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Abstract—We consider the problem of transmitting data at rate
� over a state-dependent channel ������ �� with state information
available at the sender and at the same time conveying the infor-
mation about the channel state itself to the receiver. The amount
of state information that can be learned at the receiver is captured
by the mutual information ����� 	 �� between the state sequence
�� and the channel output 	 �. The optimal tradeoff is charac-
terized between the information transmission rate � and the state
uncertainty reduction rate �, when the state information is either
causally or noncausally available at the sender. In particular, when
state transmission is the only goal, the maximum uncertainty re-
duction rate is given by �� � ��������� ��
���	 �. This result is
closely related and in a sense dual to a recent study by Merhav and
Shamai, which solves the problem of masking the state information
from the receiver rather than conveying it.

Index Terms—Capacity, causal state information, channels with
state information, joint source–channel coding, noncausal state in-
formation, state amplification, state uncertainty reduction, writing
on dirty paper.

I. INTRODUCTION

ACHANNEL with noncausal state information at
the sender has capacity

(1)

as shown by Gelfand and Pinsker [13]. Transmitting at capacity,
however, obscures the state information as received by the
receiver . In some instances we wish to convey the state in-
formation itself, which could be time-varying fading param-
eters or an original image that we wish to enhance. For example,
a stage actor with face uses makeup to communicate to the
back row audience . Here is used to enhance and exag-
gerate rather than to communicate new information. Another
motivation comes from cognitive radio systems [12], [22], [8],
[17] with the additional assumption that the secondary user
communicates its own message and at the same time facilitates
the transmission of the primary user’s signal . How should
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the transmitter communicate over the channel to “amplify” his
knowledge of the state information to the receiver? What is the
optimal tradeoff between state amplification and independent
information transmission?

To answer these questions, we study the communication
problem depicted in Fig. 1. Here the sender has access to the
channel state sequence , independent
and identically distributed (i.i.d.) according to , and wishes
to transmit a message index ,
independent of , as well as to help the receiver reduce the
uncertainty about the channel state in uses of a state-depen-
dent channel . Based on the message
and the channel state , the sender chooses and
transmits it across the channel. Upon observing the channel
output , the receiver guesses and forms a list

that contains likely candidates of the actual
state sequence .

Without any observation , the receiver would know only
that the channel state is one of typical sequences
(with almost certainty) and we can say the uncertainty about
is . Now upon observing and forming a list
of likely candidates for , the receiver’s list size is reduced
from to . Thus, we define the channel state un-
certainty reduction rate to be

as a natural measure for the amount of information the receiver
learns about the channel state. In other words, the uncertainty re-
duction rate captures the difference between the
original channel state uncertainty and the residual state uncer-
tainty after observing the channel output. Later, in Section III,
we will draw a connection between the list size reduction and
the conventional information measure that also cap-
tures the amount of information learns about .

More formally, we define a code as the encoder
map

and decoder maps

with list size

The probability of a message decoding error and the prob-
ability of a list decoding error are defined, respectively, as
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Fig. 1. Pure information transmission versus state uncertainty reduction.

where the message index is chosen uniformly over and
the state sequence is drawn i.i.d. , independent of .
A pair is said to be achievable if there exists a sequence
of codes with and as

. Finally, we define the optimal tradeoff region, or
the tradeoff region in short, to be the closure of all achievable

pairs, and denote it by .
This paper shows that the tradeoff region can be charac-

terized as the union of all pairs satisfying

for some joint distribution of the form .
As a special case, if the encoder’s sole goal is to “amplify”

the state information ( ), then the maximum uncertainty
reduction rate

is achievable for some

is given by

(2)

The maximum uncertainty reduction rate is achieved by de-
signing the signal to enhance the receiver’s estimation of
the state while using the remaining pure information-bearing
freedom in to provide more information about the state.
More specifically, there are three different components involved
in reducing the receiver’s uncertainty about the state.

1) The transmitter uses the channel capacity to convey the
state information. In Section II, we study the classical
setup [19], [15] of coding for memory with defective
cells (Example 1) and show that this “source–channel
separation” scheme is optimal when the memory defects
are symmetric.

2) The transmitter gets out of the way of the receiver’s view of
the state. For instance, the maximum uncertainty reduction
for the binary multiplying channel (Example
2 in Section II) with binary input and binary
state is achieved by sending .

3) The transmitter actively amplifies the state. In Example
3 in Section III, we consider the Gaussian channel

with Gaussian state and Gaussian noise .
Here the optimal transmitter amplifies the state as
under the given power constraint .

It is interesting to note that the maximum uncertainty reduc-
tion rate is the information rate that could be

achieved if both the state and the signal could be freely
designed, instead of the state being generated by nature. This
rate also appears in the sum rate of the capacity region expres-
sion for the cooperative multiple-access channel [7, Problem
15.1] and the multiple-access channel with cribbing encoders
by Willems and van der Meulen [32].

When the state information is only causally available at the
transmitter, that is, when the channel input depends on only
the past and current channel state , we will show that the
tradeoff region is given as the union of all pairs sat-
isfying

for some joint distribution . Interest-
ingly, the maximum uncertainty reduction rate stays the
same as in the noncausal case (2). Thus, causality incurs no cost
on the (sum) rate which is again reminiscent of the multiple-ac-
cess channel with cribbing encoders [32].

The problem of communication over state-dependent chan-
nels with state information known at the sender has attracted a
great deal of attention. This research area was first pioneered
by Shannon [27], Kuznetsov and Tsybakov [19], and Gel’fand
and Pinsker [13]. Several advancements in both theory and prac-
tice have been made over the years. For instance, Heegard and
El Gamal [15], [14] characterized the channel capacity and de-
vised practical coding techniques for a computer memory with
defective cells. Costa [5] studied the now famous “writing on
dirty paper” problem and showed that the capacity of an additive
white Gaussian noise channel is not affected by additional inter-
ference, as long as the entire interference sequence is available
at the sender prior to the transmission. This fascinating result
has been further extended with strong motivations from appli-
cations in digital watermarking (see, for example, Moulin and
O’Sullivan [24], Chen and Wornell [3], and Cohen and Lapidoth
[4]) and multiple-antenna broadcast channels (see, for example,
Caire and Shamai [2], Weingarten, Steinberg, and Shamai [31],
and Mohseni and Cioffi [23]). Readers are referred to Caire and
Shamai [1], Lapidoth and Narayan [20], and Jafar [16] for more
complete reviews on the theoretical development of the field.
On the practical side, Erez, Shamai, and Zamir [10], [34] pro-
posed efficient coding schemes based on lattice strategies for
binning. More recently, Erez and ten Brink [11] report efficient
coding techniques that almost achieve the capacity of Costa’s
dirty paper channel.

In [29], [30], we formulated the problem of simultaneously
transmitting pure information and helping the receiver estimate
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the channel state under a distortion measure. Although the char-
acterization of the optimal rate–distortion tradeoff is still open in
general (cf. [28]), a complete solution is given for the Gaussian
case (the writing on dirty paper channel) under quadratic dis-
tortion [29]. In this particular case, optimality was shown for a
simple power-sharing scheme between pure information trans-
mission via Costa’s original coding scheme and state amplifica-
tion via simple scaling.

Recently, Merhav and Shamai [21] considered a related
problem of transmitting pure information, but this time under
the additional requirement of minimizing the amount of infor-
mation the receiver can learn about the channel state. In this
interesting work, the optimal tradeoff between pure information
rate and the amount of state information is characterized
for both causal and noncausal setups. Furthermore, for the
Gaussian noncausal case (writing on dirty paper), the optimal
rate–distortion tradeoff is given under quadratic distortion.
(This may well be called “writing dirty on paper.”)

The current paper thus complements [21] in a dual manner.
It is refreshing to note that our notion of uncertainty reduction
rate is essentially equivalent to Merhav and Shamai’s notion
of ; both notions capture the normalized mutual information

. (See the discussion in Section III.) The crucial dif-
ference is that is to be maximized while is to be minimized.
Both problems admit single-letter optimal solutions.

The rest of this paper is organized as follows. In the next sec-
tion, we establish the optimal tradeoff region for the
case in which the state information is noncausally avail-
able at the transmitter before the actual communication. Sec-
tion III extends the notion of state uncertainty reduction to con-
tinuous alphabets, by identifying the list decoding requirement

with the mutual information rate .
In particular, we characterize the optimal tradeoff region
for Costa’s “writing on dirty paper” channel. Since the intuition
gained from the study of the noncausal setup carries over when
the transmitter has causal knowledge of the state sequence, the
causal case is treated only briefly in Section IV, followed by
concluding remarks in Section V.

II. OPTIMAL TRADEOFF: NONCAUSAL CASE

In this section, we characterize the optimal tradeoff region
between the pure information rate and the state uncertainty
reduction rate with state information noncausally available at
the transmitter, as formulated in Section I.

Theorem 1: The tradeoff region for a state-dependent
channel with state information non-
causally known at the transmitter is the union of all pairs
satisfying

(3)

(4)

(5)

for some joint distribution of the form ,
where the auxiliary random variable has cardinality bounded
by .

As will be clear from the proof of the converse, the region
given by (3)–(5) is convex. (We can merge the time-sharing
random variable into .) Since the auxiliary random variable

affects the first inequality (3) only, the cardinality bound on
follows directly from the usual technique; see Gel’fand and

Pinsker [13] or a general treatment by Salehi [26]. Finally, we
can take as a deterministic function of without re-
ducing the region, but at the cost of increasing the cardinality
bound of ; refer to the proof of Lemma 2 below.

It is easy to see that we can recover the Gel’fand–Pinsker
capacity formula

for some

For the other extreme case of pure state amplification, we have
the following result.

Corollary 1: Under the condition of Theorem 1, the max-
imum uncertainty reduction rate

for some

is given by

(6)

Thus, the receiver can learn about the state essentially at
the maximal cut-set rate .

Before we prove Theorem 1, we need the following two
lemmas. The first one extends Fano’s inequality [7, Lemma
7.9.1] to list decoding.

Lemma 1: For a sequence of list decoders
with list size fixed for each , let

be the sequence of corresponding
probabilities of list decoding error. If , then

where as .
Proof: Define an error random variable as

if
if .

We can then expand

Note that and . We can also
bound as
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where the inequality follows because when there is no error, the
remaining uncertainty is at most , and when there is an
error, the uncertainty is at most . This implies that

Taking proves the desired
result.

The second lemma is crucial to the proof of Theorem 1
and contains a more interesting technique than Lemma 1.
This lemma shows that the third inequality (5) can be re-
placed by a tighter inequality (7) below (recall that

since ), which becomes
crucial for the achievability proof of Theorem 1.

Lemma 2: Let be the union of all pairs satisfying
(3)–(5). Let be the closure of the union of all pairs
satisfying

(3)

(4)

(7)

for some joint distribution , where the
auxiliary random variable has finite cardinality. Then

Proof: Since forms a Markov chain, it
is trivial to check that

(8)

For the other direction of inclusion, we need some no-
tation. Let be the set of all distributions of the form

consistent with the given and
, where the auxiliary random variable is defined

on an arbitrary finite set. Further, let be the restriction of
such that for some function , i.e.,

takes values or only.
If we define to denote the closure of all pairs sat-

isfying (3), (4), and (7) over , or equivalently, if is defined
to be the restriction of over a smaller set of distributions ,
then clearly

(9)

Let be defined as the closure of pairs satisfying
(3)–(5). Since forms a Markov chain on

, we have

(10)

To complete the proof, it now suffices to show that

(11)

To see this, we restrict to the distributions of the form
with independent of , namely

(12)

with deterministic , i.e., is a function of ,
and call this restriction . Since is a deterministic function
of and at the same time form
a Markov chain, can be written as the closure of all
pairs satisfying

for some distribution of the form sat-
isfying (12). But we have

and the set of conditional distributions on given sat-
isfying (12) is as rich as any . (Indeed, any conditional
distribution can be represented as
for appropriately chosen and deterministic distri-
bution with cardinality of upper-bounded by

; see also [32, Eq. (44)].) Therefore, we have

(13)

which completes the proof.

Now we are ready to prove Theorem 1.

Proof of Theorem 1: For the proof of achievability, in the
light of Lemma 2, it suffices to prove that any pair satis-
fying (3), (4), (7) for some is achievable. Since the
coding technique is quite standard, we only sketch the proof
here. For fixed , the result of Gel’fand–Pinsker [13]
shows that the transmitter can send bits reli-
ably across the channel. Now we allocate

bits for sending the pure information and use the re-
maining bits for sending the state
information by random binning. More specifically, we assign
typical sequences to bins at random and send the bin
index of the observed using bits. At the receiving end,
the receiver is able to decode the codeword from with
high probability. Using joint typicality of , the
state uncertainty can be first reduced from to .
Indeed, the number of typical sequences jointly typical with

is bounded by . In addition, using
bits of independent refinement informa-

tion from the hash index of , we can further reduce the state
uncertainty by . Hence, by taking the list of all sequences
jointly typical with satisfying the hash check, we have
the total state uncertainty reduction rate
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By varying , it can be readily seen
that all pairs satisfying

for any fixed are achievable.
For the proof of converse, we have to show that given any

sequence of codes with , the
pairs must satisfy

for some joint distribution .
The pure information rate can be readily bounded from the

previous work by Gel’fand and Pinsker [13, Proposition 3]. Here
we repeat a simpler proof given in Heegard [14, Appendix 2]
for completeness; see also [9, Lecture 13]. Starting with Fano’s
inequality, we have the following chain of inequalities:

where follows from the Csiszár sum formula

and follows because is independent of . Rec-
ognizing the auxiliary random variable
and noting that form a Markov chain, we
have

(14)

On the other hand, since , we can
trivially bound by Lemma 1 as

Similarly, we can bound as

(15)

where follows since is independent of and condi-
tioning reduces entropy, follows from the data processing
inequality (both directions), and follows from the memory-
lessness of the channel.

We now introduce the usual time-sharing random variable
uniform over , independent of everything else. Then
(14) implies

On the other hand, (15) implies

where the last equality follows since
form a Markov chain.

Finally, we recognize
, and note that ,
, and , which completes the proof of

the converse.

Roughly speaking, the optimal coding scheme is equivalent
to sending the codeword reliably at the Gel’fand–Pinsker
rate and reducing the receiver’s un-
certainty by from and the decoded code-
word . It should be noted that has the same form
as the achievable region for the dual tradeoff problem between
pure information rate and (minimum) normalized mutual in-
formation rate studied in [21]. But we can
reduce the uncertainty about further by allocating part of
the pure information rate to convey independent refinement
information (hash index of ). By varying we can
trace the entire tradeoff region .

It turns out an alternative coding scheme based on Wyner–Ziv
source coding with side information [33], instead of random
binning, also achieves the tradeoff region . To see this, fix
any and satisfying
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Fig. 2. Memory with defective cells.

and consider the Wyner–Ziv encoding of with cov-
ering codeword and side information at the
decoder. More specifically, we can generate
codewords and assign them into bins. As before, we use
the Gel’fand–Pinsker coding to convey a message of rate

reliably over the channel. Since the rate
is sufficient to reconstruct at the re-

ceiver with side information and , we can allocate
the rate for conveying and use the remaining rate

for extra pure information. Forming
a list of jointly typical with results in the
uncertainty reduction rate given by

Thus the tradeoff region can be achieved via the combi-
nation of two fundamental results in communication with side
information: channel coding with side information by Gel’fand
and Pinsker [13] and rate distortion with side information by
Wyner and Ziv [33]. It is also interesting to note that the infor-
mation about can be transmitted in a manner completely in-
dependent of geometry (random binning) or completely depen-
dent on geometry (random covering); refer to [6] for a similar
phenomenon in a relay channel problem.

When is a function of , it is optimal to identify
, and Theorem 1 simplifies to the following corollary.

Corollary 2: The tradeoff region for a deterministic state-
dependent channel with state information
noncausally known at the transmitter is the union of all
pairs satisfying

(16)

(17)

(18)

for some joint distribution of the form . In
particular, the maximum uncertainty reduction rate is given by

(19)

The next two examples show different flavors of optimal state
uncertainty reduction.

Example 1: Consider the problem of conveying information
using a write-once memory device with stuck-at defective cells
[19], [15] as depicted in Fig. 2. Here each memory cell has prob-
ability of being stuck at , probability of being stuck at ,

Fig. 3. The optimal ����� tradeoff for memory with defective cells.

and probability of being a good cell, with . It is
easy to see that the channel output is a simple deterministic
function of the channel input and the state .

Now it is easy to verify that the tradeoff region is given
by

(20)

(21)

(22)

where can be chosen arbitrarily ( ). This region is
achieved by choosing . Without loss of gener-
ality, we can choose independent of , because
the input affects only when . There are two cases to
consider.

(a) If , then the choice of maximizes both
(20) and (22), and hence achieves the entire tradeoff re-
gion . The optimal transmitter splits the full channel
capacity to send both the pure infor-
mation and the state information. (See Fig. 3(a) for the
case .)

(b) On the other hand, when , there is a clear tradeoff in
our choice of . For example, consider the case

. If the goal is to communicate pure in-
formation over the channel, we should take
to maximize the number of distinguishable input prepara-
tions. This gives the channel capacity .
If the goal is, however, to help the receiver reduce the
state uncertainty, we take , i.e., we transmit a fixed
signal . This way, the transmitter can minimize his
interference with the receiver’s view of the state . The
entire tradeoff region is given in Fig. 3(b).

Example 2: Consider the binary multiplying channel
, where the output is the product of the input

and the state . We assume that the state sequence
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is drawn i.i.d. according to . It can be easily shown that
the optimal tradeoff region is given by

(23)

(24)

(25)

This is achieved by , independent of .
As in Example 1(b), there is a tension between the pure in-

formation transmission and the state amplification. When the
goal is to maximize the pure information rate, we should choose

to achieve the capacity . But when the goal is to
maximize the state uncertainty reduction rate, we should choose

( ) to achieve . In words, to maxi-
mize the state uncertainty reduction rate, the transmitter simply
clears the receiver’s view of the state.

III. EXTENSION TO CONTINUOUS STATE SPACE

The previous section characterized the tradeoff region be-
tween the pure information rate and the state uncertainty re-
duction rate . Apparently, the no-
tion of uncertainty reduction rate is meaningful only when
the channel state has finite cardinality (i.e., ), or at
least when .

However, from the proof of Theorem 1 (the generalized
Fano’s inequality in Lemma 1), along with the fact that the
optimal region is single-letterizable, we can take an alternative
look at the notion of state uncertainty reduction as reducing
the list size from to . We will show shortly in
Proposition 1 that the difference of the
normalized list size is essentially equivalent to the normalized
mutual information , which is well-defined
for an arbitrary state space and captures the amount of infor-
mation the receiver can learn about the state (or lack
thereof [21]). Hence, the physically motivated notion of list
size reduction is consistent with the mathematical information
measure , and both notions of state uncertainty reduction
can be used interchangeably, especially when is finite.

To be more precise, we define a code by an encoding
function

and a decoding function

Then, the associated state uncertainty reduction rate for the
code is defined as

where the mutual information is with respect to the joint
distribution

induced by with message distributed uniformly
over , independent of . Similarly, the probability of
error is defined as

A pair is said to be achievable if there exists a sequence
of codes with and

The closure of all achievable pairs is called the tradeoff
region . (Here we use the notation instead of to tem-
porarily distinguish this from the original problem formulated
in terms of the list size reduction.)

We now show that the optimal tradeoff between the in-
formation transmission rate and the mutual information rate

has the same solution as the optimal tradeoff between
and the list size reduction rate .

Proposition 1: The tradeoff region for a state-dependent
channel with state information non-
causally known at the transmitter is the closure of all
pairs satisfying

(3)

(4)

(5)

for some joint distribution of the form
with auxiliary random variable . Hence, has the identical
characterization as in Theorem 1.

Proof: Let be the region described by (3)–(5). We pro-
vide a sandwich proof , which is given
implicitly in the proof of Theorem 1.

More specifically, consider a finite partition1 to quantize the
state random variable into . Under this partition, let
be the set of all pairs satisfying

for some joint distribution with
auxiliary random variable . Consider the original list size
reduction problem with state information and let
denote the tradeoff region. Then Theorem 1 shows that

. In particular, for any and ,
there exists a sequence of codes

such that
and .

Now from the generalized Fano’s inequality (Lemma 1), the
achievable list size reduction rate should satisfy

with as . Hence, by letting and ,
we have from the definition of that

Also, it follows trivially from repeating the intermediate steps
in the converse proof of Theorem 1 that .

1Recall that the mutual information between arbitrary random variables �
and � is defined as ����� � � ��� ����	 � �� 	 �, where the supremum is
over all finite partitions � and�; see Kolmogorov [18] and Pinsker [25].
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Fig. 4. Writing on dirty paper.

Finally, taking a sequence of partitions with mesh and
hence letting , we have the desired result.

Since both notions of state uncertainty reduction, the list
size reduction and the mutual information

lead to the same answer, we will subsequently use
them interchangeably and denote the tradeoff region by the
same symbol .

Example 3: Consider Costa’s writing on dirty paper model
depicted in Fig. 4 as the canonical example of a continuous state-
dependent channel. Here the channel output is given by

, where is the channel input subject
to a power constraint , is the
additive white Gaussian state, and is the white
Gaussian noise. We assume that and are independent.

For the writing on dirty paper model, we have the following
tradeoff between the pure information transmission and the state
uncertainty reduction.

Proposition 2: The tradeoff region for the Gaussian
channel depicted in Fig. 4 is characterized by the boundary
points , where

(26)

(27)

Proof sketch: The achievability follows from Proposition 1
with trivial extension to the input power constraint. In partic-
ular, we use the simple power sharing scheme proposed in [29],
where a fraction of the input power is used to transmit the
pure information using Costa’s writing on dirty paper coding
technique, while the remaining fraction of the power is
used to amplify the state. In other words

(28)

with independent of , and

with

Evaluating and for each
, we recover (26) and (27).

The proof of converse is essentially the same as that of [29,
Theorem 2], which we do not repeat here.

As an extreme point of the , we recover Costa’s writing
on dirty paper result

by taking . On the other hand, if state uncertainty reduc-
tion is the goal, then all of the power should be used for state
amplification. The maximum uncertainty reduction rate

is achieved with and .
In [29, Theorem 2], the optimal tradeoff was characterized

between the pure information rate and the receiver’s state es-
timation error . Although the no-
tion of state estimation error in [29] and our notion of the
uncertainty reduction rate appear to be distinct objectives
at first sight, the optimal solutions to both problems are iden-
tical, as shown in the proof of Proposition 2. There is no sur-
prise here. Because of the quadratic Gaussian nature of both
problems, minimizing the mean-squared error
can be recast into maximizing the mutual information ,
and vice versa. Also, the optimal state uncertainty reduction rate

(or equivalently, the minimum state estimation error ) is

achieved by the symbol-by-symbol amplification .
Finally, it is interesting to compare the optimal coding scheme

(28) to the optimal coding scheme when the goal is to minimize
(instead of maximizing) the uncertainty reduction [21], which
is essentially based on coherent subtraction of and with
possible randomization.

IV. OPTIMAL TRADEOFF: CAUSAL CASE

The previous two sections considered the case in which the
transmitter has complete knowledge of the state sequence
prior to the actual communication. In this section, we consider
another model in which the transmitter learns the state sequence
on the fly, i.e., the encoding function

depends causally on the state sequence.
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We state our main theorem.

Theorem 2: The tradeoff region for a state-dependent
channel with state information
causally known at the transmitter is the union of all
pairs satisfying

(29)

(30)

(31)

for some joint distribution , where
the auxiliary random variable has cardinality bounded by

.

As in the noncausal case, the region is convex. Since the aux-
iliary random variable affects the first inequality (29) only,
the cardinality bound follows again from the
standard argument. (A looser bound can be given by counting
the number of functions ; see Shannon [27].) Finally,
we can take as a deterministic function of without de-
creasing the region.

Compared to the noncausal tradeoff region in Theorem 1,
the causal tradeoff region in Theorem 2 is smaller in gen-
eral. More precisely, is characterized by the same set of in-
equalities (3)–(5) as in , but the set of joint distributions is
restricted to those with auxiliary variable independent of .
Indeed, from the independence between and , we can rewrite
(29) as

(29 )

which is exactly the same as (3). Thus, the inability to use the
future state sequence decreases the tradeoff region. However,
only the inequality (29), or equivalently, the inequality (3), is
affected by the causality, and the sum rate (31) does not change
from (5).

Since the proof of Theorem 2 is essentially identical to that of
Theorem 1, we skip most of the steps. The least straightforward
part is the following lemma.

Lemma 3: Let be the union of all pairs satisfying
(29)–(31). Let be the closure of the union of all pairs
satisfying (29), (30), and

(32)

for some joint distribution where the
auxiliary random variable has finite cardinality. Then

Proof sketch: The proof is a verbatim copy of the proof
of Lemma 2, except that here is independent of , i.e.,

. The final step (13) follows since the
set of conditional distributions on given of
the form

(12 )

with deterministic is as rich as any ,
and

(13 )

With this replacement, the desired proof follows along the same
lines as the proof of Lemma 2.

As one extreme point of the tradeoff region , we recover
the Shannon capacity formula [27] for channels with causal side
information at the transmitter as follows:

(33)

On the other hand, the maximum uncertainty reduction rate
for pure state amplification is identical to that for the noncausal
case given in Corollary 1.

Corollary 3: Under the condition of Theorem 2, the max-
imum uncertainty reduction rate is given by

(34)

Thus, the receiver can learn about the state essentially at the
maximum cut-set rate, even under the causality constraint. For
example, the symbol-by-symbol amplification strategy

is optimal for the Gaussian channel (Example 3) for both
causal and noncausal cases.

Finally, we compare the tradeoff regions and with a
communication problem that has a totally different motivation,
yet has a similar capacity expression. In [32, Situations 3
and 4], Willems and van der Meulen studied the multiple-ac-
cess channel with cribbing encoders. In this communication
problem, the multiple-access channel has
two inputs and one output. The primary transmitter and the
secondary transmitter wish to send independent messages

and , respectively, to the common
receiver . The difference from the classical multiple-access
channel is that either the secondary transmitter learns the
primary transmitter’s signal on the fly ( [32,
Situation 3]) or knows the entire signal ahead of time
( [32, Situation 4]). The capacity region for both
cases is given by all pairs satisfying

(35)

(36)

(37)

for some joint distribution .
This capacity region looks almost identical to the tradeoff

regions and in Theorems 1 and 2, except for the first in-
equality (35). Moreover, (35) has the same form as the capacity
expression for channels with state information available at both
the encoder and decoder, either causally or noncausally. (The
causality has no cost when both the transmitter and the receiver
share the same side information; see, for example, Caire and
Shamai [1, Proposition 1].)

It should be stressed, however, that the problem of cribbing
multiple-access channels and our state uncertainty reduction
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problem have a fundamentally different nature. The former
deals with encoding and decoding of the signal , while the
latter deals with uncertainty reduction in an uncoded sequence

specified by nature. In a sense, the cribbing multiple-access
channel is a detection problem, while the state uncertainty
reduction is an estimation problem.

V. CONCLUDING REMARKS

Because the channel is state dependent, the receiver is able to
learn something about the channel state from directly observing
the channel output. Thus, to help the receiver narrow down the
uncertainty about the channel state at the highest rate possible,
the sender must jointly optimize between facilitating state es-
timation and transmitting refinement information, rather than
merely using the channel capacity to send the state description.
In particular, the transmitter should summarize the state infor-
mation in such a way that the summary information results in
the maximum uncertainty reduction when coupled with the re-
ceiver’s initial estimate of the state. More generally, by taking
away some resources used to help the receiver reduce the state
uncertainty, the transmitter can send additional pure information
to the receiver and trace the entire tradeoff region.

There are three surprises here. First, the receiver can learn
about the channel state and the independent message at a
maximum cut-set rate over all joint distributions

consistent with the given state distribution . Second,
to help the receiver reduce the uncertainty in the initial esti-
mate of the state (namely, to increase the mutual information
from to ), the transmitter can allocate
the achievable information rate in two
alternative methods—random binning and its dual, random
covering. Third, as far as the sum rate and the max-
imum uncertainty reduction rate are concerned, there is no
cost associated with restricting the encoder to learn the state
sequence on the fly.
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