sample point xn is then

ψ̂LE(xn) := [(f?1 )n, . . . , (f
?
L)n]T .

Remark 4. Despite the apparent mathematical equivalence,
kernel PCA embedding with the kernel kp may differ from
Laplacian eigenmaps embedding significantly due to centering
in kernel PCA (see Remark 2) and the different definitions of
embeddings (see (5) and (8)).

Remark 5. Laplacian eigenmaps may also use the k-th
neighborhood adjacency matrix instead of kernel-based weight
matrix given samples—however, it does not fit to the current
population optimization framework, and thus studying this
version is beyond the scope of the paper.

Remark 6. Eigendecomposition of Kp is approximately equiv-
alent to the that of the symmetric normalized graph Laplacian,
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which is typically used in spectral embedding. Define a
weight matrix W ∈ RN×N as (W)ij = (1 − δij)k(xi,xj)
and define a degree matrix D as the diagonal matrix with
entry (D)ii =

∑N
j=1(W)ij . The symmetric normalized graph

Laplacian is then defined as Lsym := D−1/2WD−1/2. Since the
difference

Kp − Lsym =
1

N
diag

(k(x1,x1)

p̂k(x1)
, . . . ,

k(xN ,xN )

p̂k(xN )

)
vanishes in the operator norm as N →∞, eigendecomposition
of Kp becomes equivalent to that of Lsym in the sample limit.

III. KERNEL EMBEDDING WITHOUT EIGENDECOMPOSITION

A. A new density-regularized kernel

So far, we reviewed the two important kernel-based em-
bedding frameworks, kernel PCA and Laplacian eigenmaps:
Laplacian eigenmaps fits into the framework of kernel PCA
with a specific form of density-regularized kernel kp; see
Table I. The population problems cannot be solved directly,
but given sample, we can approximately solve them via
eigendecomposition of a matrix of possibly large size.

In this section, motivated by the form of the kernel kp of
Laplacian eigenmaps, we introduce a new kernel function

kp(x, t) :=
k(x, t)√
p(x)p(t)

(9)

and propose the population function space optimization prob-
lem (2) of kernel PCA with kp, that is,

maximize
f`∈L2

p(X )

L∑
`=1

〈f`,Kpf`〉p

subject to 〈f`, f`′〉p = δ``′

(10)

as a new criterion for kernel embedding. Compared to the
kernel kp of Laplacian eigenmaps, the base kernel function k
is now regularized by the true underlying density p instead of
the kernelized density pk.

With the new kernel kp, we can reshape the population
optimization problem (10) into a much simpler form. For a
weighting function w : X → R+ whose support subsumes the
support of p, we define the density-scaled function

g`(x) :=

√
p(x)

w(x)
f`(x). (11)

Note that if f` ∈ L2
p(X ), then g` ∈ L2

w(X ). If we define
kw(x, t) := k(x, t)/

√
w(x)w(t), we have

〈f`,Kpf`〉p = 〈g`,Kwg`〉w and 〈f`, f`′〉p = 〈g`, g`′〉w,

which imply that the new problem (10) can be recast as

maximize
g`∈L2

w(X )

L∑
`=1

〈g`,Kwg`〉w

subject to 〈g`, g`′〉w = δ``′ .

(12)

We remark that (12) solely depends on the choice of kernel k
and the weighting function w. Provided that Kw is compact,

the solution of this optimization problem is characterized by the
top-L eigenfunctions g?1 , . . . , g

?
L of the operator Kw. Somewhat

surprisingly, for a few special cases, the eigenexpansion of
Kw is given in an analytical form; see Section IV. The
eigenfunctions of Kp are then given as the functions f?1 , . . . , f

?
L,

where f?` (x) :=
√
w(x)/p(x)g?` (x). Provided that the density

p(x) can be evaluated, the L-dimensional embedding of a
query point x is

ψKE(x) :=

√
w(x)

p(x)
[g?1(x), . . . , g?L(x)]T . (13)

B. A new sample based kernel embedding

Provided that spectral decomposition of Kw is known for a
choice of k and w, the only unknown in the embedding (13)
is the density p. Hence, given sample x1:N , we only need to
estimate the density, without any spectral decomposition of a
matrix. This yields the following kernel embedding algorithm.

Algorithm 1 Kernel embedding without spectral decomposition
Input a base kernel k, a weighting function w, a density

estimator p̂(·), sample {xn}Nn=1, a target dimension L ∈ N.
1: Find the top-L orthonormal eigenfunctions g?1 , . . . , g

?
L of

the integral operator Kw : L2
w(X )→ L2

w(X ).
2: Given a query point x ∈ X , output the L-dimensional

embedding of x as

ψ̂KE(x) :=

√
w(x)

p̂(x)
[g?1(x), . . . , g?L(x)]T .

IV. DOT-PRODUCT KERNELS OVER HYPERSPHERE

In this section, we focus on a special class of kernel functions
of the form of kw(x, t) = f(xT t) for some function f : R→
R, which are called dot-product kernels. This class contains
many interesting kernels including homogeneous polynomial
f(u) = up (p > 0), inhomogeneous polynomial f(u) = (1 +
u)p (p > 0), Vovk’s real polynomial f(u) = (1− up)/(1− u)
(p > 0), Vovk’s infnite polynomial f(u) = 1/(1 − u), and
hyperbolic tangent f(u) = tanh(a+ u) (a ∈ R) kernels [21].

Further, we consider a special domain, the unit hypersphere
Sd−1 := {x ∈ Rd : ‖x‖2 = 1} in Rd. On Sd−1, the class of
dot-product kernels include additional popular kernels such as
Gaussian kernels f(u) = e−(1+u)/σ

2

(σ > 0) and arccosine
kernel f(u) = 1− (2/π) cos−1(u). Note that some real-world
data such as images approximately lie on a hypersphere [13, 21]
and dot-product kernels may work best on Sd−1 by nature. The
key property of Sd−1 is that with uniform weighting function w,
the eigensystem of Kw is characterized by spherical harmonics.

Definition 7 (Spherical harmonics). Let ∆ = −
∑d
i=1

∂2

∂x2
i

denote the Laplacian operator on Rd. Let Pn denote the space
of C-valued homogeneous polynomials of degree n in d real
variables. Let Yn(d) denote the subspace of all homogeneous
harmonics of order n, that is, Yn(d) := {p ∈ Pn : ∆p = 0}.
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Kernel PCA Laplacian eigenmaps Proposed

Feature space Function space

Population
maximize

|u`〉∈F

L∑
`=1

〈u` |Cφ |u`〉

subjecto to 〈u` |u`′ 〉 = δ``′

(1)
maximize
f`∈L2

p(X )

L∑
`=1

〈f`,Kf`〉p

subjecto to 〈f`, f`′ 〉p = δ``′

(2) K← Kp K← Kp (10)

Sample
maximize

|u`〉∈F

L∑
`=1

〈u` |Ĉφ |u`〉

subjecto to 〈u` |u`′ 〉 = δ``′

maximize
f`∈RN

L∑
`=1

fT`√
N

K

N

f`√
N

subjecto to
fT`√
N

f`′√
N

= δ``′

(6) K← Kp −

TABLE I
OVERVIEW OF POPULATION AND SAMPLE PROBLEMS OF KERNEL PCA, LAPLACIAN EIGENMAPS, AND THE PROPOSED KERNEL EMBEDDING.

The spherical harmonics of order n and dimension d are
defined as the functions in Yn(d) restricted over Sd−1.

Remark 8. The dimension of the subspace Yn(d) is
N(d, n) := dimYn(d) = 2n+d−2

n

(
n+d−3
n−1

)
for n ≥ 0.

The following elegant theorem, which is often referred to as
the Funk–Hecke formula, shows that spherical harmonics fully
characterize the eigenfunctions of any dot-product kernel over
Sd−1. Let Pm` (t) denote the associated Legendre polynomial
of degree ` and order m for integers 0 ≤ m ≤ `. Let |Sd−1| :=
(2πd/2)/Γ(d/2) denote the surface area of Sd−1.

Theorem 9 (Funk–Hecke [14]). Let f : [−1, 1] → R be a
continuous function. For Yn ∈ Yn(d) for n ≥ 0, we have∫

Sd−1

f(xT t)Yn(t) dSd−1(t) = λnYn(x) ∀x ∈ Sd−1,

where λn = |Sd−2|
∫ 1

−1 f(u)P dn(u)(1− u2)
d−3
2 du.

Corollary 10. Let X = Sd−1 for d ≥ 2 and let w be
the uniform density on Sd−1. For any dot-product kernel of
the form kw(x,y) = f(xTy) for some continuous function
f : [−1, 1] → R, there is an orthonormal basis of Yn(d)
comprised by the eigenfuntions of Kw with eigenvalue λn
defined in Theorem 9.

Remark 11. Minh et al. [13, Theorems 2 and 3] computed the
nonzero eigenvalues of gaussian kernels f(u) = exp(−(1 +
u)/σ2) (σ > 0) and polynomial kernels f(u) = (1 + u)p (p ∈
N) in terms of special hypergeometric functions. In particular,
the eigenvalues (λn)∞n=0 of gaussian kernels are decreasing in
n if σ2 ≥ 2/d, and those of the polynomial kernel of degree
p are always decreasing in n and λn = 0 for n ≥ p+ 1.

Hence, if we choose Gaussian or polynomial kernels, we
only need to evaluate the first L real spherical harmonics
to compute the kernel embedding (13) on X = Sd−1. For
practical implementation, here we present a version of real
orthonormal basis {Y dn,j(x)}N(d,n)

j=1 of spherical harmonics
of order n and dimension d [10, Section 2]. Given a point

x = (x1, . . . , xD) ∈ Sd−1, define a hyperspherical coordinate
system θ = (θ1, . . . , θd−1) ∈ [0, 2π)× [0, π]d−2 as

θ1 :=


cos−1

x2√
x21 + x22

if x1 ≥ 0,

2π − cos−1
x2√
x21 + x22

if x1 < 0,

θi := cos−1
xi+1√

x21 + . . .+ x2i+1

, 2 ≤ i ≤ d− 1.

Here, θ1 and θ2, . . . , θd−1 are called the azimuthal angle and
the polar angles, respectively. For integers |`1| ≤ `2 ≤ . . . ≤
`d−1 = n, we define a canonical spherical harmonics of degree
`d−1 = n and order (`1, . . . , `d−2) as

Y`1,...,`d−1
(θ) :=

1√
2π
ei`1θ1

d−1∏
j=2

jP
`j−1

`j (θj), where

jP
`

`′(θ) :=

√(
`+

j − 1

2

) (`+ `′ + j − 2)!

(`′ − `)!

P
−(`+ j−2

2 )

`′+ j−2
2

(cos θ)

sin
j−2
2 (θ)

for ` ≤ `′ and j ≥ 2. Here, Pµλ (z) denotes the Legendre
functions of the first kind for z ∈ C such that |1 − z| < 2.
Finally, we define a real-valued version, often called the tesseral
harmonics, as

Ỹ`1,`2,...,`d−1
:=


√

2(−1)`1 Im(Y|`1|,`2,...,`d−1
) if `1 < 0,

Y0,`2,...,`d−1
if `1 = 0,√

2(−1)`1 Re(Y|`1|,`2,...,`d−1
) if `1 > 0.

Then, Bn(d) := {Ỹ`1,...,`d−1
: |`1| ≤ `2 ≤ . . . ≤ `d−1 = n}

forms a real orthonormal eigenbasis of Yn(d).
A few remarks on related results are in order.

Remark 12 (Multiplicative dot-product kernels over a torus).
Since Corollary 10 remains valid for d = 2, the eigenfunctions
of any dot-product kernels over S1 are the Fourier basis
{ei`θ/

√
2π}∞`=0 for θ ∈ [0, 2π). Hence, any dot-product kernel

of a multiplicative form such as Gaussian kernels over the
d-dimensional torus Td := S1× · · ·×S1 (with d products) has
the product of 1-dimensional Fourier bases as eigenfunctions.
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This result may be of particular interest for real-world data
naturally lying on the torus such as RNA structure data [6].

Remark 13 (Dot-product kernels over a ball). Smola et al.
[21, Section 6] provided a version of the eigensystem of a dot-
product kernel over the unit ball Bd := {x ∈ Rd : ‖x‖2 ≤ 1}
by the separation of variables trick. Here we present the idea
with a minor correction. Let f : R→ R be an analytic function
such that f(t) =

∑∞
m=0 fmt

m. Plugging in the expansion
of monomial um (u ∈ [−1, 1],m ≥ 0) with respect to the
associated Legendre polynomials (P dn(u))n≥d of dimension d,
we can write

f(xT t) =

∞∑
n=d

κn(‖x‖‖t‖)P dn
( xT t

‖x‖‖t‖

)
,

where we define κn(u) :=
∑∞
m=0 fmcm(d, n)um and

cm(d, n) := 2n+1
2

(n−d)!
(n+d)!

∫ 1

−1 u
mP dn(u) du for n ≥ d. Now, for

each n ≥ d, let (ϕnm ∈ L2
r 7→rd−1([0, 1]))∞m=1 and (ρnm)∞m=1

be the eigensytem of the 1D kernel κn, i.e.,∫ 1

0

κn(rr̃)ϕnm(r̃)r̃d−1 dr̃ = ρnmϕnm(r). (14)

With the addition theorem [14, p. 18] on the expansion
of P dn with (Y dn,j)

N(d,n)
j=1 , it is then easy to check that

{ϕnm(r)Y dn,j(θ) : m ≥ 1, n ≥ d, 1 ≤ j ≤ N(d, n)} forms
an orthonormal eigenbasis of K over Bd with eigenvalues
Sd−1

N(d,n)ρnm of multiplicity N(d, n). We note, in practice, that
the integral equation (14) can be solved by eigendecomposition
of a matrix with approximation of κn with finite terms.

Remark 14 (Gaussian kernels with Gaussian weighting). For
X = Rd, when Kw is a Gaussian kernel with a Gaussian
weighting function w, the eigensystem of Kw is characterized
by Hermite polynomials [7, 16]. Note, however, that since w(x)
is non-uniform being Gaussian, the base kernel k(x, t) =√
w(x)kw(x, t)

√
w(t) becomes a Gaussian kernel with an

additional attenuation term.

V. EXPERIMENTS

To illustrate the applicability of the proposed framework, we
consider the following simple image segmentation procedure.
Suppose that we are given an (color) image Y ∈ [0, 1]H×W×3.
For each pixel Y (i) ∈ R3, we consider the P × P × 3 patch
centered at Y (i), denoted as y(i) ∈ [0, 1]P×P×3 ∼= [0, 1]3P

2

, as
its representation. We apply a kernel embedding algorithm such
as Laplacian eigenmaps or the proposed kernel embedding to
the patches {y(i)}HWi=1 , and apply the k-means algorithm [9, 11]
as in spectral clustering [20]; the resulting labels can be viewed
as a segmentation of the image.

We present a sample image segmentation result with P =
2 in Fig. 1. For kernel PCA and Laplacian eigenmaps, we
used isotropic Gaussian kernels with bandwidth selected as
median of all pairwise Euclidean distances. For the proposed
kernel embedding, we applied the kernel embedding based
on spherical harmonics in Section IV, by mapping the data
onto a unit hypersphere and used the Gaussian kernel density

(a) Raw image (b) PCA (c) Kernel PCA (d) Laplacian eigenmaps (e) Spherical embedding

Fig. 1. An illustrative example with image segmentation.

estimator with the same bandwidth. The number of clusters used
in the k-means algorithm was 8. We remark that the spherical
embedding has orders-of-magnitude lesser time complexity
(∼2s) than the other kernel-based embeddings (∼100s), while
providing a comparable result.

VI. RELATED WORK

Spectral clustering [15, 20, 23] has many versions depending
on the form of graph Laplacian in the procedure, and Laplacian
eigenmaps [1] is equivalent to the spectral embedding used
in the version of spectral clustering by Shi and Malik [20].
Schiebinger et al. [18] analyzed the normalized kernel operator
Kp to establish the performance of spectral clustering.

The mathematical equivalence between Laplacian eigenmaps
and kernel PCA established in Section II is not entirely
new. For example, Ng et al. [15] pointed out a link between
spectral clustering and kernel PCA. More generally, Ham et al.
[8] and Bengio et al. [2] interpreted Laplacian eigenmaps,
multidimensional scaling, Isomap, and locally linear embedding
as specific instantiations of kernel PCA. Note, however, that
they only considered the sample based algorithms not the
underlying population optimization problems, while this paper
crucially relies on the population formulation.

Dot-product kernels have been studied in the context its
regularization property for support vector machines [21] and
their feature functions [13]. For a more detailed account on
spherical harmonics, we refer an interested reader to [5, 14].

VII. CONCLUDING REMARKS

In this paper, we proposed a rather unorthodox perspective
on kernel-based spectral embedding. We introduced a new
criterion for kernel embedding with a new density-regularized
kernel, which results in a kernel embedding algorithm without
spectral decomposition of a matrix. The advantage comes from
the special structure of the kernel kp in (9), which allows the
separation of the density from the eigendecomposition of the
kernel operator.

We emphasize that the proposed algorithm is not proposed
to replace the existing spectral methods; instead, it should
be viewed as an extremely low-cost kernel-based embedding,
which may be particularly advantageous when a dataset is large
and computational resource is limited. A deeper investigation
and more extensive experiments including its variations in
Remarks 12, 13, and 14 will be reported elsewhere.
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