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Feedback Capacity of the First-Order Moving
Average Gaussian Channel

Young-Han Kim, Student Member, IEEE

Abstract—Despite numerous bounds and partial results, the
feedback capacity of the stationary nonwhite Gaussian addi-
tive noise channel has been open, even for the simplest cases
such as the first-order autoregressive Gaussian channel studied
by Butman, Tiernan and Schalkwijk, Wolfowitz, Ozarow, and
more recently, Yang, Kavčić, and Tatikonda. Here we consider
another simple special case of the stationary first-order moving
average additive Gaussian noise channel and find the feedback
capacity in closed form. Specifically, the channel is given by

= + = 1 2 . . . where the input satisfies a
power constraint and the noise is a first-order moving av-
erage Gaussian process defined by = 1 + 1
with white Gaussian innovations = 0 1 . . .

We show that the feedback capacity of this channel is

FB = log 0

where 0 is the unique positive root of the equation

2 = (1 2)(1 )2

and is the ratio of the average input power per transmission
to the variance of the noise innovation . The optimal coding
scheme parallels the simple linear signaling scheme by Schalkwijk
and Kailath for the additive white Gaussian noise channel—the
transmitter sends a real-valued information-bearing signal at
the beginning of communication and subsequently refines the
receiver’s knowledge by processing the feedback noise signal
through a linear stationary first-order autoregressive filter. The
resulting error probability of the maximum likelihood decoding
decays doubly exponentially in the duration of the communication.
Refreshingly, this feedback capacity of the first-order moving av-
erage Gaussian channel is very similar in form to the best known
achievable rate for the first-order autoregressive Gaussian noise
channel given by Butman.

Index Terms—Additive Gaussian noise channels, feedback
capacity, first-order moving average, Gaussian feedback capacity,
linear feedback, Schalkwijk–Kailath coding scheme.

I. INTRODUCTION AND SUMMARY

CONSIDER the additive Gaussian noise channel with
feedback as depicted in Fig. 1. The channel

has additive Gaussian noise where
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. We wish to communicate a
message index reliably over the channel

. The channel output is causally fed back to the
transmitter. We specify a code with the codewords1

satisfying the ex-
pected power constraint

and decoding function The prob-
ability of error is defined by

where the message is independent of and is uni-
formly distributed over . We call the sequence

an -block feedback capacity sequence if for every
, there exists a sequence of codes with

as , and for every and any sequence
of codes with codewords, is bounded away
from zero for all . We define the feedback capacity as

if the limit exists. This definition of feedback capacity as the
supremum of achievable rates agrees with the usual operational
definition for the capacity of memoryless channels without feed-
back [1].

In [2], Cover and Pombra characterized the -block feedback
capacity as

(1)

Here , and respec-
tively denote the covariance matrices of and , and
the maximization is over all of the form
with a strictly lower-triangular matrix
and multivariate Gaussian independent of such that

. Equivalently, we can rewrite
(1) as

(2)

1More precisely, encoding functions X : f1; . . . ; 2 g� ! ; i =

1; 2; . . . ; n.
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Fig. 1. Gaussian channel with feedback.

where the maximization is over all nonnegative definite
matrices and strictly lower triangular
matrices such that

When the noise process is stationary, the -block ca-
pacity is super-additive in the sense that

for all Consequently, the feedback capacity
is well-defined (see, for example, Pólya and Szegö [3]) as

(3)

To obtain a closed-form expression for the feedback capacity
, however, we need to go further than (3) since the above

characterization does not give any hint on the sequence of the
optimal achieving or, more impor-
tantly, its limiting behavior.

In this paper, we study in detail the case where the additive
Gaussian noise process is a moving average process
of order one (MA(1)). We define the Gaussian MA(1) noise
process with parameter as

(4)

where is a white Gaussian innovation process. Without
loss of generality, we will assume that , has
unit variance. There are alternative ways of defining Gaussian
MA(1) processes, which we will review in Section II.

Note that the condition is not restrictive. When
, it can be readily verified that the process has the same

distribution as the process defined by

where the moving average parameter is given by
thus giving .

We state the main theorem, the proof of which will be given
in Section III.

Theorem 1: For the additive Gaussian MA(1) noise channel
with the Gaussian MA(1) noise

process defined in (4), the feedback capacity under
the power constraint is given by

where is the unique positive root of the fourth-order polyno-
mial

(5)

As will be shown later in Sections III and IV, the feedback ca-
pacity is achieved by an asymptotically stationary ergodic
input process satisfying for all . Thus by er-
godic theorem, the feedback capacity does not diminish under a
more restrictive power constraint

(See also the arguments given in [2, Sec. VIII] based on the
stationarity of the noise process.)

The literature on Gaussian feedback channels is vast. We first
mention some prior work closely related to our main discussion.
In earlier work, Schalkwijk and Kailath [4], [5] (see also the
discussion by Wolfowitz [6]) considered the feedback over the
additive white Gaussian noise channel, and proposed a simple
linear signaling scheme that achieves the feedback capacity. The
coding scheme by Schalkwijk and Kailath can be summarized
as follows: Let be one of equally spaced real numbers
on some interval, say, . At time , the receiver forms
the maximum likelihood estimate of . Using
the feedback information, at time , we send

, where is a scaling factor properly chosen to meet
the power constraint. After transmissions, the receiver finds
the value of among alternatives that is closest to . This
simple signaling scheme, without any coding, achieves the feed-
back capacity. As is shown by Shannon [7], feedback does not
increase the capacity of memoryless channels. (See also Kadota
et al. [8], [9] for continuous cases.) The benefit of feedback,
however, does not consist of the simplicity of coding only. The
probability of decoding error of the Schalkwijk–Kailath scheme
decays doubly exponentially in the duration of communication,
compared to the exponential decay for the nonfeedback sce-
nario. In fact, there exists a feedback coding scheme such that
the probability of decoding error decreases more rapidly than
the exponential of any order [10]–[12]. Later, Schalkwijk ex-
tended his work to the center-of-gravity information feedback
for higher dimensional signal spaces [13].

Butman [14] generalized the linear coding scheme of Schalk-
wijk and Kailath for white noise processes to autoregressive
(AR) noise processes. For the first-order autoregressive (AR(1))
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process with regression parameter defined
by

(6)

he obtained a lower bound on the feedback capacity as ,
where is the unique positive root of the fourth-order polyno-
mial

(7)

This rate has been shown to be optimal among a certain class of
linear feedback schemes by Wolfowitz [15] and Tiernan [16],
and is strongly believed to be the capacity of the AR(1) feedback
capacity. Tiernan and Schalkwijk [17] found an upper bound
on the AR(1) feedback capacity, which meets Butman’s lower
bound for very low and very high signal-to-noise ratio. Butman
[18] also obtained capacity upper and lower bounds for AR pro-
cesses with higher order.

For the case of moving average (MA) noise processes, there
are far fewer results in the literature, although MA processes
are usually more tractable than AR processes of the same order.
Ozarow [19], [20] gave upper and lower bounds of the feed-
back capacity for AR(1) and MA(1) channels and showed that
feedback strictly increases the capacity. Substantial progress
was made by Ordentlich [21]; he observed that in (2) is
at most of rank for a MA noise process with order . Or-
dentlich also showed that the optimal necessarily has
the property that the current input signal is orthogonal to the
past outputs . For the special case of MA(1) pro-
cesses, this development, combined with the arguments given
in [15], suggests that a linear signaling scheme similar to the
Schalkwijk–Kailath scheme be optimal, which is proved by our
Theorem 1.

A recent report by Yang, Kavčić, and Tatikonda [22] (see also
Yang’s thesis [23]) studies the feedback capacity of the general
ARMA case using the state-space model and offers a con-
jecture on the feedback capacity as a solution to an optimization
problem that does not depend on the horizon . For the special
case with the noise process defined by

they conjecture that the Schalkwijk–Kailath–Butman coding
scheme is optimal. The corresponding achievable rate can be
written in a closed form as , where is the unique
positive root of the fourth-order polynomial

and

By taking or , we can easily recover (5) and (7),
respectively. Thus, in the special case , our Theorem 1
confirms the Yang–Kavčić–Tatikonda conjecture.

To conclude this section, we review, in a rather incomplete
manner, previous work on the Gaussian feedback channel in
addition to aforementioned results, and then point out where
the current work lies in the literature. The standard literature on
the Gaussian feedback channel and associated simple feedback
coding schemes traces back to a 1956 paper by Elias [24] and its
sequels [25], [26]. Turin [27]–[29], Horstein [30], Khas’minskii
[31], and Ferguson [32] studied a sequential binary signaling
scheme over the Gaussian feedback channel with symbol-by-
symbol decoding that achieves the feedback capacity with an
error exponent better than the nonfeedback case. As mentioned
above, Schalkwijk and Kailath [4], [5], [13] made a major break-
through by showing that a simple linear feedback coding scheme
achieves the feedback capacity with doubly exponentially de-
creasing probability of decoding error. This fascinating result
has been extended in many directions. Omura [33] reformulated
the feedback communication problem as a stochastic-control
problem and applied this approach to multiplicative and addi-
tive noise channels with noiseless feedback and to additive noise
channels with noisy feedback. Pinsker [10], Kramer [11], and
Zigangirov [12] studied feedback coding schemes under which
the probability of decoding error decays as the exponential of
arbitrary high order. Wyner [34] and Kramer [11] studied the
performance of the Schalkwijk–Kailath scheme under a peak
energy constraint and reported the singly exponential behavior
of the probability of decoding error under a peak energy con-
straint. The error exponent of the Gaussian feedback channel
under the peak power constraint was later obtained by Schalk-
wijk and Barron [35]. Kashyap [36], Lavenberg [37], [38], and
Kramer [11] looked at the case of noisy or intermittent feedback.

The question of transmitting a Gaussian source over a
Gaussian feedback channel was studied by Kailath [39], Cruise
[40], Schalkwijk and Bluestein [41], Ovseevich [42], and Ihara
[43]. There are also many notable extensions of the Schalk-
wijk–Kailath scheme in the area of multiple user information
theory. Using the Schalkwijk–Kailath scheme, Ozarow and
Leung-Yan-Cheong [44] showed that feedback increases the
capacity region of stochastically degraded broadcast channels,
which is rather surprising since feedback does not increase
the capacity region of physically degraded broadcast channels,
as shown by El Gamal [45]. Ozarow [46] also established the
feedback capacity region of two-user white Gaussian multiple
access channel through a very innovative application of the
Schalkwijk–Kailath coding scheme. The extension to a larger
number of users was attempted by Kramer [47], where he also
showed that feedback increases the capacity region of strong
interference channels.

Following these results on the white Gaussian noise channel
on hand, the next focus was on the feedback capacity of the
colored Gaussian noise channel. Butman [14], [18] extended
the Schalkwijk–Kailath coding scheme to autoregressive noise
channels. Subsequently, Tiernan and Schalkwijk [17], [16],
Wolfowitz [15], Ozarow [19], [20], Dembo [48], and Yang et
al. [22] studied the feedback capacity of finite-order ARMA
additive Gaussian noise channels and obtained many interesting
upper and lower bounds. Using an asymptotic equipartition the-
orem for nonstationary nonergodic Gaussian noise processes,
Cover and Pombra [2] obtained the -block capacity (2) for the
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arbitrary colored Gaussian channel with or without feedback.
(We can take in (2) for the nonfeedback case.) Using
matrix inequalities, they also showed that feedback does not
increase the capacity much; namely, feedback at most doubles
the capacity (a result obtained by Pinsker [49] and Ebert [50]),
and feedback increases the capacity at most by half a bit.

The extensions and refinements of the result by Cover and
Pombra abound. Dembo [48] showed that feedback does not in-
crease the capacity at very low signal-to-noise ratio or very high
signal-to-noise ratio. As mentioned above, Ordentlich [21] ex-
amined the properties of the optimal solution in (2) and
found the rank condition on the optimal for finite-order MA
noise processes. Chen and Yanagi [51]–[53] studied Cover’s
conjecture [54] that the feedback capacity is at most as large
as the nonfeedback capacity with twice the power, and made
several refinements on the upper bounds by Cover and Pombra.
Thomas [55], Pombra and Cover [56], and Ordentlich [57] ex-
tended the factor-of-two bound result to the colored Gaussian
multiple access channels with feedback. Recently Yang, Kavčić,
and Tatikonda [22] revived the control-theoretic approach (cf.
[33]) to the stationary ARMA Gaussian feedback capacity
problem. Although one-sentence summary would not do jus-
tice to their contribution, Yang et al. reformulated the feed-
back capacity problem as a stochastic control problem and used
dynamic programming for the numerical computation of the

-block feedback capacity. In a series of papers [58]–[60], Ihara
obtained coding theorems for continuous-time Gaussian chan-
nels with feedback and showed that the factor-of-two bound
on the feedback capacity is tight by considering cleverly con-
structed nonstationary channels both in discrete time [61] and
continuous time [59]. (See also [65, Examples 5.7.2 and 6.8.1].)
In fact, besides the white Gaussian noise channel, Ihara’s ex-
ample has been the only nontrivial channel with known closed-
form feedback capacity.

Hence Theorem 1 provides the first feedback capacity result
on stationary colored Gaussian channels. Moreover, as will be
discussed in Section IV, a simple linear signaling scheme sim-
ilar to the Schalkwijk–Kailath scheme achieves the feedback ca-
pacity. This result links the Cover–Pombra formulation of the
feedback capacity with the Schalkwijk–Kailath scheme and its
generalizations to stationary colored channels, and strongly sug-
gests the optimality2 of the achievable rate for the AR(1) channel
obtained by Butman [14] (cf. Proposition 1 in Section IV).

II. FIRST-ORDER MOVING AVERAGE GAUSSIAN PROCESSES

In this section, we digress a little to review a few characteris-
tics of first-order moving average Gaussian processes. First, we
give three alternative characterizations of Gaussian MA(1) pro-
cesses. As defined in the previous section, the Gaussian MA(1)
noise process with parameter can be characterized as

(8)

where the innovations are i.i.d. .

2At the time of this submission, extensions of these results are developed in a
paper in preparation [63], [64], which confirm the optimality of the Schalkwijk–
Kailath–Butman coding scheme for the AR(1) channel.

We reinterpret the above definition in (8) by regarding the
noise process as the output of the linear time-invariant
filter with transfer function

(9)

which is driven by the white innovation process . Thus
we alternatively characterize the Gaussian MA(1) noise process

with parameter and unit innovation through its power
spectral density given by

(10)

We can further identify the power spectral density
with the infinite Toeplitz covariance matrix of a Gaussian
process. Thus, we can define as

for each finite horizon , where is tridiag-
onal with

. . .
...

. . .
...

. . .
. . .

. . .

or equivalently

Note that this covariance matrix is consistent with our initial
definition of the MA(1) process given in (8). Thus all three defi-
nitions of the MA(1) process given above are equivalent. As we
will see in the next section, the special structure of the MA(1)
process, especially the tri-diagonality of the covariance matrix,
makes the maximization in (2) easier than the generic case.

We will need the entropy rate of the MA(1) Gaussian process
later in our discussion. As shown by Kolmogorov (see [1, Sec.
11.6]), the entropy rate of a stationary Gaussian process with
power spectral density can be expressed as

We can calculate the above integral with the power spectral den-
sity in (10) by Jensen’s formula3 [65, Th. 15.18]

(11)

3The same J. L. W. V. Jensen, famous for his inequality on convex functions.
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and obtain the entropy rate of the MA(1) Gaussian process (8)
as

.
(12)

(One can alternatively deal with the determinant of di-
rectly by a simple recursion. For example, we can show that

for .) For a more general discus-
sion on the entropy rate of stationary Gaussian processes, refer
to [62, Ch. 2].

We finish our digression by noting a certain reciprocal rela-
tionship between the Gaussian MA(1) process with parameter

and the Gaussian AR(1) process with parameter . We can
define the Gaussian AR(1) process with parameter

as

where the innovations are i.i.d. and
is independent of . Equivalently, we

can define the above process as the output of the linear time-
invariant filter with transfer function

where is the transfer function (9) of the MA(1) process
with parameter . This reciprocity is indeed reflected in the
striking similarity between the fourth-order polynomial (5)
for the capacity of the Gaussian MA(1) noise channel and the
fourth-order polynomial (7) for the best known achievable rate
of the Gaussian AR(1) noise channel.

III. PROOF OF THEOREM 1

We will first transform the optimization problem

to a series of (asymptotically) equivalent forms. Then we
solve the problem by imposing individual power constraints

on each input signal. Subsequently we optimize
over under the average power constraint

Then using Lemma 2, we will prove that the uniform power
allocation is asymptotically optimal. This
leads to a closed-form solution given in Theorem 1.

Step 1. Transformations Into Equivalent Optimization Prob-
lems: Recall that we wish to solve the optimization problem:

maximize (13)

over all nonnegative definite and strictly lower triangular
satisfying . We approximate the

covariance matrix of the given MA(1) noise process with
parameter by another covariance matrix , define by

, where the lower-triangular Toeplitz matrix is given
by

. . .
...

...
. . .

. . .
. . .

This matrix is a covariance matrix of the Gaussian process
defined by

where is the white Gaussian process with unit variance.
It is easy to check that (i.e., is nonnegative
definite) and that the difference between and is given
by

otherwise

It is intuitively clear that there is no asymptotic difference in
capacity between the channel with the original noise covariance

and the channel with noise covariance . We will prove
this claim more rigorously in Appendix A. Throughout we will
assume that the noise covariance matrix of the given channel
is , which is equivalent to the statement that the time-zero
noise innovation is revealed to both the transmitter and the
receiver.

Now by identifying for some lower-triangular
and identifying for some strictly lower-trian-

gular , we transform the optimization problem (13) into

maximize

(14)

subject to

with new variables .
We shall use -dimensional row vectors and ,

, to denote the -th row of and
, respectively. There is an obvious identification be-

tween the time- input signal and the vector ,
for we can regard as a point in the Hilbert space with the in-
novations of and as a basis. We can similarly identify
with and identify with . We also introduce new vari-
ables representing the power constraint for each
input . Now the optimization problem in (13) becomes the
following equivalent form:

maximize

subject to (15)
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Here denotes the Euclidean norm of a -dimensional
vector. Note that the variables should satisfy

where

Step 2. Optimization Under the Individual Power Constraint
for Each Signal: We solve the optimization problem (15) in

after fixing . This step is mostly al-
gebraic, but we can easily give a geometric interpretation. We
need some notation first.

We define an -by- matrix

...
...

and we define the -by- matrix by

...

where is the identity. We also define an -by- matrix

...
...

We can identify the row vector with the noise innovation
and the row vector with .

We will use the notation to denote the -by- submatrix
of which consists of the first rows of , that is,

...

We will use similar notation for the -by- submatrices of
and .

We now introduce a sequence of -by- square matrices
as

Observe that is of full rank and thus that always
exists. We can view as a map of a -dimensional row vector
(acting from the right) to its component orthogonal to the sub-
space spanned by the rows of . (Or maps a
generic random variable to .) It is easy to verify
that and .

Finally we define the intermediate objective functions of the
maximization (15) as

so that

We will show that if the rows maximizes
, then maximizes

for some satisfying . Thus the
maximization for can be solved in a greedy fashion by se-
quentially maximizing through .
Furthermore, we will obtain the recursive relationship

(16)

(17)

and

(18)

for
We need the following result to proceed to the actual maxi-

mization.
Lemma 1: Suppose and . Suppose

and defined as above. Let be an arbitrary subspace of
such that is not contained in the span of . Then, for
any

Furthermore, if , the maximum is attained by

(19)

Proof: When , that is, span , the
maximum of is attained by any
vector orthogonal to , and we
trivially have

When , we have

where the first inequality follows from the fact that is
nonnegative definite. It is easy to check that we have equality if

is given by (19) (see Fig. 2).



KIM: FEEDBACK CAPACITY OF THE FIRST-ORDER MOVING AVERAGE GAUSSIAN CHANNEL 3069

Fig. 2. Geometric interpretation of Lemma 1. (a) The case w� 6= 0. (b) The case w� = 0.

We observe that, for

(20)

where the last equality follows since
and . Now fix . Since is not
contained in and , we have from
the above lemma and (20) that

(21)

If , the maximum of is attained by

(22)

In the special case , that is, when the noise is white, we
trivially have

which immediately implies that
which, in turn, combined with the concavity

of the logarithm, implies that

We continue our discussion throughout this step under the
assumption . Until this point we have not used the special
structure of the MA(1) noise process. Now we rely heavily on
this. We trivially have

(23)

Following (21), we have, for

(24)

We wish to show that both terms in (24) are individually maxi-
mized by the same optimizer

(25)

for . Once we establish (25), the desired recursion
formula (18) for follows immediately from the definition of

and (24).
We shall prove (25) by induction. First note that

(26)

and

(27)

Also recall that and

(28)

For we trivially have

which establishes (25). Further, from (23) and (24), we can
check that
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Now suppose (25) holds for . For
we observe that

Now from (26), (27), and (28), we have

(29)

It follows from (20)–(22) that, for fixed , both
and have the same maximizer

Plugging this back to (29), for fixed , we have

while

But from the induction hypothesis, and
have the same maximizer . Thus

and have the same maximizer
. Therefore, we have established (25) for

and hence for all From (24) and (25), we easily
get the desired recursion formula as

for

Step 3. Optimal Power Allocation Over Time: In the previous
step, we solved the optimization problem (15) under a fixed
power allocation . Thanks to the special structure
of the MA(1) noise process, this brute force optimization was
tractable via backward dynamic programming. Here we opti-
mize the power allocation under the constraint

.
As we saw earlier, when , we can use the concavity of

the logarithm to show that, for all

with . When , it is not tractable to
optimize for in (16)–(18) to get a closed-form
solution of for finite . The following lemma, how-
ever, enables us to figure out the asymptotically optimal
power allocation and to obtain a closed-form solution for

.
Lemma 2: Let such that the

following conditions hold:
i) is continuous, concave in , and strictly con-

cave in for all ;
ii) is increasing in and , respectively; and

iii) for each , there is a unique solution to
the equation .

For some fixed , let be any infinite sequence of
nonnegative numbers satisfying

Let be defined recursively as

Then

where is the unique solution to . Fur-
thermore, if then the corresponding
converges to .

Proof: Fix . From the concavity and monotonicity of
, for sufficiently large
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Fig. 3. Convergence to the unique point � .

Taking the limit on both sides and using the continuity of , we
have

Since is arbitrary and is continuous, we have
But from uniqueness of and strict concavity of

in , we have

if and only if (30)

Thus .
It remains to show that we can actually attain by choosing

, . Let . From
the monotonicity of and (30), we have

Thus the sequence has a limit, which we denote as . But
from the continuity of , we must have

Thus (see Fig. 3).
We continue our main discussion. Define

The conditions i)–iii) of Lemma 2 can be easily checked. For
concavity, we rely on the simple composition rule for concave

functions [66, Sec. 3.2.4] without messy calculus. Let
and

. Then . Now that is
strictly concave and strictly increasing, is concave (strictly
concave in alone for each ) and elementwise strictly
increasing, and is strictly concave, we can conclude that is
concave in and strictly concave in for all . Since
for any , and as tends
to infinity, the uniqueness of the root of is trivial
from the continuity of .

For an arbitrary infinite sequence satisfying

(31)

we define

Note that

Now from Lemma 2, we have

where is the unique solution to

Since our choice of is arbitrary, we conclude that

where the supremum (in fact, maximum) is taken over all in-
finite sequences satisfying the asymptotic average power
constraint (31).

Finally, we prove that . More specifically, we will
show that

(32)

(33)



3072 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 7, JULY 2006

The only subtlety here is how to justify the interchange of the
order of limit and supremum in (32) and (33). It is easy to verify
that

for it is always advantageous to choose for each a finite se-
quence with rather than fixing
a single infinite sequence with for all . (Recall
that the supremum on the right side is achieved by the uniform
power allocation.)

To prove the other direction of inequality, we fix , and
choose and such that

and

(34)

Now we construct an infinite sequence by concate-
nating repeatedly, that is, for all

and . Obviously, this choice of
satisfies the power constraint (31). As before, let

By induction, it is easy to see that

(35)

for all For , (35) holds trivially. Suppose
(35) holds for . Then from the monotonicity
of in , we have

for all . Thus, (35) holds for all . Therefore

which, combined with (34), implies that

which, in turn, implies that

Since is arbitrary, we have the desired inequality. Thus
.

We conclude this section by characterizing the capacity
in an alternative form. Recall that is the unique

solution to

Let or equivalently, . It is easy
to verify that is the unique positive solution to

or equivalently

This establishes the feedback capacity of the additive
Gaussian noise channel with the noise covariance , which
is, in turn, the feedback capacity of the first-order moving
average additive Gaussian noise channel with parameter , as
is argued at the end of Step 1 and proved in Appendix A. This
completes the proof of Theorem 1.

IV. DISCUSSION

The derived asymptotically optimal feedback input signal
sequence, or equivalently, the (sequence of) matrices

has two prominent properties. First, the
optimal for the -block can be found sequen-
tially, built on the optimal for the

-block. Although this property may sound quite natural,
it is not true in general for other channel models. Later in this
section, we will see an MA(2) channel counterexample. As a
corollary to this sequentiality property, the optimal has rank
one, which agrees with the previous result by Ordentlich [21].
Second, the current input signal is orthogonal to the past
output signals . In the notation of Section III,
we have . This orthogonality property is indeed
a necessary condition for the optimal for any (pos-
sibly nonstationary nonergodic) noise covariance matrix
[67], [21]. It should be pointed out that the recursion formula
(16)–(18) can be also derived from the orthogonality property
and the optimality of rank-one .

We explore the possibility of extending the current proof tech-
nique to a more general class of noise processes. The immediate
answer is negative. We comment on two simple cases: MA(2)
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and AR(1). Consider the following MA(2) noise process which
is essentially two interleaved MA(1) processes:

It is easy to see that this channel has the same capacity as the
MA(1) channel with parameter , which can be attained by sig-
naling separately for each interleaved MA(1) channel. This sug-
gests that the sequentiality property does not hold for this ex-
ample. Indeed, if we sequentially optimize the -block capacity,
we achieve the rate , where is the unique positive
root of the sixth order polynomial

It is not difficult to see that this rate is strictly less than the feed-
back capacity of the interleaved MA(1) channel unless .
A similar argument can prove that Butman’s conjecture on the

capacity [18, Abstract] is not true in general for .
In contrast to MA(1) channels, we are missing two basic

ingredients for AR(1) channels—the optimality of rank-one
and the asymptotic optimality of the uniform power allo-

cation. Under these two conditions, it is known [15], [16] that
the optimal achievable rate is given by where is
the unique positive root of the fourth order polynomial

There is, however, a major difficulty in establishing the above
two conditions by the two-stage optimization strategy we used
in the previous section, namely, first maximizing
and then . For certain values of individual signal
power constraints , the optimal does
not satisfy the sequentiality, resulting in with rank higher
than one. Hence, a greedy maximization of does
not establish the recursion formula for the AR(1) -block ca-
pacity that corresponds to our (16)–(18):

(36)

(37)

(38)

for (See [15], [16], and [18] for the derivation
of the above recursion formula.) Even under the assumption
that the optimal for the AR(1) channel has rank one, it has
been unclear whether the uniform power allocation over time is
asymptotically optimal.

Nonetheless, using a technique similar to the one deployed
in Lemma 2, we can prove the optimality of the uniform power
allocation, resolving a question raised by Butman [14], [18] and
Tiernan [16] among others.

Proposition 1: For the additive Gaussian AR(1) noise
channel with Gaussian AR(1)
noise process defined in (6), let denote the best

-block achievable rate of the Schalkwijk–Kailath–Butman
coding scheme under the power constraint . Equivalently

where the maximization is over all nonnegative definite
matrices of rank one and strictly lower triangular

matrices such that .
Then

where is the unique positive root of the fourth order polyno-
mial

(39)

Since the proof is a little technical in nature, we defer it to
Appendix B.

Finally we show that the feedback capacity of the MA(1)
channel can be achieved by using a simple stationary filter of
the noise innovation process. Before we proceed, we point out
that the optimal input process we obtained in the previous
section is asymptotically stationary. This observation is not hard
to prove through the well-developed theory on the asymptotic
behavior of recursive estimators [68, Ch. 14].

At the beginning, we send4

For subsequent transmissions, we transmit the filtered version
of the noise innovation process up to the time :

(40)

In other words, we use a first-order regressive filter with transfer
function given by

(41)

Here with being the same unique posi-
tive root of the fourth-order polynomial (5) in Theorem 1. The
scaling factor is chosen to satisfy the power constraint as

4Technically, we generate 2 X (W ) code functions i.i.d. according to
N(0; P ) for some R < C , and transmit one of them.
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where

This input process and the MA(1) noise process

yield the output process given by

for which is asymptotically stationary with power
spectral density

(42)

The “asymptotic stationarity” here should not bother us since
the output process is stationary for and

is uniformly bounded in ; hence the entropy
rate of the process is determined by .
Thus from (12) in Section II, the entropy rate of the output
process is given by

Hence we attain the feedback capacity . Furthermore, it can
be shown that the mean-square error of given the observa-
tions decays exponentially with rate .
In other words,

(43)

Note that the optimal filter (41) has an interesting feature. In
the light of (42), we can think of the output process as the
filtered version of the noise innovation process through
the monic filter

As the entropy rate formula (12), or more fundamentally,
Jensen’s formula (11) shows, the entropy rate of is to-
tally determined by zeros of the filter outside the unit circle,
which, for our case, is . Hence, we can interpret the feed-
back capacity problem as the problem of relocating the zero
of the original noise filter to the outside of the unit
circle and making the modulus of that zero as large as pos-
sible by adding a strictly causal filter using the power

. Here we have shown that the
optimal filter is given by (41). Under this interpretation, the
initial input is merely a perturbation which guarantees that
the output process is not causally invertible from the innovation
process and hence that the entropy rate is fully determined by the
spectral density of the stationary part. (Without , the entropy
rate of is exactly same as the entropy rate of .)

From a classical viewpoint, we can interpret the signal as
the adjustment of the receiver’s estimate of the message-bearing
signal after observing . We can further check
that following signaling schemes are equivalent (and thus op-
timal) up to scaling:

for

The connection to the Schalkwijk–Kailath coding scheme is
now apparent. Recall that there is a simple linear relationship
[68, Sec. 3.4], [69, Sec. 4.5] between the minimum mean square
error estimate (in other words, the minimum variance biased
estimate) for the Gaussian input and the maximum like-
lihood estimate (or equivalently, the minimum variance unbi-
ased estimate) for an arbitrary real input . Thus we can easily
transform the above coding scheme based on the asymptotic
equipartition property [2] to a variant of the Schalkwijk–Kailath
linear coding scheme based on the maximum likelihood nearest
neighborhood decoding of uniformly spaced points. More
specifically, we send as one of possible signals, say,

where
. Subsequent transmissions follow (40). The re-

ceiver forms the maximum likelihood estimate
and finds the nearest signal point to in .

The analysis of the error for this coding scheme follows
Schalkwijk [5] and Butman [14]. From (43) and the standard
result on the relationship between the minimum variance
unbiased and biased estimation errors, the maximum likeli-
hood estimation error is, conditioned on , Gaussian
with mean and variance exponentially decaying with rate

. Thus, the nearest neighbor decoding error,
ignoring lower order terms, is given by



KIM: FEEDBACK CAPACITY OF THE FIRST-ORDER MOVING AVERAGE GAUSSIAN CHANNEL 3075

where

and is the variance of input signal chosen uniformly over
. As long as , the decoding error decays doubly

exponentially in . Note that this coding scheme uses only the
second moments of the noise process. This implies that the rate

is achievable for any additive non-Gaussian noise channel
with feedback.

APPENDIX A
ASYMPTOTIC EQUIVALENCE OF AND FOR

FEEDBACK CAPACITY

Recall that and .
To stress the dependence of the capacity on the power
constraint and the noise covariance, we use the notation

for -block feedback capacity of the channel
with -by- noise covariance matrix under the power con-
straint . With a little abuse of notation, we
similarly use for feedback capacity of the channel
with infinite noise covariance matrix naturally extended from

under the power constraint .
Suppose achieves

and achieves . Since , we
have

which shows that is a feasible (not necessarily op-
timal) solution to . On the other hand, we have

(44)

so that

(45)

(46)

where (45) follows from (44), divisibility of the Gaussian
distribution, and the data processing inequality [1, Sec. 2.8];
and (46) follows because achieves the feedback

capacity and is a feasible solution
to the maximization problem for . By letting
tend to infinity, we obtain

For the other direction of inequality, we first consider the case
. Fix and define the conditional covariance matrix

of conditioned on past values as

It is easy to see that under this notation, the (elementwise) limit
of covariance matrices exists and

By sending a length- training sequence over the channel
with the noise covariance matrix , i.e., by transmitting

and then estimating the noise process
at the receiver using , we can achieve the rate

over transmissions. Hence, we have

for all . By carefully increasing both and , we will derive
the desired inequality.

Consider using , which is optimal for the channel
with noise covariance matrix , for the channel with noise
covariance . Since , the resulting power usage
can be greater than . However, we have

Now we observe that and differ only at the
entry. Furthermore, the convergence of

to
is exponentially fast in (uniformly in ). Hence, we can
bound the amount of additional power usage as
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where and are constants independent of and . Combining
above observations, we have the following chain of inequalities
for all and :

(47)

Finally we let and grow to infinity such that

and

The inequality (47) certainly implies that

for every . The desired inequality follows from the conti-
nuity5 of the in .

For the case , we can perturb the noise process using
a negligible amount of power and proceeds similarly as above.
Indeed, we can perturb the original covariance matrices and

into the perturbed covariance matrices and
that correspond to the MA(1) process with parameter ,
so that for appropriately chosen with
as , we have

(48)

(49)

(50)

where (48) follows because we can transform the channel
into using very small power, (49) follows from the

result for we obtained above, and (50) follows since we
can perturb the channel into by adding
some extra white noise. Since is continuous in

, we get

This completes the proof of the asymptotic equivalence of
and .

5The continuity of C (K ; �) follows from the concavity of C (K ; �),
which, in turn, follows from the concavity of C (K ; �) [70, Th. 1]; recall
that C (K ; �) is the pointwise limit of C (K ; �).

APPENDIX B
PROOF OF PROPOSITION 1

Define

for , and

It is easy to check the following:
i) is increasing and concave in ;

ii) for each is a decreasing contrac-
tion of in the sense that

for all and ; and consequently,
iii) for each , there is a unique solution to the

equation such that for all
and for all .

For an arbitrary infinite sequence with and

(51)

we define

Then we can rewrite the recursion formula (36)–(38) as

for so that

Now we show that
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Fig. 4. Convergence to the unique point � .

where is the unique solution to the equation
. Indeed,

where the first inequality follows from the aforementioned prop-
erty ii) and the second inequality follows from the property i)
and Jensen’s inequality. By taking limits on both sides, we get
from continuity of in

which, from the property iii), implies that . We can
also check that letting for all attains

from the property ii) and the principle of contraction
mappings [71, Sec. 14]. (See Fig. 4 above and the detailed anal-
ysis in [15, Sec. 5].) Thus, we conclude that the supremum of

over all infinite power se-
quences satisfying the power constraint (51) is achieved by
the uniform power allocation. From simple change of variable

, we have where is
the unique positive solution to (39).

As in the MA(1) case before, it remains to justify the inter-
change of the order of limit and supremum in

Obviously we have

For the other direction of inequality, first fix and then take
that achieves . We construct the infinite

sequence by concatenating repeat-
edly, that is, and

for all Now we can easily verify that

(Taking resets the dependence on the past.) By taking
limits on both sides, we get

This completes the proof of Proposition 1.
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