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A Counterexample to Cover’s Conjecture on Gaussian
Feedback Capacity

Young-Han Kim, Student Member, IEEE

Abstract—We provide a counterexample to Cover’s conjecture that the
feedback capacityC of an additive Gaussian noise channel under power
constraint P be no greater than the nonfeedback capacity C of the same
channel under power constraint 2P , i.e., C (P ) � C(2P ).

Index Terms—Additive Gaussian noise channels, channel capacity, con-
jecture, counterexample, feedback.

I. BACKGROUND

Consider the additive Gaussian noise channel

Yi = Xi + Zi; i = 1; 2; . . .

where the additive Gaussian noise process fZig1i=1 is stationary. It
is well known that feedback does not increase the capacity by much.
For example, the following relationships hold between the nonfeedback
capacity C(P ) and the feedback capacity CFB(P ) under the average
power constraint P :

C(P ) � CFB(P ) � 2C(P )

C(P ) � CFB(P ) � C(P ) +
1

2
:

(See Cover and Pombra [5] for rigorous definitions of feedback
and nonfeedback capacities and proofs for the above upper bounds.
Throughout this paper, the capacity is in bits and the logarithm is to
base 2.)

These upper bounds on feedback capacity were later refined by Chen
and Yanagi [3] as

CFB(P ) � 1 +
1

�
C(�P )

CFB(P ) � C(�P ) +
1

2
log 1 +

1

�
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Fig. 1. Plot of x vs. (1 + x)(1� x) .

for any � > 0. In particular, taking � = 2, we get

CFB(P ) � min
3

2
C(2P ); C(2P ) +

1

2
log

3

2
:

In fact, Cover [4] conjectured that

CFB(P ) � C(2P )

and it has been long believed that this conjecture is true. (See Chen and
Yanagi [8], [2] for a partial confirmation of Cover’s conjecture.)

II. A COUNTEREXAMPLE

Consider the stationary Gaussian noise process fZig1i=1 with power
spectral density

SZ(e
i�) = j1 + ei�j2 = 2(1 + cos �):

Now under the power constraint P = 2, it can be easily shown [1, Sec.
7.4] that the nonfeedback capacity is achieved by the water-filling input
spectrum SX(ei�) = 2(1� cos �), which yields the output spectrum
SY (e

i�) � 4 and the capacity

C(2) =
�

��

1

2
log

SY (e
i�)

SZ(ei�)

d�

2�
= 1 bit:

On the other hand, it can be shown [9] that the celebrated Schalk-
wijk–Kailath feedback coding scheme [6], [7] achieves the data rate

RSK(P ) = � log x0

under power constraint P , where x0 is the unique positive root of the
equation

Px2 = (1 + x)(1� x)3: (1)

Now forP = 1, we can readily check that the unique positive root x0
of (1) is less than 1=2, since f(x) := x2 � (1 + x)(1� x)3 is strictly
increasing and continuous on [0, 1] with f(0) = �1 and f(1=2) =
1=16; see Fig. 1. Therefore,

CFB(1) � RSK(1) = � log x0 > 1 = C(2):
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A Comparison of Methods for Redundancy Reduction in
Recurrence Time Coding

Hidetoshi Yokoo, Associate Member, IEEE

Abstract—Recurrence time of a symbol in a string is defined as the
number of symbols that have appeared since the last previous occurrence
of the same symbol. It is one of the most fundamental quantities that
can be used in universal source coding. If we count only the minimum
required number of symbols occurring in the recurrence period, we
can reduce some redundancy contained in recurrence time coding. The
move-to-front (MTF) scheme is a typical example that shares the idea. In
this correspondence, we establish three such schemes, and make a basic
comparison with one another from the viewpoint that they can be thought
of as different attempts to realize the above idea.

Index Terms—Data compression, move-to-front (MTF), recency rank,
recurrence time, source coding, universal codes.

I. INTRODUCTION

Recurrence time coding, or interval coding proposed by P. Elias [7]
is a method for universal lossless compression, which encodes recur-
rence times of symbols in a string. The idea is extended from symbols
to strings in [12], where its asymptotic optimality with respect to the
string length is shown. The well-known Lempel–Ziv code [14] is an-
other type of realization of recurrence time coding [13].
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It is known that recurrence time coding is redundant, although a kind
of redundancy contained in symbolwise recurrence time coding is easy
to reduce. The move-to-front (MTF) scheme, which was developed in-
dependently of recurrence time coding under the name of book stack
[10] and has been known fairly formerly as various names in various
contexts [8], can be regarded as an improvement of recurrence time
coding. The recurrence time of a symbol is defined as the number of
symbols that have appeared since the last previous occurrence of the
same symbol. If we encode the number of distinct symbols occurring
in that interval, we obtain the MTF scheme [3], [7]. Another improve-
ment of recurrence time coding, which counts the number of alphabet-
ically bigger or smaller symbols in the interval, is also known [2], [9].

These improvements of recurrence time coding share an idea that one
should encode the minimum number of symbols required to specify the
current symbol. Since the minimum required number naturally depends
on how to specify symbols, redundancy reduction in recurrence time
coding should be analyzed in relation to how to specify the symbols in
a string.

In this correspondence, we begin with three different representations
for specifying symbols via recurrence times, and establish their respec-
tive schemes for reducing redundancy, which include the MTF scheme.
The three schemes have already been known, and actually applied to
the block-sorting compression algorithm [4] as its second step compo-
nent [2], [6]. However, they have not been analyzed and compared from
the viewpoint that they can be thought of as different attempts to realize
redundancy reduction in recurrence time coding. Especially, very little
attention has been paid to theoretical aspects of the newer two schemes,
whereas even a redundancy analysis with no symbol extension is given
to the MTF scheme [1]. This correspondence explores these three im-
proved schemes by highlighting their common natures, and compares
relatively the expectations of their outputs for memoryless sources. We
also reveal the entropies assumed by the three schemes on binary mem-
oryless sources.

II. REPRESENTATIONS OF RECURRENCE TIME CODING

When we consider redundancy reduction in recurrence time coding,
the representation of a recurrence time itself plays an essential role.
In this section, we give three different representations of a recurrence
time, which will be used to derive three different methods for redun-
dancy reduction.

Let A = fa1; a2; . . . ; a�g denote a source alphabet of finite size
�. Elements of the alphabet are called symbols. We assume that the
symbols are totally ordered by some ordering relation. We say that the
symbol ai is alphabetically smaller than the symbol am for 1 � i <

m � �, and conversely the symbol am is alphabetically bigger than
the symbol ai . The ordering relation is usually inherent in the alphabet.
However, as we will see later, it may be determined after the data string
is processed. For example, we can use actual symbol frequencies to
define the order of symbols.

Suppose that we are going to encode an n-tuple of symbols (i.e., a
string)

x
n

1 = x1x2 � � � xn; xk 2 A; k = 1; 2; . . . ; n

on which we measure how far two positions are using the distance

d(k; j) = k � j; 1 � j < k � n:

For the kth symbol xk = a 2 A, if we have no a in
fx1; x2; . . . ; xk�1g then we say that the symbol xk is the initial

0018-9448/$20.00 © 2006 IEEE


