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A Coding Theorem for a Class of Stationary Channels
With Feedback
Young-Han Kim, Member, IEEE

Abstract—A coding theorem is proved for a class of sta-
tionary channels with feedback in which the output Yn =
f (Xn

n�m; Z
n
n�m) is the function of the current and past m sym-

bols from the channel inputXn and the stationary ergodic channel
noise Zn. In particular, it is shown that the feedback capacity is
equal to

lim
n!1

sup
p(x ky )

1

n
I(Xn ! Y

n)

where I(Xn ! Y n) = n

i=1 I Xi;YijY
i�1 denotes the Massey

directed information from the channel input to the output, and
the supremum is taken over all causally conditioned distributions
p(xnkyn�1) = n

i=1 p xijx
i�1; yi�1 . The main ideas of the proof

are a classical application of the Shannon strategy for coding with
side information and a new elementary coding technique for the
given channel model without feedback, which is in a sense dual to
Gallager’s lossy coding of stationary ergodic sources. A similar ap-
proach gives a simple alternative proof of coding theorems for finite
state channels by Yang–Kavčić–Tatikonda, Chen–Berger, and Per-
muter–Weissman–Goldsmith.

Index Terms—Capacity, channels with memory, coding theorem,
directed information, ergodic decomposition, feedback, feedback
capacity, Shannon strategy.

I. INTRODUCTION

SHANNON [34] showed that the capacity of a memoryless
channel , operationally defined as supremum

of all achievable rates [9, Sec. 7.5], is characterized by

(1)

When the channel has memory but still maintains certain er-
godic properties, then (1) can be extended to the following mul-
tiletter expression:

(2)

For example, Dobrushin [10] showed that the capacity formula
(2) holds if the channel is information stable; see also Pinsker
[33]. Further extensions and refinements of (2) with more gen-
eral capacity formulas abound in the literature. For stationary
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channels, readers are referred to Gray and Ornstein [17], Ki-
effer [20], and the references therein. A general formula for the
capacity is given by Verdú and Han [39] for arbitrary nonsta-
tionary channels that can be represented through a sequence of

-dimensional conditional distributions (even without any con-
sistency requirement); see also Han [18].

For memoryless channels with feedback, it was again
Shannon [35] who showed that feedback does not increase the
capacity and hence that the feedback capacity is given by

(3)

As in the case of nonfeedback capacity (2), the question arises
how to extend the feedback capacity formula (3) to channels
with memory. The most natural candidate is the following
multiletter expression with directed information introduced by
Massey [26] in place of the usual mutual information in (2):

(4)

where the supremum is taken over all -dimensional causally
conditioned probabilities

The main goal of this paper is to establish the validity of the
feedback capacity formula (4) for a reasonably general class of
channels with memory, in the simplest manner.

Massey [26] introduced the mathematical notion of directed
information

and established its operational meaning by showing that the
feedback capacity is upper bounded by the maximum normal-
ized directed information, which can be in general tighter than
the usual mutual information. He also showed that (4) reduces
to (3) if the channel is memoryless, and to (2) if the channel is
used without feedback. Kramer [23], [24] streamlined the notion
of directed information further and explored many interesting
properties; see also Massey and Massey [27].

For channels with certain structures, the validity of the
feedback capacity formula (4) has been established implicitly.
For example, Cover and Pombra [8] gives a multi-letter char-
acterization of the Gaussian feedback capacity, and Alajaji [1]
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Fig. 1. Feedback communication channel Y = g X ;Z .

characterizes the feedback capacity of discrete channels with
additive noise—feedback does not increase the capacity of dis-
crete additive channels when there is no input cost constraint.
Both results can be recast in the form of directed information
(see [8, eq. (52)] and [1, eq. (17)]). The notion of directed infor-
mation in these contexts, however, has a rather limited role as
an intermediate step in the proof of converse coding theorems.
Indeed, the highlight of Cover–Pombra characterization is the
asymptotic equipartition property of arbitrary nonstationary
nonergodic Gaussian processes [8, Sec. V]; see also Pinsker
[33]. (The case of discrete additive channel is trivial since the
optimal input distribution is memoryless and uniform, and
hence feedback does not increase the capacity.)

In a heroic effort [37], [38], Tatikonda attacked the gen-
eral nonanticipatory channel with feedback by combining
Verdú–Han formula for nonfeedback capacity, Massey directed
information, and Shannon strategy for channel side information
[36], as well as dynamic programming for Markov decision
processes. As the cost of generality, however, it seems very
difficult to establish a simple formula like (4) from the ap-
proaches taken therein. See, for example, [38, Ths. 7.3 and 7.5]
for nontrivial sufficient conditions that are needed to establish
the equivalence between a Verdú–Han-type formula and (4).

More recently, Yang, Kavčić, and Tatikonda [42] and Chen
and Berger [6] studied special cases of finite-state channels,
based on Tatikonda’s framework. A finite-state channel [14,
Sec. 4.6] is described by the conditional probability distribution

(5)

where denotes the channel state at time . Using a different
approach based on Gallager’s proof of the nonfeedback capacity
[14, Sec. 5.9], Permuter, Weissman, and Goldsmith [31] proved
various coding theorems for finite-state channels with feedback
that include inter alia the results of [42], [6] and establish the
validity of (4) for indecomposable finite-state channels without
intersymbol interference (i.e., the channel states evolve as an
ergodic Markov chain, independent of the channel input).

As mentioned before, we strive to give a straightforward
treatment of the feedback coding theorem. Towards this goal,
this paper focuses on stationary nonanticipatory channels of
the form

(6)

In words, the channel output at time is given as a
time-invariant deterministic function of channel inputs

up to past sym-
bols and channel noises
up to past symbols. We assume the noise process

is an arbitrary stationary ergodic process (without any mixing
condition) independent of the message sent over the channel.

The channel model (6) is rather simple and physically mo-
tivated. Yet this channel model is general enough to include
many important feedback communication models such as any
additive noise fading channels with intersymbol interference
and indecomposable finite-state channels without intersymbol
interference.1

The channel (6) has finite input memory in the sense of Fein-
stein [11] and can be viewed as a finite-window sliding-block
coder [16, Sec. 9.4] of input and noise processes (cf. primi-
tive channels introduced by Neuhoff and Shields [29] in which
the noise process is memoryless). Compared to the general fi-
nite-state channel model (5), in which the channel has infinite
input memory but the channel noise is memoryless, our channel
model (6) has finite input memory but the noise has infinite
memory; recall that there is no mixing condition on the noise
process . Thus, the finite-state channel model (5) and
the finite sliding-block channel model (6) nicely complement
each other.

Our main result is to show that the feedback capacity
of the channel (6) is characterized by (4). More precisely, we
consider a communication problem depicted in Fig. 1. Here
one wishes to communicate a message index

over the channel

(7)

where the time- channel output on the output alphabet is
given by a deterministic map of the cur-
rent and past channel inputs on the input alphabet
and the current and past channel noises on the noise
alphabet . We assume that the channel noise process
is stationary ergodic and is independent of the message . The
initial values of coming from an unspecified initial
condition , are set arbitrarily, which we de-
note by . Throughout this paper we adopt the convention that
the value of is taken as a fixed constant for any operation per-
formed on it. For example, we have as a constant,
as a function of only, and . Under this convention,
both the encoder and the decoder simply ignore ,
which does not affect the long-term performance of communi-
cation over the channel.

We specify a feedback code with the encoding maps

1A notable exception is a famous finite-state channel called the “trapdoor
channel” introduced by Blackwell [3], the feedback capacity of which is es-
tablished in [30].
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that result in codewords

and the decoding map

The probability of error is defined as

where the message is uniformly distributed over and
is independent of . We say that the rate is achievable
if there exists a sequence of codes with as

. The feedback capacity is defined as the supremum
of all achievable rates. The nonfeedback capacity is defined
similarly, with codewords
restricted to be a function of the message only.

We will prove the following result in Section III.

Theorem 1: The feedback capacity of the channel (7) is
given by

(8)

Our development has two major ingredients. First, we re-
visit the communication problem over the same channel without
feedback in Section II and prove that the nonfeedback capacity
is given by

Roughly speaking, there are three flavors for the achievability
proof of nonfeedback capacity theorems in the literature. The
first one is Shannon’s original argument [34] based on random
codebook generation, asymptotic equipartition property, and
joint typicality decoding, which was made rigorous by Forney
[13] and Cover [7], and now is used widely in coding theorems
for memoryless networks [9, Ch. 15]. This approach, however,
does not easily generalize to channels with memory. The
second flavor is the method of random coding exponent by
Gallager [15], which was later applied to finite-state channels
[14, Sec. 5.9]. This approach is perhaps the simplest one for the
analysis of general finite-state channels and has been adapted
by Lapidoth and Telatar [25] for compound finite-state chan-
nels and by Permuter et al. [31] for finite-state channels with
feedback.

The third and the least intuitive approach is Feinstein’s fun-
damental lemma [12]. This is the most powerful and general
method of the three, and has been applied extensively in the lit-
erature, say, from Khinchin [19] to Gray [16], Verdú and Han
[39], and Tatikonda [37], [38].

Our approach is somewhat different from these three usual
approaches. We use the strong typicality (relative frequency) de-
coding for -dimensional super letters. The encoding is based

on block ergodic decomposition of Nedoma [28], which uses a
long codeword on the -letter super alphabet, constructed as a
concatenation of shorter codewords. While each short code-
word and the corresponding output fall into their own ergodic
mode, the long codeword as a whole maintains the ergodic be-
havior. To be fair, codebook construction of this type is far from
new in the literature, and our method is intimately related to the
one used by Gallager [14, Sec. 9.8] and Berger [2, Sec. 7.2] for
lossy compression of stationary ergodic sources. Indeed, when
the channel (6) has zero memory , then the role of the
input for our channel coding scheme is equivalent to the role of
the covering channel for Gallager’s source coding scheme.

Equipped with this coding method for nonfeedback
sliding-block coder channels (6), the extension to the feedback
case is relatively straightforward. The basic ingredient for this
extension is the Shannon strategy for channels with causal
side information at the transmitter [36], previously employed
by Tatikonda [37], [38] and Permuter et al. [31]. As a matter
of fact, Shannon himself observed that the major utility of
his result is feedback communication. Following is the first
sentence of [36]:

Channels with feedback from the receiving to the trans-
mitting point are a special case of a situation in which there
is additional information available at the transmitter which
may be used as an aid in the forward transmission system.

As observed by Caire and Shamai [5, Proposition 1], the
causality has no cost when the transmitter and the receiver
share the same side information—in our case, the past input
(if decoded faithfully) and the past output (received from
feedback)—and the transmission can fully utilize this side
information as if it were known a priori. Indeed, the capacity of
a memoryless state-dependent channel with memory-
less state sequence known causally at both the transmitter
and the receiver is given by

(9)

which is equal to the capacity of the same channel when the state
sequence is known noncausally at the transmitter and the
receiver [5, Proposition 1]. (See also Lemma 9 in the Appendix.)

As depicted in Fig. 2, given and , a heuristic
coding scheme can be constructed that uses the channel input
sequence and the output sequence

with the past input and output symbols
as

causal side information available at both the transmitter and
the receiver. From (9), one could argue that this coding scheme
achieves the rate for the th input symbol in the length-
super symbol as

(10)

for each , given , and hence the total achievable
rate becomes
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Fig. 2. Heuristic coding scheme to achieve R = I (X ;Y jX ;Y ):
i = 1, 2, 3, n = 3. The solid gray boxes denote active input symbols (code-
words) and output symbols for each stage i, and the stripe shaded boxes de-
note past input and output symbols used as side information. For i = 1, one
can “achieve” I(X ;Y ; Y ; Y ) by encoding over (X ;X ;X ; . . .) and de-
coding with all three-letter output sequences. For i = 2, one can use past
input–output pairs as causal side information, encode over copies ofX , and de-
code with all two-letter output sequences to “achieve” I(X ;Y ; Y jX ;Y ).
Similarly, for i = n = 3 one can “achieve” I(X ;Y jX ;X ; Y ; Y ).

per transmissions. Now a simple algebra shows that this rate
is equal to the maximum directed information as

(11)

This argument, although intuitively appealing and appar-
ently applicable to general channel models, is not completely
rigorous, however. The channel and
its copies sampled every times are not “ergodic” enough,
not to mention memoryless, so one cannot jump to conclude
that is achievable as in the case of
memoryless channels with state (9).

Therefore, we will take more careful steps to prove The-
orem 1, by first proving the achievability of for
all auxiliary random variables and Shannon strategies

, , and then showing that
reduces to via pure algebra.

The Section II revisits nonfeedback communication over the
same channel model and proves the coding theorem, which
will be crucial to the proof of the feedback coding theorem in
Section III. Technical lemmas are delegated to the Appendix.

II. NONFEEDBACK CODING THEOREM REVISITED

This section is devoted to the proof of the following result.

Theorem 2: The nonfeedback capacity of the stationary
channel

(12)

with the input and the stationary ergodic noise process
depicted in Fig. 1 is given by

(13)

Revisiting and proving the nonfeedback coding theorem is
rewarding for two reasons. First, our proof is somewhat different
from the usual techniques and hence is interesting on its own.
(See Section I for the discussion on conventional achievability
proofs of nonfeedback capacity theorems.) Second, our exercise
here will lead to a straightforward proof of the feedback coding
theorem in Section III.

Before we go into the formal proof, observe that we can de-
compose the achievable rate as

As in the heuristic coding scheme described in Fig. 2 of
Section I, the rate

(14)

corresponds to the rate achievable for copies of the channel
with the input , the output , and the non-

causal side information . (Compare this to the feedback
case (10), in which there is additional causal side information

.) Since the channel is not memoryless or even ergodic, we
cannot prove the achievability of (14) directly by coding over

. Instead, we “synchronize” the trans-
mission by concatenating short codewords with pauses between
them, so that the overall long codeword and the channel have an
ergodic behavior. More details follow.

Proof of Theorem 2: We first note that the capacity expression
(13) is well defined because is superadditive (i.e.,

), which implies that the limit exists and

The converse follows immediately from Fano’s inequality
[9, Lemma 7.9.1]. For any sequence of codes

with message drawn uniformly over
, if
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Fig. 3. Input, noise, and output sequences: n = 3, L = 2, m = 1. A comparison can be made to the code construction by Gallager [14, Fig. 9.8.1] for lossy
coding of arbitrary stationary ergodic sources, in which test channels (covering codewords) play the role of input codewords here.

then we must have

where as .
For the achievability, it suffices to show that there exists a

sequence of codes that achieves for each . (Recall
.) Without loss of generality, we assume

that the alphabets , , are finite. Otherwise, we can partition
the space for each and such that

and prove the achievability on this partitioned space.
Codebook Generation. Fix and let denote the

input distribution that achieves . For each , let
. We generate a sequence2 of

codes as depicted in Fig. 3.
For each , generate a codeword

of length on the -letter super alphabet
independently according to

We exhibit the codewords as the rows of a matrix:

...
...

. . .
...

2This gives only a subsequence of (2 ; k) codes. But we can easily in-
terpolate to Ln + n < k < (L + 1)n + n without any rate loss, since
(Ln + n)=((L+ 1)n + n) ! 1 as L ! 1.

Each entry in this matrix is generated independent and identi-
cally distributed (i.i.d.) according to .

Using the construction as depicted in Fig. 3 (see
also Lemma 6 in the Appendix3), the actual codewords

, , which will be transmitted
over the channel, are generated from as
follows:

In other words, is a verbatim copy of with fixed
symbol separating the subsequences of length .

Encoding. If , the transmitter sends the codeword
over the channel.

Decoding. Upon receiving the sequence , the re-
ceiver forms the sequence of length in the

-letter super alphabet , as depicted in Fig. 3:

...

Now we consider and as se-
quences of length on the super alphabet . The re-
ceiver declares that the message was sent if there is a unique

such that

that is, is jointly typical with respect to the
joint distribution specified by and the
definition of the channel (12). Otherwise, an error is declared.

3All technical lemmas referenced in Sections II and III are located in the
Appendix.
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Analysis of the probability of error. Without loss of generality,
we assume was sent. We define the following events:

for , where is the event that the codeword
and are jointly typical. By Bonferonni’s in-

equality, we have

In order to bound , we define as the th-order
super process of length on the super alphabet con-
structed from the noise process as in Fig. 3 (see also
Lemma 6.) Since is blockwise i.i.d. and
independent of , we have from Lemma 7 that

as

Furthermore, is the -letter blockwise function of
, that is,

with the time-invariant function induced by the channel func-
tion in (12). Thus by Lemma 4

as

and

for sufficiently large

On the other hand, the joint typicality of im-
plies the typicality of ; see Lemma 4. Hence, by Lemma 8
we have for each

where as . Consequently,

if is sufficiently large and

or equivalently,

Since and can be made arbitrarily small and
as , we have a sequence of codes

with if

This completes the proof of achievability.

III. PROOF OF THEOREM 1

Recall the channel model:

(15)

with the input and the stationary ergodic noise process
depicted in Fig. 1. We prove that the feedback capacity

is given by

(16)

where the supremum is over all causally conditioned
distributions

We will combine the coding technique developed in the previous
section with the Shannon strategy for channels with side infor-
mation, in particular, Lemma 10.

That the limit in (16) is well defined follows from the super-
additivity of , which is an easy consequence of the sta-
tionarity of the process and the definition of the channel
model (15), in particular, . Thus

The converse was proved by Massey [26, Th. 3]. We repeat
the proof here for completeness. For any sequence of
codes with , we have from Fano’s inequality

(17)

where as . Here (17) follows from the codebook
structure and the Markovity ,

.
For the achievability, we show that there exists a sequence of

codes that achieve for each . As before, we assume that
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Fig. 4. Code, input, noise, and output sequences: n = 3, L = 2, m = 1.

the alphabets are finite. In the light of Lemma 10, it suffices to
show that

(18)

is achievable, where the auxiliary random variables has the
cardinality bounded by , and the maximiza-
tion is over all joint distributions of the form

with deterministic4 , .
Codebook generation and encoding. Fix and let

, and ,
, achieve the maximum of (18). We will also use

the notation and
.

For each , , we generate
a code as summarized in Fig. 4.
As before, , , and are copies of the underlying
sequences , , , respectively, with every st symbol
omitted.

For each , we generate a codeword
of length on the -letter alphabet

independently according to

This gives a codebook matrix with each entry drawn
i.i.d. according to .

4That is, p (x ju ; x ; y ) = 0 or 1.

To communicate the message , the transmitter
chooses the codeword and sends

Thus, the code function utilizes the codeword
and the channel feedback only within the frame of

transmissions (each box in Fig. 4).
Decoding. Upon receiving , the receiver declares that the

message was sent if there is a unique such that

that is, is jointly typical with respect to the
joint distribution specified by ,

, and the definition of the channel (15). Oth-
erwise, an error is declared.

Analysis of the probability of error. We define the following
events:

Without loss of generality, we assume was sent.
From Lemma 7, and are jointly typical with

high probability for sufficiently large. Furthermore, is
an -letter blockwise function of , and thus of

. Therefore, the probability of the event that
the intended codeword is not jointly typical with
vanishes as .

On the other hand, , , is generated blockwise
i.i.d. independent of . Hence, from Lemma 8,
the probability of the event that is jointly typical
with is bounded by

for all
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where as . Consequently, we have

if is sufficiently large and

Thus by letting and then , we can achieve any
rate .

Finally by Lemma 10, this implies that we can achieve

which completes the proof of Theorem 1.

IV. CONCLUDING REMARKS

Trading off generality for transparency, we have focused on
the stationary channels of the form

and presented a straightforward proof of the feedback coding
theorem. As is manifested in previous approaches by Tatikonda
[37], [38] and Permuter et al. [31], the Shannon strategy (also
called code-function or code-tree) has a fundamental role in
transforming the feedback coding problem into a nonfeedback
one. For the given channel model, the equivalent nonfeedback
problem can be then solved by a scalable coding scheme that
constructs a long typical (ergodic) input–output sequence pair
by concatenating shorter nonergodic ones with appropriate
phase shifts.

Lemma 10 provides a transparent (and in a sense, mechan-
ical) method for this feedback–nonfeedback, directed informa-
tion–mutual information transformation, and can be applied to
other channel models, provided that the equivalent nonfeedback
problem has a straightforward coding theorem. For example, we
can show that the finite-state channel

with for some deterministic function
(but without assumption of indecomposability) has the feedback
capacity lower bounded by

This result was previously shown by Permuter et al. [31, Sec.
V] via a generalization of Gallager’s random coding exponent
method for finite state channels without feedback [14, Sec. 5.9].
Here we sketch a simple alternative proof.

From a trivial modification of Lemma 10, the problem re-
duces to showing that

(19)

is achievable for each . But the given Shannon strategy
induces a new time-in-

variant finite-state channel on the -letter super alphabet as
. Hence we can use Gallager’s random

coding exponent method directly to achieve

which can be shown to be no less than our target

because of the deterministic evolution of the state
.

Finally, we comment on an important question that is not
addressed in this paper. Our characterization of the feedback
capacity

(20)

or any similar multiletter expressions are in general not com-
putable and do not provide much insight on the structure of the
capacity achieving coding scheme. One may ask whether a sta-
tionary or even Markov distribution is asymptotically optimal
for the sequence of maximizations in (20). This problem has
been solved for a few specific channel models such as certain
classes of finite-state channels [6], [42], [31], [30] and stationary
additive Gaussian noise channels [21], [22], sometimes with an-
alytic expressions for the feedback capacity. In this context, the
current development is just the first step toward the complete
characterization of the feedback capacity.

APPENDIX

Here we collect relevant materials from ergodic theory and in-
formation theory. Some of the lemmas are classical and are pre-
sented in order to make the paper self-contained. Throughout the
Appendix, denotes a generic stochastic process
on a finite alphabet with associated probability measure
defined on Borel sets under the usual topology on .

A. Ergodicity

Given a stationary process , let
be the associated measure preserving shift transformation. In-
tuitively, maps the infinite sequence to

. We say the transformation (or the process
itself) is ergodic if every measurable set with

satisfies either or .
The following characterization of ergodicity is well known;

see, for example, Petersen [32, Exercise 2.4.4] or Wolfowitz [41,
Lemma 10.3.1].

Lemma 1: Suppose be a stationary process and
let denote the associated measure preserving shift transfor-
mation. Then, is ergodic if and only if

for all measurable and .
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When and are independent sta-
tionary ergodic processes, they are not necessarily jointly er-
godic. For example, if we take

with probability
with probability

and is independent and identically distributed as , then it is
easy to verify that is not ergodic.
However, if one of the processes is mixing reasonably fast, then
they are jointly ergodic. The following result states a sufficient
condition for joint ergodicity.

Lemma 2: If is i.i.d., and is stationary ergodic, inde-
pendent of , then the pair is jointly
stationary ergodic.

A stronger result is true, which assumes to be weakly
mixing only. The proof is an easy consequence of Lemma 1;
for details refer to Brown [4, Proposition 1.6] or Wolfowitz [41,
Th. 10.3.1].

B. Strong Typicality

The next lemma due to Gallager [14, Lemma 9.8.2] deals
with the ergodic decomposition of the -letter super process
that is built from a single-letter stationary ergodic one; see also
Nedoma [28] and Berger [2, Sec. 7.2].

Lemma 3: Suppose be stationary ergodic on
, and let be the associated shift transformation. Define the
th-order super process on as

Then, the super process has ergodic modes, each with
probability and disjoint up to measure zero, where di-
vides . Furthermore, in the space of the original process ,
the sets corresponding to these ergodic modes
can be related by , and

.
We will use the notation , , for the prob-

ability measure under each ergodic mode.
We use the strong typicality [9, Sec. 10.6] as the basic method

of decoding. Here we review a few basic properties of strongly
typical sequences.

First definitions. Let denote the number of occur-
rences of the symbol in the sequence . We say a sequence

is -strongly typical (or typical in short) with respect
to a distribution on if

for all with , and for all
with . Consistent with this definition, we say

a pair of sequences are jointly -strongly typical (or
jointly typical in short) with respect to a distribution on

if

for all with , and
for all with .

The set of strongly typical sequences with respect
to is denoted . We similarly define a joint
typical set for .

The following statement is a trivial consequence of the defi-
nition of typical sequences.

Lemma 4: Suppose . If
and , then

with .
As a special case, if is -strongly typical with respect

to a joint distribution , then is -strongly typical with
respect to the marginal .

Our discussion on the typical sequences so far has not given a
specific context on how they are generated. Now we connect the
notion of strong typicality with ergodic processes. First, from
Birkhoff’s ergodic theorem [32, Th. 2.2.3] and the definition of
ergodicity, the following lemma is immediate.

Lemma 5: Let be stationary ergodic with
. Then

as

As we mentioned above, the th order super process

defined as

is not necessarily ergodic, but is a mixture of disjoint ergodic
modes. Thus, a “typical” sequence from the super process
is not necessarily typical with respect to on the -letter
alphabet . The following construction by Gallager [14, pp.
498–499], however, gives a typical sequence in the -letter
super alphabet by shifting through each ergodic phase.

Lemma 6: Given positive integers , and a stationary er-
godic process , construct as follows
(see Fig. 5):

...

In other words, is a verbatim copy of
with every st position skipped. Now let

be the associated th order super
process of length . Then,

as

Proof: From Lemma 3 and the given construction of skip-
ping one position after every symbols, each of sequences

...
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Fig. 5. Construction of ~Z from Z : n = 3, L = 2.

falls in one of ergodic modes with sequences
in each mode. Now for each sequence with corresponding er-
godic mode , the relative frequencies of all super symbols

converge to the corresponding distribution
as . But each ergodic mode is visited evenly, each
by sequences. Therefore, the relative frequencies of all

in the entire sequence converge to

as .

Combining Lemma 2 with the proof of Lemma 6, we have
the following result.

Lemma 7: Under the condition of Lemma 6, let further
be blockwise i.i.d. , that is,

, , i.i.d. , independent of .
Then

as

Finally we recall a key result that links the typicality with
mutual information [9, Lemma 10.6.2].

Lemma 8: Suppose and let
be i.i.d. . For , the probability that

is upper bounded by

where as .

C. Channels With Side Information

We prove the following identity, originally proved by Caire
and Shamai [5, Proposition 1], in a purely algebraic manner,
then review its meaning in information theory. Here we assume
every alphabet is finite.

Lemma 9: Suppose . For a given conditional dis-
tribution on the product space , we have

(21)

where the maximum on the left-hand side is taken over all con-
ditional distributions of the form
with deterministic (that is, or ), and
the auxiliary random variable has cardinality bounded by

.

Proof: For any joint distribution of the
form with deter-
ministic , we have the following Markov chains:

and . Combined with the
independence of and , these Markov relationships imply
that

(22)

But it can be easily verified [40, eq. (44)] that any conditional
distribution can be represented as

for appropriately chosen and deterministic with
cardinality of upper bounded by .
Therefore, we have

which proves the desired result.

It is well known that the capacity of a memoryless state-de-
pendent channel is given as

if the state information is known at both the encoder and the
decoder prior to the actual communication. What will happen
if the transmitter learns the state information on the fly, so that
only the past and present state realization can be utilized for
communication?

Shannon [36] considered the communication over a memo-
ryless state-dependent channel with state information
available only at the transmitter on the fly, and showed that the
capacity is given by

(23)

where the cardinality of is bounded as , counting
all functions . This capacity is achieved by at-
taching a physical device in front of the actual
channel as depicted in Fig. 6, which maps the channel state to
the channel input according to the function (index) . Now
treating as the input to the newly generated channel

and coding as in the case of usual memoryless channels, we can
easily achieve . This method, surprisingly simple yet
optimal, is sometimes called the Shannon strategy.

Now when the decoder also knows the channel state , it
is equivalent for the decoder to receive the augmented channel
output . Thus, the capacity of the same channel
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Fig. 6. Shannon strategy for coding with side information.

with the state information causally known at both the
encoder and the decoder5 follows from (23) as

Therefore, Lemma 9 states that when the same side informa-
tion is available at the receiver, the causal encoder with the best
Shannon strategy performs no worse than the noncausal en-
coder who can preselect the entire codeword compatible with
the whole state sequence. For an operational (rather than alge-
braic) proof of the same result, refer to [5, Proposition 1].

For the last lemma needed for main results, we recall the no-
tation of causally conditioned distributions

(24)

and

(25)

(The notation (24) and (25) can be unified if we define

By chain rule, we have

for any joint distribution . Thus, given a causally
conditioned distribution (or a channel) , the causally
conditioned distribution (or the input) completely
specifies the joint distribution .

As a corollary of Lemma 9, we have the following result (cf.
[38, Lemma 5.2]):

Lemma 10: Suppose a causally conditioned distribution
is given. Then we have

(26)
where the maximum on the left-hand side is taken over all joint
distributions of the form

(27)

5For the usual block coding, the decoder causality is irrelevant. The message
is decoded only after the entire block is received.

with deterministic , , and the
auxiliary random variables have the cardinalities bounded
by , respectively.

Proof: Let be any joint distribution of
the form (27) such that , ,
are deterministic and that , i.e.,
the joint distribution is consistent with the
given causally conditioned distribution . For

, it is easy to verify that
is independent of , which implies

that form a Markov chain.
On the other hand, is a deterministic function of

and thus also
form a Markov chain. Similarly, we have the Markovity for

and .
Therefore, we have

(28)

(29)

where the equality (28) follows from the independence of
and , and (29) follows from Markov relationships
observed above. Now from the alternative expansion of the di-
rected information shown in (11), we have

Finally, by using distributions of the form

for each , with appropriately chosen and de-
terministic , we can represent any causally
conditioned distribution

which implies that

and completes the proof.
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