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Channel Capacity and State Estimation for
State-Dependent Gaussian Channels
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Abstract—We formulate a problem of state information transmission
over a state-dependent channel with states known at the transmitter. In
particular, we solve a problem of minimizing the mean-squared channel
state estimation error ^ for a state-dependent additive
Gaussian channel = + + with an independent and iden-
tically distributed (i.i.d.) Gaussian state sequence = ( . . . )
known at the transmitter and an unknown i.i.d. additive Gaussian noise

. We show that a simple technique of direct state amplification (i.e.,
= ), where the transmitter uses its entire power budget to am-

plify the channel state, yields the minimum mean-squared state estimation
error. This same channel can also be used to send additional independent
information at the expense of a higher channel state estimation error. We
characterize the optimal tradeoff between the rate of the independent
information that can be reliably transmitted and the mean-squared state
estimation error . We show that any optimal ( ) tradeoff pair can
be achieved via a simple power-sharing technique, whereby the transmitter
power is appropriately allocated between pure information transmission
and state amplification.

Index Terms—Additive Gaussian noise channels, channels with state in-
formation, joint source–channel coding, state amplification, state estima-
tion.

I. INTRODUCTION

In many communication scenarios, the communicating parties typi-
cally have some knowledge about the environment or the channel over
which the communication takes place. For instance, the transmitter and
the receiver may be able to monitor the interference level in the channel
and only carry out communication when the interference level is low.
A particular area of research in communication with state information
that has attracted a great deal of attention is a study of transmission over
state-dependent channels1 with state information available at the trans-
mitter. This area of research was considered by Shannon [1] in 1958,
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Fig. 1. Pure information transmission over a state-dependent channel with states known at the transmitter.

Fig. 2. State information transmission over a state-dependent channel with states known at the transmitter.

Fig. 3. State information transmission over a state-dependent additive Gaussian channel with states known at the transmitter.

Kusnetsov and Tsybakov [2], Gel’fand and Pinsker [3], and Heegard
and El Gamal [4].
Consider a state-dependent channel with state information available

only at the sender, as shown Fig. 1. The transmitter wishes to send
pure information W 2 f1; 2; . . . ; 2nRg, independent of the channel
state, in n uses of a discrete memoryless state-dependent channel
p(yjx; s) with state Sn = (S1; S2; . . . ; Sn), Si independent and
identically distributed (i.i.d.) � p(s), known at the transmitter. Based
on pure informationW and channel state Sn, the transmitter chooses
Xn(W;Sn) and sends it across the channel. Upon receiving Y n,
the receiver guesses Ŵ (Y n) 2 f1; 2; . . . ; 2nRg. Applications of
this model include multimedia information hiding [5], digital water-
marking [6], [7], multiple-antenna broadcast, and data storage over
memory with defects [2], [4], etc.
Most of the existing literature has focused on determining the

channel capacity or devising practical capacity-achieving coding
techniques. As shown by Gel’fand and Pinsker [3], and independently
by Heegard and El Gamal [4], the capacity of a discrete memoryless
state-dependent channel is given by

C = max
p(x;ujs)

[I(U ; Y )� I(U ;S)]

where U is an auxiliary random variable with finite cardinality. In cel-
ebrated “writing on dirty paper” [8], Costa considered a memoryless
Gaussian state-dependent channel Y n = Xn + Sn +Zn and showed
that the capacity of the channel is not affected by the presence of the
additive state noise Sn as long as the transmitter has full prior knowl-
edge of it. This result has been extended to various setups in [7], [9],
[10].
In certain communication scenarios, however, rather than communi-

cating pure informationW across the channel, the transmitter may in-
stead wish to help reveal the channel stateSn to the receiver. Themodel
of this communication scenario is shown in Fig. 2. In this setup, the
transmitter wishes to help the receiver estimate the channel state Sn =
(S1; S2; . . . ; Sn) of a state-dependent channel p(yjx; s). Based on the

channel state Sn, the transmitter transmits Xn(Sn). Upon observing
the channel output Y n, the receiver forms an estimate Ŝn(Y n) 2 Ŝn

of the channel state. The channel state estimation error is given by

Ed(Sn; Ŝn) =
1

n

n

i=1

Ed(Si; Ŝi)

where d : S � Ŝ ! is a distortion measure between the channel S
and its reconstruction Ŝ.
An example of the above communication scenario is an analog-dig-

ital hybrid radio system [11]. Here, digital refinement information is
overlayed on top of the existing legacy analog transmission in order
to help improve the detection and reconstruction of the original analog
signal, which must be kept intact due to backward compatibility re-
quirements. In this example, the existing analog transmission can be
viewed as the channel state that the transmitter has access to and wishes
to help reveal to the receiver. A key observation here is that the presence
of the analog signal affects the channel over which the digital informa-
tion is transmitted. At the same time, the digital transmission may itself
interfere with the existing analog transmission, thereby degrading the
quality of the original analog signal—the very thing that the digital in-
formation is designed to help improve.
In this correspondence, we study this problem of state information

transmission over a state-dependent additive Gaussian channel as
shown in Fig. 3. In this setup, the transmitter has access to the channel
state Sn = (S1; S2; . . . ; Sn), Si i.i.d. � N(0; Q), and wishes to
help reveal it to the receiver. Based on the channel state Sn, the
transmitter transmits Xn(Sn), subject to an average power constraint
P . Upon receiving the output Y n = Xn(Sn) + Sn + Zn, where
Zi � N(0;N); i = 1; 2; . . ., is unknown i.i.d. additive Gaussian
noise sequence, the receiver forms an estimate Ŝn(Y n). The goal is to
minimize the mean-squared state estimation error EkSn � Ŝnk2.
As motivation, consider the following problem of signal enhance-

ment in the presence of noise. A Gaussian signal Sn corrupted
by an i.i.d. additive Gaussian noise Zn is to be reconstructed
by a third party based on the (correlated) observation sequence
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Fig. 4. Pure information and state information transmission over a state-dependent additive Gaussian channel with states known at the transmitter.

Y n = (Y1; Y2; . . . ; Yn). An informed party who has a precise knowl-
edge of the signal Sn attempts to help enhance the reconstruction
of the signal Sn by sending a signal Xn(Sn), subject to a power
constraint. An estimate Ŝn(Y n) of the signal Sn is formed, based on
the observation Y n = Xn(Sn) + Sn + Zn. Natural questions are i)
what is the optimal enhancing strategy that the informed party should
employ? and ii) what is the corresponding minimum mean-squared
estimation error? By recognizing the signal Sn as the channel state, we
immediately see that this problem can be analyzed using the channel
model shown in Fig. 3.
We show that a simple technique of direct state amplification is the

optimal state information transmission technique for this setup. In par-
ticular, the transmitter sends

X
n =

P

Q
S
n

which helps coherently amplify the presence of the state Sn in the
channel. The receiver simply forms an estimate

Ŝ
n =

Q+
p
PQ

(
p
Q+

p
P )2 +N

Y
n
:

The corresponding mean-squared state estimation error is given by

D = Q
N

p
Q+

p
P

2

+N

:

This same channel can also be used to send additional indepen-
dent information. This is, however, accomplished at the expense
of a higher channel state estimation error. We wish to characterize
the tradeoff between the amount of independent information that
can be reliably transmitted and the accuracy at which the receiver
can estimate the channel state. We capture this scenario using the
model shown in Fig. 4. In this setup, the sender wishes to send a
pure information W 2 f1; 2; . . . ; 2nRg as well as help reveal the
channel state to the receiver. Based on the pure information W

and the state Sn, the transmitter chooses Xn(W;Sn), subject to
power constraint P , and transmits it over the channel. From the
channel output Y n = Xn(W;Sn) + Sn + Zn, the receiver decodes
Ŵ (Y n) 2 f1; 2; . . . ; 2nRg and forms an estimate Ŝn(Y n) of the
channel state Sn, according to a mean-squared error criterion.
Naturally, there is a conflict between sending pure information and

revealing the channel state. Pure information transmission usually cor-
rupts (or may even obliterate) the channel state, making it more difficult
for the receiver to ascertain the channel state. Similarly, state informa-
tion transmission takes away resources that may be used in transmit-
ting pure information. This inherent tradeoff between pure informa-
tion transmission and state information transmission is what we wish
to characterize. In particular, we will characterize the optimal tradeoff
between the amount of pure informationR that can be reliably commu-
nicated and the resulting mean-squared channel state estimation error
D. We show that an optimal (R;D) tradeoff pair can be achieved via

a power-sharing technique, whereby the transmitter power is appropri-
ately allocated between pure information transmission and state ampli-
fication.
This correspondence is organized as follows. In Section II, we estab-

lish the minimum mean-squared state estimation error corresponding
to estimating the channel state of a state-dependent additive Gaussian
channel shown in Fig. 3. In Section III, we characterize the optimal
tradeoff between the pure information rate R that can be reliably com-
municated and the corresponding mean-squared state estimation error
D for the setup shown in Fig. 4. We then provide a numerical example
in Section IV and conclude the correspondence in Section V.

II. MINIMUM MEAN-SQUARED STATE ESTIMATION ERROR

In this section, we establish the minimum mean-squared state esti-
mation error corresponding to estimating the channel state of a state-de-
pendent additive Gaussian channel Y n = Xn + Sn + Zn, where
Sn � N(0; QI) is the white Gaussian state, Zn � N(0;NI) is the
additive white Gaussian noise, and Sn and Zn are independent (see
Fig. 3). The transmitter has full prior knowledge of the state sequence
Sn. Based on the channel state Sn, the transmitter chooses Xn(Sn),
subject to a power constraint n

i=1
EX2

i � nP , and sends it. Upon
receiving the channel output Y n, the receiver forms an estimate Ŝn of
the channel state. More formally, an n-block code consists of an en-
coder map

X
n : n ! n

yielding codewords Xn(Sn) that satisfy a power constraint
n

i=1

EX
2

i � nP

and a decoder map

Ŝ
n : n ! n

for estimating the channel state. The mean-squared state estimation
error is given by

1

n
EkSn � Ŝ

nk2 = 1

n

n

i=1

E(Si � Ŝi)
2
:

We say an estimation error D is achievable for a mean-squared error
distortion if there exists a sequence of codes f(Xn(�); Ŝn(�))g1n=1
such that

lim
n!1

1

n
EkSn � Ŝ

nk2 � D:

Theorem 1: For the state-dependent additive Gaussian channel
Y n=Xn(Sn)+Sn+Zn, the infimum of achievable estimation errors
is given by

D
� = Q

N
p
Q+

p
P

2

+N

: (1)
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Fig. 5. Relaxed channel model for state information transmission.

Moreover, there exists a sequence of codes (Xn(�); Ŝn(�)) that attains
D� for any finite block length n.

A. Proof of Achievability

Based on the channel state Sn, the transmitter sendsXn = P

Q
Sn,

i.e., a scaled version of the channel state Sn. Clearly, the power con-
straint is satisfied. Upon receiving the channel output

Y
n = X

n(Sn) + S
n + Z

n = 1 +
P

Q
S
n + Z

n

the receiver forms an estimate

Ŝ
n =

Q+
p
PQ

(
p
Q+

p
P )2 +N

Y
n

(i.e., the minimum mean-squared error estimate of the state Sn given
the outputY n). The correspondingmean-squared state estimation error
is given by

D =
1

n
EkSn � Ŝ

nk2

=EjS1 � Ŝ1j2

=Q
N

p
Q+

p
P

2

+N

:

This result does not depend on the block length n, which proves the
last statement of the theorem.

Incidentally, we can strengthen the expected power constraint
E

i
X2
i � nP on the input sequence Xn to a stronger constraint

i
X2
i � nP by the strong law of large numbers and the continuity

of the estimation error in the power constraint P , at the expense of
losing the finite-block achievability.

B. Proof of the Converse

In proving the converse of Theorem 1, we show that given any
sequence of codes f(Xn(�); Ŝn(�))g, the associated distortion
Dn = 1

n
EkSn � Ŝnk2 satisfies

Dn � Q
N

p
Q+

p
P

2

+N

; for all n:

This can be easily proved by the following argument. Consider the
problem of transmitting a source over a memoryless channel as de-
picted in Fig. 5. Here, the transmitter has access to two inputsXn and
~Sn with average power constraints

n

i=1

X
2
i � nP and

n

i=1

~S2
i � nQ

respectively. The goal is to communicate the memoryless Gaussian
source Sn � N(0; QI) over the channel Y n = Xn+ ~Sn+Zn where
the additive Gaussian noiseZi i.i.d.� N(0;N); i = 1; 2; . . . ; n, with
minimum possible distortion. This setup clearly subsumes the orig-
inal problem under our consideration as a special case ~Si = Si; i =
1; 2; . . .. Now we use the standard source-channel separation theorem

[12] for this relaxed problem. Recall that the capacity of the channel in
Fig. 5 is

C =
1

2
log

(
p
P +

p
Q)2 +N

N

which is achieved by transmitting signals Xn and ~Sn coherently. On
the other hand, from rate distortion theory [12, Sec. 13.3.2], the mean-
squared error for the Gaussian state sequence Sn can be reduced by a
factor of 22C . Hence, for the relaxed problem, the resulting distortion
cannot be smaller than

Q2�2C = Q
N

(
p
P +

p
Q)2 +N

:

This is clearly a lower bound on the distortion for the original problem,
whence we have the desired proof of the converse.
We present another proof, which is more algebraic, but will become

useful for the general tradeoff case in the subsequent section. We first
recognize

1

2
log

Q

Dn

� 1

n
I(Sn;Y n) (2)

with equality for i.i.d. jointly Gaussian random variables
(Yi; Xi; Si; Zi). Indeed

1

n
I(Sn;Y n)

=
1

n
(h(Sn)� h(SnjY n))

(a)
=

1

n
(h(Sn)� h(Sn � Ŝ

n(Y n)jY n))

(b)

� 1

n
(h(Sn)� h(Sn � Ŝ

n))

(c)
=

1

n

n

i=1

h(Si)� h(Sn � Ŝ
n)

� 1

n

n

i=1

(h(Si)� h(Si � Ŝi))

=
1

n

n

i=1

1

2
log(2�eQ)� h(Si � Ŝi)

(d)

� 1

n

n

i=1

1

2
log(2�eQ)� 1

2
log 2�eE(Si � Ŝi)

2

(e)

� 1

2
log(2�eQ)� 1

2
log 2�e

1

n

n

i=1

E(Si � Ŝi)
2

=
1

2
log(2�eQ)� 1

2
log 2�e

1

n
EkSn � Ŝ

nk2

=
1

2
log

Q
1
n
EkSn � Ŝnk2

=
1

2
log

Q

Dn

where
(a) follows from the fact that Ŝn(Y n) is a function of Y n;
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Fig. 6. A state amplification technique.

(b) since conditioning reduces entropy;
(c) from the i.i.d. assumption of the state Sn sequence;
(d) since the Gaussian distribution maximizes the entropy for a

given variance; and
(e) follows from Jensen’s inequality.
Now we continue the proof of the converse by writing a chain of

inequalities

1

2
log

Q

Dn

� 1

n
I(Sn;Y n)

=
1

n
(h(Y n)� h(Y njSn))

(a)
=

1

n
(h(Y n)� h(Y njXn

; S
n))

� 1

n

n

i=1

h(Yi)� h(YijY i�1;Xn
; S

n)

(b)
=

1

n

n

i=1

(h(Yi)� h(YijXi; Si))

=
1

n

n

i=1

(h(Yi)� h(Zi))

(c)

� 1

n

n

i=1

1

2
log

EY 2
i

N

(d)

� 1

n

n

i=1

1

2
log

p
Pi +

p
Q

2
+N

N

(e)

� 1

2
log

1
n

n

i=1 Pi +
p
Q

2

+N

N

(f)

� 1

2
log

p
P +

p
Q

2

+N

N

where
(a) follows from the fact that Xn depends only on Sn;
(b) since the channel is memoryless;
(c) since the Gaussian distribution maximizes the entropy for a

given variance;
(d) since EY 2

i � (
p
Pi +

p
Q)2 +N with Pi = EX2

i ;
(e) from Jensen’s inequality; and
(f) follows from the imposed power constraint.
The inequality

1

2
log

Q

Dn

� 1

2
log

p
P +

p
Q

2

+N

N
; for all n

implies that

Dn � Q
N

p
Q+

p
P

2

+N

; for all n

which completes the proof of the converse.

C. Discussion

To minimize the mean-squared state estimation error, one might be
tempted to use the channel in such a way that the pure information rate
is maximized (i.e., is made equal to the channel capacity) and then use
this pure information to describe the channel state. This technique is,
in fact, suboptimal. The channel capacity is C = 1

2
log 1 + P

N
as

shown by Costa [8]. When using the channel in such a way that the
pure information rate is maximized, the initial state estimation error
from directly observing the channel output2 is given by

var(SjY ) = Q
P +N

Q+ P +N
:

This is a direct consequence ofXn being statistically uncorrelated with
the channel state Sn as observed by Costa [8]. From rate distortion
theory, the uncertainty can be further reduced by a factor of 22C . The
resulting mean-squared state estimation error is then given by

Q
P +N

Q+ P +N
2�2C = Q

P +N

Q+ P +N

N

P +N
= Q

N

Q+ P +N

which is greater than Q N

(
p
Q+
p
P ) +N

, the minimized mean-squared

error by the state amplification method.
Instead, the transmitter should use all its power to directly amplify

the channel state Sn (i.e., by sending Xn = P

Q
Sn). The receiver

simply forms the estimate as

Ŝ
n =

Q+
p
PQ

p
Q+

p
P

2

+N

Y
n
:

The resulting mean-squared state estimation error is given by
Q N

(
p
Q+
p
P ) +N

. There is no codebook involved in this scheme.

Furthermore, the encoding/decoding scheme is straightforward, as
shown in Fig. 6.
The optimality of this simple scaling technique is somewhat remi-

niscent of the technique used in transmitting a Gaussian source over an
additive white Gaussian noise channel. More specifically, a Gaussian
source Sn � N(0; Q) is to be conveyed (subject to a mean-squared
error criterion) over an additive white Gaussian noise channel Y n =
Xn + Zn, where Zn � N(0;N) with an input power constraint P .
One optimal technique is for the transmitter to first quantize the source
into n

2
log 1 + P

N
bit description, then send the description over the

channel. The resulting mean-squared reconstruction error is given by
Q P

P+N
.

Alternatively, as established by Gallager [14], this source can be
transmitted uncoded without loss of optimality. Indeed, for each source

symbol Si at time i, the transmitter sends Xi = P

Q
Si, which is

merely a scaled version of the source symbol (to meet the transmitter

power requirement). The receiver simply reconstructs Ŝi =
p
PQ

P+N
Yi.

2One may hope to further reduce the state estimation error by using the de-
coded message ( ^ ) in addition to the channel output . However, it is
easy to check that, under the capacity-achieving distribution, and are con-
ditionally independent given , thus, var( ) = var( ) and it
does not help to use the decoded message. See [13] for comparison.
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The resulting distortion is also given by Q P

P+N
. This uncoded tech-

nique is optimal and can be easily implemented in practice.

III. OPTIMAL (R;D) REGION

In this section, we consider a scenario where, in addition to as-
sisting the receiver in estimating the channel state, the transmitter
also wishes to send additional pure information, independent of the
state, over the channel Y n =Xn+Sn+Zn, where Sn �N(0; QI)
is the white Gaussian state, Zn � N(0;NI) is the additive white
Gaussian noise, and Sn and Zn are independent (see Fig. 4). The
transmitter has full prior knowledge of the state sequence Sn. Based
on the message index W 2 f1; 2; . . . ; 2nRg and the channel state
Sn, the transmitter chooses Xn(W;Sn), subject to power con-
straint P , and transmits it over the channel. The receiver receives
Y n = Xn(W;Sn) + Sn +Zn, decodes Ŵ (Y n) 2 f1; 2; . . . ; 2nRg,
and forms an estimate Ŝn(Y n) 2 n of the channel state Sn. More
formally, a (2nR; n) code consists of an encoder map

X
n : f1; 2; . . . ; 2nRg � n ! n

yielding codewords (Xn(1; Sn);Xn(2; Sn); . . . ; Xn(2nR; Sn)) that
satisfy the expected power constraint

E

n

i=1

X
2
i (W;S

n) � nP; W = 1; 2; . . . ; 2nR

and decoder maps

Ŵ : n ! f1; 2; . . . ; 2nRg
Ŝ
n : n ! n

for pure information decoding and state estimation.
The probability of a message decoding error and the mean-squared

state estimation error are given by

P
(n)
e =

1

2nR

2

i=1

Pr(Ŵ (Y n) 6= ijW = i)

and

Ed(Sn; Ŝn) =
1

n
EkSn � Ŝ

n(Y n)k2

respectively. An (R;D) pair is said to be achievable if there exists a se-
quence of (2nR; n) codes such that the probability of errror P (n)

e ! 0
and the mean-squared state estimation errorEd(Sn; Ŝn) � D for each
block length n. We wish to characterize the optimal (R;D) tradeoff re-
gion, which is given by the closure of the convex hull of all achievable
(R;D) pairs.
The reader is advised to compare this (R;D) tradeoff with the one in

classical rate distortion theory. The latter characterizes the description
rate of a given source to meet a distortion constraint, while the former
characterizes the tradeoff between the rate of reliable pure information
transmission and the distortion of channel state estimation at the same
receiver of the channel. In a sense, this is a tradeoff problem of funda-
mental quantities in information theory and estimation theory.

Theorem 2: For the state-dependent additive Gaussian channel
Y n = Xn(W;Sn) + Sn + Zn, the optimal (R;D) tradeoff region is
given by the closure of the convex hull of all (R;D) pairs satisfying

R � 1

2
log 1 +

P

N
(3)

D �Q
(P +N)

p
Q+ (1� )P

2

+ P +N

(4)

for some 0 �  � 1.

In the following, we will focus on the boundary points of the optimal
(R;D) tradeoff region given by

(R;D)=
1

2
log 1+

P

N
;Q

(P +N)
p
Q+ (1� )P

2

+P+N
;

0 �  � 1: (5)

A. Proof of Achievability

The achievability proof of Theorem 2 is based on power sharing,
whereby the transmitter powerP is allocated between pure information
transmission and state amplification. The scheme works as follows. Fix
a power allocation parameter 0 �  � 1 and divide the transmitter
power into P and (1� )P . Based on the state Sn, generate a state-
amplification signal

X
n
s =

(1� )P

Q
S
n

(which consumes power (1�)P ). This signalXn
s will be used to di-

rectly amplify the existing state Sn, thereby effectively changing the
power of the state from Q to (

p
Q+ (1�)P )2. To send pure in-

formation W 2 f1; 2; . . . ; 2nRg, apply the “writing on dirty paper”
coding technique used by Costa [8], with the state Si + Xs;i i.i.d.

�N 0;
p
Q+ (1�)P

2

, unknown noise Zi i.i.d. � N(0;N);

and the transmitter power P . Call the signal carrying pure informa-
tionXn

w . Then sendX
n
w+Xn

s over the channel. The received signal is

Y
n = X

n
w+Xn

s +Sn+Zn = X
n
w+ 1 +

(1� )P

Q
S
n+Zn

:

Using this technique, pure information can be transmitted at the rate
R = 1

2
log 1 + P

N
bits, as shown in [8]. The receiver forms an es-

timate

Ŝ
n(Y n) =

Q+ (1� )PQ
p
Q+ (1� )P

2

+ P +N

Y
n
:

The resulting mean-squared channel state estimation error D is given
by

Q
(P +N)

p
Q+ (1� )P

2

+ P +N

:

By varying the power allocation parameter 0 �  � 1, we are able
to trade off between the state estimation error and the amount of pure
information that can be reliably transmitted.

Note that we can achieve the same (R;D) tradeoff region under the
stronger power constraint

i
X2
i � nP . As before, this can be easily

shown by the strong law of large numbers and the continuity of (5)
in P .

B. Proof of Converse

In proving the converse of Theorem 2, we show that given any se-
quence of (2nR; n) codes with the probability of error P (n)

e ! 0 and
the asymptotic estimation error

D = lim inf
n!1

1

n
EkSn � Ŝ

nk2

the (R;D) pair satisfies

R � 1

2
log 1 +

P

N

D �Q
(P +N)

p
Q+ (1� )P

2

+ P +N
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for some 0 �  � 1. To this end, define

R() =
1

2
log 1 +

P

N

D() =Q
(P +N)

p
Q+ (1� )P

2

+ P +N

:

Note that (R(); D()) pairs, 0 �  � 1, are the Pareto optimal
tradeoff pairs of the (R;D) region stated in Theorem 2. Furthermore,
R() and D() are monotonic and strictly concave functions in 0 �
 � 1. Hence, we can equivalently establish the converse of Theorem 2
by showing that given any sequence of (2nR; n) codes with P (n)

e ! 0
and

lim inf
n!1

1

n
EkSn � Ŝ

nk2 � D

R and D satisfy, for all � � 0

R+ �
1

2
log

Q

D
� R(�) + �

1

2
log

Q

D(�)

where 0 � � � 1 is chosen to maximizeR()+ �

2
log Q

D()
for a

given value of �.
Recall from (2) in Section II that

1

2
log

Q

Dn

� 1

n
I(Sn;Y n); where Dn =

1

n
EkSn � Ŝ

nk2:

Thus, for 0 � � � 1, we can bound the weighted sumR+ �

2
log Q

D

as shown in (6) at the bottom of the page, where
(a) follows from the fact that W is uniform over

f1; 2; . . . ; 2nRg;
(b) sinceW and Sn are independent;
(c) from Fano’s inequality with �n ! 0 as n ! 1;
(d) from the data processing inequality;
(e) from the chain rule and the fact that conditioning reduces

entropy; and
(f) since the channel is a discrete memoryless channel.

The inequality (g) needs some explanation. As is proved in Lemma 1
in the Appendix , for each i and for any 0 � � � 1, we have

�h(Yi) + (1� �)h(YijSi)
� �

2
log 2�eEY 2

i +
1� �

2
log 2�e EY

2
i � (ESiYi)

2

ES2
i

(7)

with equality when Xi is jointly Gaussian with Si and Zi. Now we
represent

Xi = Vi + (1� i)
Pi

Q
Si

where Vi � N(0; Pi) is independent of Si, with 0 � i � 1 chosen
such that the resulting covariance of (Yi;Xi; Si; Zi) is the same as

R+
�

2
log

Q

Dn

�R+
�

n
I(Sn;Y n)

=� R+
1

n
I(Sn;Y n) + (1� �)R

(a)
=
�

n
(H(W ) + I(Sn;Y n)) +

(1� �)

n
H(W )

(b)
=
�

n
(H(W jSn) + I(Sn;Y n)) +

(1� �)

n
H(W jSn)

(c)

� �

n
(I(W ;Y njSn) + I(Sn;Y n)) +

(1� �)

n
I(W ; Y njSn) + �n

(d)

� �

n
(I(Xn;Y njSn) + I(Sn;Y n)) +

(1� �)

n
I(Xn;Y njSn) + �n

=
�

n
I(Xn

; S
n;Y n) +

(1� �)

n
I(Xn;Y njSn) + �n

=
�

n
(h(Y n)� h(Y njXn

; S
n)) +

(1� �)

n
(h(Y njSn)� h(Y njXn

; S
n)) + �n

(e)

� �

n

n

i=1

(h(Yi)� h(YijY i�1
; X

n
; S

n))

+
(1� �)

n

n

i=1

(h(YijSi)� h(YijY i�1
; X

n
; S

n)) + �n

(f)
=
�

n

n

i=1

(h(Yi)� h(YijXi; Si))

+
(1� �)

n

n

i=1

(h(YijSi)� h(YijXi; Si)) + �n

=
�

n

n

i=1

(h(Yi)� h(Zi)) +
(1� �)

n

n

i=1

(h(YijSi)� h(Zi)) + �n

=
1

n

n

i=1

(�h(Yi) + (1� �)h(YijSi)� h(Zi)) + �n

(g)

� 1

n

n

i=1

1

2
log

p
Q+ (1� i)Pi

2

+ iPi +N

�

(iPi +N)1��

N
+ �n (6)
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that induced by the code. Evaluating the right-hand side of (7) under
the jointly Gaussian (Yi; Xi; Si; Zi), we get

�h(Yi) + (1� �)h(YijSi)
� �

2
log 2�e Q+ (1� i)Pi

2

+ iPi +N

+
1� �

2
log (2�e((iPi +N)

from which the inequality (g) follows immediately.
We continue our chain of inequality by choosing 0��1 such that

P =( n

i=1 iPi)=n. Observe that (1�)P = ( n

i=1(1�i)Pi)=n:
Now we have (8) at the bottom of the page, where
(h) follows from Jensen’s inequality and the power constraint

requirement;
(i) since � is chosen to maximize the expression (8) for a fixed

�; and
(j) follows from the definitions of R() and D().
Since the expression in (8) is a strictly concave function in , and

we are maximizing over 0 �  � 1, there is a unique optimal � for a
given �. In short, for all 0 � � � 1

R+ �
1

2
log

Q

Dn

� R(�) + �
1

2
log

Q

D(�)
+ �n (9)

where 0 � � � 1 is chosen to maximize the expression (8) for a given
0 � � � 1. Furthermore, it is straightforward to see that for all � � 1,
 = 0 maximizes the expression in (8).
As a result, in the limit as �n ! 0 and

lim inf
n!1

Dn = lim inf
n!1

1

n
EkSn � Ŝnk2 = D

we have for all � � 0

R+
�

2
log

Q

D
= lim sup

n!1

R+ �
1

2
log

Q

Dn

� lim sup
n!1

R(�)+
�

2
log

Q

D(�)
+�n

=R(�) +
�

2
log

Q

D(�)
:

This establishes the converse of Theorem 2.

Note that when � = 0, the above argument gives a direct proof for
the converse part of the coding theorem in Costa’s “writing on dirty
paper” [8].

C. Discussion

As given in Theorem 2, the optimal (R;D) tradeoff pairs are given
by

(R;D)=
1

2
log 1+

P

N
;Q

(P +N)
p
Q+ (1� )P

2

+P+N
;

0 �  � 1:

By varying the power allocation parameter 0 �  � 1, we can trade off
between the pure information rate R and the mean-squared estimation
error D. In particular,  = 0 corresponds to the case where the trans-
mitter uses the entire power budget to amplify the channel state, leaving
no resources for pure information transmission. The corresponding op-
timal (R;D) tradeoff pair is given by

(R;D) = 0; Q
N

p
Q+

p
P

2

+N
:

On the other hand,  = 1 corresponds to the case where the trans-
mitter wishes to send only pure information while ignoring the state
estimation error. The optimal (R;D) tradeoff pair is given by

(R;D) =
1

2
log 1 +

P

N
;Q

P +N

Q+ P +N
:

The resultingmean-squared state estimation errorD=Q P+N
Q+P+N

�Q,
which suggests that the receiver is still able to learn something about the
channel state on its own even though the transmitter does not attempt
to help convey any state information.
There is an interesting relationship between the transmitted signal

Xn and the state Sn associated with each point on the optimal tradeoff
curve. In particular, a different point on the curve reflects a different

R+
�

2
log

Q

Dn

� 1

n

n

i=1

1

2
log

p
Q+ (1� i)Pi

2

+ iPi +N
�

(iPi +N)1��

N
+ �n

=
1

n

n

i=1

1

2
log

p
Q+ (1� i)Pi

2

+ iPi +N

N

�

+
1

n

n

i=1

1

2
log

iPi +N

N

1��

+ �n

(h)

� 1

2
log

p
Q+ (1� )P

2

+ P +N

N

�

+
1

2
log

P +N

N

1��

+ �n

=
1

2
log 1 +

P

N
+
�

2
log

p
Q+ (1� )P

2

+ P +N

(P +N)
+ �n

(i)

� 1

2
log 1 +

�P

N
+
�

2
log

p
Q+ (1� �)P

2

+ �P +N

(�P +N)
+ �n

(j)
=R(�) + �

1

2
log

Q

D(�)
+ �n (8)
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Fig. 7. A diagram relating the transmitted signal and the channel state . (a) Pure state amplification, (b) pure information transmission, and (c) combination
of state amplification and information transmission.

Fig. 8. Optimal ( ) tradeoff region for a state-dependent additive Gaussian channel with states known at the transmitter.

degree of correlation between the transmitted signal Xn and the state
Sn. As discussed in Section II, when the goal is only to minimize the
mean-squared state estimation error, the transmitter directly amplifies
the state by sending the signalXn in the direction of the state Sn; i.e.,
the signalXn is chosen to be completely correlated with the stateSn as
shown inFig. 7(a). Furthermore, as observedbyCosta [8],when the goal
is only to maximize the pure information rate, the transmitter uses the
signalXn tonudge the stateSn, in thedirectionof thedesiredcodeword.
At thisoperatingpoint, the resultingXn is statisticallyuncorrelatedwith
thestateSn asshowninFig.7(b).Toachieveaparticular (R;D) tradeoff
pair on the boundary of the optimal tradeoff region, the transmitter em-
ploys a power-sharing technique, whereby the transmitter power is ap-
propriately allocated between pure information transmission and state
amplification. AsD increases, the correlation between the transmitted
signalXn and the state Sn decreases (Fig. 7(c)).

IV. NUMERICAL EXAMPLE

A specific numerical example is given in this section. Consider an
additive Gaussian channel Y n = Xn(W;Sn)+Sn+Zn, withSi i.i.d.
� N(0; 1), noise Zi i.i.d.� N(0; 1), and transmitter power constraint
P = 1. The optimal (R;D) tradeoff region is shown in Fig. 8.
Consider first the case where the transmitter wishes to help the re-

ceiver minimize the channel state estimation error. In this case, the
transmitter uses all its power to amplify the state Sn by transmitting

X
n =

P

Q
S
n = S

n
:

The corresponding mean-squared state estimation error is given by

Q
N

p
P +

p
Q

2

+N

=
1

5
:
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Furthermore, since the transmitter power is used entirely to amplify the
channel state, no pure information can be conveyed. As a comparison,
if the transmitter attempts, in a suboptimal way, to maximize the pure
information rate and then use it in refining the receiver’s initial esti-
mate, then the resulting mean-squared estimation error is given by

Q
N

Q+ P +N
=

1

3
:

On the other hand, when the transmitter’s goal is to transmit pure in-
formation only, by applying Costa’s “writing on dirty paper” coding
technique, pure information can be transmitted at the rate given by
1
2
log(1 + P

N
) = 1

2
bits per transmission. Due to the state-dependent

nature of the channel, the receiver is still able to learn something about
the state from observing the channel output; the uncertainty about the
state is reduced from Q = 1 to

Q
P +N

Q+ P +N
=

2

3
:

A point on the boundary of the tradeoff region is obtained by varying
the amount of power used in transmitting pure information and am-
plifying the state. All (R;D) pairs above the tradeoff curve in Fig. 8
are achievable. As a comparison, a tradeoff region based on a naive
time-sharing technique is shown.

V. CONCLUDING REMARKS

When the goal is to minimize the state estimation error at the re-
ceiver, the optimal transmission technique is to use all the sender’s
power to amplify the channel state. It would be strictly suboptimal to
use the channel to send the description of the state. On the other hand,
when the goal is to transmit only pure information, the sender can use
the “writing on dirty paper” coding technique. But pure information
transmission obscures the receiver’s view of the channel state, thereby
increasing the state estimation error. For this intrinsic conflict, a simple
power-sharing technique achieves the optimal tradeoff.

APPENDIX

Lemma 1: Let Y = X + S + Z where S and Z are independent
zero-mean Gaussian random variables andX is an arbitrary zero-mean
random variable correlated with S and Z , with a fixed covariance ma-
trix KXSZ . Then, for any 0 � � � 1

�h(Y ) + (1� �)h(Y jS)

�
�

2
log 2�eEY 2 +

1� �

2
log 2�e EY 2 �

(ESY )2

ES2

with equality whenX is jointly Gaussian withS andZ . In other words,
for any inputX , there exists a Gaussian input X̂ with the same covari-
anceKXSZ , which dominatesX in �h(Y ) + (1� �)h(Y jS).

Proof: Let � = (ESY )=(ES2). For a fixed 0 � � � 1, we
have the following chain of inequalities:

�h(Y ) + (1� �)h(Y jS)
(a)

�
�

2
log 2�eEY 2 + (1� �)h(Y jS)

(b)
=
�

2
log 2�eEY 2 + (1� �)h(Y � �SjS)

(c)

�
�

2
log 2�eEY 2 + (1� �)h(Y � �S)

(d)

�
�

2
log 2�eEY 2 +

1��

2
log 2�e EY 2 �

(ESY )2

ES2

where
(a) follows because the Gaussian distribution maximizes the en-

tropy for a given variance;
(b) since the translation does not change the differential entropy;
(c) since conditioning reduces entropy; and
(d) since the Gaussian distribution maximizes the entropy for a

given variance and E(Y � �S)2 = EY 2 � (ESY )

ES
:

Now consider a zero-mean random variableX jointly Gaussian with
S and Z with the same covariance matrixKXSZ . It follows that every
inequality above becomes an equality; specifically, we have equality in
(a) and (d) since Y = X + S + Z is Gaussian and equality in (c)
because Y � �S and S are jointly Gaussian and orthogonal to each
other, thus mutually independent.
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