
1328 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 3, MARCH 2008

Capacity of a Class of Deterministic Relay Channels

Young-Han Kim, Member, IEEE

Abstract—The capacity of a class of deterministic relay channels with
transmitter input X , receiver output Y , relay output Y = f(X;Y ), and
separate noiseless communication link of capacity R from the relay to the
receiver, is shown to be

C(R ) = supminfI(X;Y ) +R ; I(X;Y; Y )g:

Roughly speaking, every bit from the relay is worth one bit to the receiver
until saturation at capacity.

Index Terms—Capacity, deterministic relay channel, primitive relay
channel.

We consider a class of relay channels, which we call primitive relay
channels, as depicted in Fig. 1. Here the channel input signal X is re-
ceived by the relay Y1 and the receiver Y through a channel p(y; y1jx),
and the relay can communicate to the receiver over a separate noise-
less link of rate R0. We wish to communicate a message index W 2
[2nR] := f1; 2; . . . ; 2nRg reliably over this relay channel.

A (2nR; 2nR ; n) code is specified by an encoding function Xn :
[2nR]! Xn, a relay function J : Yn1 ! [2nR ], and a decoding func-
tion Ŵ : Yn� [2nR ]! [2nR]. The probability of error is defined by
P

(n)
e = PrfW 6= Ŵ (Y n; J(Y n

1 )g, with the message W distributed
uniformly over [2nR]. We say that a rate pair (R;R0) is achievable if
there exists a sequence of (2nR; 2nR ; n) codes such that P (n)

e tends
to zero as n!1. The capacityC(R0) is defined as the supremum of
all rates R for which (R;R0) is achievable.

With relay-to-receiver communication decoupled from the broad-
casting of X over p(y; y1jx), the primitive relay channel problem is
considerably simpler than the general relay channel (see van der Meulen
[12], Cover and El Gamal [4], Kramer et al. [10], El Gamal et al. [8], and
the references therein). Nonetheless, the primitive relay channel cap-
tures essential challenges of relaying, and a complete characterization of
the capacityC(R0) remains elusive; refer to [9] for further discussion.

In this correspondence, we focus on a special class of primitive relay
channels, in which the channel output Y1 = f(X;Y ) at the relay is a
deterministic function of the channel inputX and the channel output Y
at the ultimate receiver. Compared to the semideterministic relay model
studied by El Gamal and Aref [7], this model is more deterministic in
the relay-to-receiver link and less deterministic in the transmitter-to-
relay link.

We present the following main result.

Theorem 1: The capacity C(R0) of the primitive relay channel, in
which the relay output Y1 = f(X;Y ) is a deterministic function of the
input X and the receiver output Y , is given by

C(R0) = sup
p(x)

minfI(X;Y ) +R0; I(X;Y; Y1)g: (1)
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Fig. 1. The relay channel with noiseless link of capacity R .

Fig. 2. The set of achievable (R;R ) pairs for a fixed p(x).

Proof: The converse follows immediately from the cut-set upper
bound on information flows [6, Sec. 15.10].

For the achievability, it suffices to show that given the input distri-
bution p(x) (and the corresponding joint distribution p(x; y; y1)), any
rate pair (R;R0) such that

R <I(X;Y ) +R0 (2a)

R <I(X;Y; Y1) = I(X;Y ) +H(Y1jY ) (2b)

is achievable, as depicted in Fig. 2. (Here the equality in (2b) follows
since the channel determinism Y1 = f(X;Y ) implies I(X;Y1jY ) =
H(Y1jY ).) Without loss of generality, suppose the channel is discrete.
Then we can use the Slepian–Wolf rate R0 > H(Y1jY ) to describe
Y n
1 to the receiver [11] and achieve R < I(X;Y; Y1). On the other

hand, by ignoring the relay (R0 = 0), we can achieve R < I(X;Y ).
Time-sharing these two extreme points, we can achieve the entire re-
gion described by (2), which completes the proof.

There are alternative coding schemes that achieve the capacity (1)
without time-sharing, as sketched in the following examples.

Example 1 (Hash-and-Forward [5]): Suppose the input signal
under power constraint P is transmitted over a Gaussian primitive
relay channel

Y =X + Z

Y1 =X + Z1

where Z and Z1 are jointly Gaussian with zero mean, equal variance
EZ2 = EZ2

1 = N , and correlation coefficient �. Suppose � = 1.
Then Y1 = Y , the relay is useless, and the capacity of the relay channel
is C(R0) = (1=2) log(1 + P=N) = C(0) for all R0 � 0.

If � = 0, the relay furnishes an independent look at X . What should
the relay say to Y ? This is the most interesting case, but the capacity
C(R0), mentioned in [3], remains unsolved and typifies the primary
open problem of the relay channel. As a partial converse, Zhang [14]
proved that a strict inequalityC(R0)<C(0)+R0 holds for allR0>0.

If � = �1 (i.e., Z1 = �Z), the relay, while having no more infor-
mation than the receiver Y , has much to say, since combined knowl-
edge of Y and Y1 allows perfect determination of X . Indeed, Theorem
1 shows that

C(R0) = C(0) +R0:
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Every bit sent by the relay counts as one bit of information, despite the
fact that the relay cannot decode the message at all.

To achieve this rate, the receiver checks 2n(C(R )��) codewords
Xn(W ), W 2 [2n(C(R )��)], one by one, with respect to the re-
ceived signal Y n and one of 2nR hash indexes from Y n

1 . More specif-
ically, the receiver first forms a list of 2n(C(R )�C(0)��) = 2n(R ��)

codewords Xn(W ) that are jointly typical with given Y n, or equiv-
alently, forms a list of 2n(R ��) relay received sequence candidates
Y n
1 (W ) = 2Xn(W ) � Y n. Now the relay can spend nR0 bits to

communicate the pre-defined hash index of Y n
1 , which is sufficient to

convey Y n
1 asymptotically error-free to the receiver and determine the

correct codeword Xn(W ).

The above coding scheme, called “hash-and-forward”, can be shown
[5, Sec. II] to achieve the capacity (1) for any primitive relay channel
with Y1 = f(X; Y ).

Example 2 (Compress-and-Forward [4, Th. 6]): A binary input
signalX 2 f0; 1g is sent over a binary symmetric channel Y = X�S,
where the binary additive noise S � Bern(p) is independent of X .
With no information on S available at the transmitter or the receiver,
the capacity is given as C(0) = 1 �H(p):

Now suppose there is an intermediate node which observes S and
“relays” that information to the decoder through a side channel of ca-
pacity R0. Since S = X � Y is a deterministic function of (X;Y ),
Theorem 1 shows that

C(R0) = 1�H(p) +R0

for 0 � R0 � H(p).
To achieve this rate, the relay compresses the state sequence Sn

using the binary lossy source code of rateR0. More specifically, we use
random covering with the standard backward channel S = Ŝ � U for
the binary rate distortion problem [6, Sec. 10.3.1], where Ŝ 2 f0; 1g is
the reconstruction symbol and U � Bern(q) is independent of Ŝ (and
X) with parameter q satisfying R0 = I(S; Ŝ) = H(p)�H(q): Thus,
using nR0 bits, the relay can describe the reconstruction sequence Ŝn

to the ultimate receiver. Finally, decoding codewords Xn, generated
randomly according toBern(1=2), based on (Y n; Ŝn), we can achieve
the rate

I(X;Y; Ŝ) = I(X;X � S; S � U)

� I(X;X � U)

= 1�H(q)

= 1�H(p) +R0:

In general, this coding scheme, called “compress-and-forward”, can
achieve I(X;Y; Ŝ) = I(X;Y jŜ) for any p(x) and p(ŝjs) such that
the rate requirement I(S; ŜjY ) � R0 is satisfied for the Wyner–Ziv
coding [13] of S with side information Y . Simple algebra [5, Sec-
tion V] shows that this achievable rate

R�(R0) = sup
p(x)p(ŝjs):I(S;ŜjY )�R

I(X;Y; Ŝ)

is identical to (1) when S = f(X;Y ), which confirms a special case
of a conjecture by Ahlswede and Han [1, Sec. V] on channels with
state information partially available at the receiver. A recent paper by
Aleksic, Razaghi, and Yu [2] extends the above binary example into
a class of nondeterministic channels (i.e., S 6= f(X;Y )) and obtains
interesting capacity results.

As a final note, we observe that Theorem 1 can be extended to mul-
tiple relays if the channel outputs Yi = fi(X;Y ) at the relays can be
determined from (X;Y ). For example, when two relays spends rates
R1 and R2 to communicate to the receiver, the capacity is given by

C(R1;R2) � sup
p(x)

min

I(X;Y ) +R1 +R2;

I(X;Y; Y1) +R2;

I(X;Y; Y2) +R1;

I(X;Y; Y1; Y2)

:
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