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Abstract—This paper studies the problem of secure communica-
tion over a wiretap channel ���� � � �� with a secure feedback link
of rate �� , where � is the channel input, and � and 	 are channel
outputs observed by the legitimate receiver and the eavesdropper,
respectively. It is shown that the secrecy capacity, the maximum
data rate of reliable communication while the intended message is
not revealed to the eavesdropper, is upper bounded as


����� � ���
����

��������� �� ����� �	� 	����

The proof of the bound crucially depends on a recursive argu-
ment which is used to obtain the single-letter characterization.
This upper bound is shown to be tight for the class of physically
degraded wiretap channels. A capacity-achieving coding scheme
is presented for this case, in which the receiver securely feeds
back fresh randomness with rate �� , generated independent of
the received channel output symbols. The transmitter then uses
this shared randomness as a secret key on top of Wyner’s coding
scheme for wiretap channels without feedback. Hence, when a
feedback link is available, the receiver should allocate all resources
to convey a new key rather than sending back the channel output.

Index Terms—Common randomness, rate-limited feedback, se-
crecy capacity, wiretap channel.

I. INTRODUCTION

I N his pioneering work [1] that opened up the era of modern
cryptography, Shannon modeled a secrecy system as a

communication system consisting of a transmitter (Alice), a
legitimate receiver (Bob), and an eavesdropper (Eve), in which
Alice wishes to transmit a message to Bob secret from Eve.
If Eve has complete access to what Bob receives, Shannon
showed that in order to achieve perfect secrecy, a secret key
of entropy has to be shared between Alice and
Bob. This fundamental yet strongly negative result has been
extended—and in a sense overcome—in many directions. In
the direction of mathematical communication theory, Wyner
[2] introduced the degraded wiretap channel, in which Bob
receives the message through a discrete memoryless channel
(DMC) and Eve has access to what Bob receives
through an additional discrete memoryless channel
such that , as depicted in Fig. 1.
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By relaxing the secrecy requirement mildly while exploiting
the better quality of the Alice-Bob channel than that of
the Alice-Eve channel , Wyner showed that information
can be transmitted securely at a positive rate, and characterized
the secrecy capacity , the supremum of all achievable rates
of secure communication, as

(1)

This result was later extended by Csiszár and Körner [3] to gen-
eral broadcast channels with confidential messages. In partic-
ular, they showed that the secrecy capacity of the general (not
necessarily degraded) wiretap channel is

(2)

Furthermore, it was shown that if the channel from Alice to Bob
is more capable [4] than the channel from Alice to Eve, that is,
if for all , then the secrecy capacity
simplifies to

(3)

All scenarios described above deal with one-way commu-
nication between Alice and Bob. However, many common
communication scenarios arise over inherently two-way chan-
nels, such as telephone systems, digital subscriber lines (DSL),
cellular networks, satellite communications, and the Internet.
Hence, it is natural to ask how possible interactions between
Alice and Bob can increase the secrecy of their communication.

As a canonical model to study this question, this paper ex-
tends the wiretap channel model by introducing a secure feed-
back link of rate from Bob to Alice as depicted in Fig. 2. The
secure feedback link can be viewed as a primitive form of the
backward channel from Bob to Alice with secrecy capacity ,
independent of the forward channel. Thus this model can pro-
vide insights into the value of two-way interactions in secure
communication.

There are several concrete scenarios in which this model is
applicable. For instance, consider the communication between
a satellite (Alice) and a base station (Bob) on the ground. The
satellite broadcasts its signal to the ground, so any (unintended)
station can receive it. On the other hand, the base station can
beamform some data back to the satellite securely, which can
be used to enhance the secret data rate sent from the satellite to
the base station.

The main purpose of this paper is to investigate the secrecy
capacity of the wiretap channel as a function of the se-
cure feedback rate . In Theorem 1, we show the following
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Fig. 1. The wiretap channel.

Fig. 2. The wiretap channel with secure rate-limited feedback.

upper bound for a general wiretap channel with se-
cure rate-limited feedback:

(4)

Due to the dependencies introduced by the feedback, proving
the upper bound (4) requires a less standard treatment. We use a
recursive argument, which helps to track the causal dependen-
cies step by step and to obtain the desired single-letter charac-
terization. Exploiting the recursive structure to find the single-
letter characterization might be a powerful tool for similar prob-
lems.

For the case of a physically degraded wiretap channel
, in which Eve receives a degraded

version of what Bob receives, we show that the upper bound
(4) is tight, establishing the secrecy capacity as

(5)

Interestingly, we show that in order to achieve the secrecy
capacity for the physically degraded wiretap channel Bob can
simply ignore what he receives and send “fresh” randomness.
This fresh randomness plays the role of a secret key, which
bridges Shannon’s original result with Wyner’s wiretap model.
Accordingly, we use a variation of Wyner’s original coding
scheme which allows the use of a shared key (sent from Bob
to Alice via rate-limited feedback). It should be noted that this
modification has been already proposed by Yamamoto [5] and
Merhav [6], who characterized the secrecy capacity of wiretap
channels with a shared key (which is already given prior to
the communication) and also considered additional effects of
having distortion or side information.

In a closely related work, Ahlswede and Cai [7] studied
wiretap channels with secure output feedback, in which the
channel output symbols received by Bob are fed back secretly to

Alice. They showed that the secrecy capacity of the physically
degraded wiretap channel with secure output feedback is

(6)

which is in general larger than the nonfeedback secrecy ca-
pacity (1). At a first glance, it might seem contradictory that the
optimal receiver should ignore the channel outputs completely
when feedback is rate-limited (in the current paper) while the
output feedback (in the Ahlswede–Cai setup) boosts the se-
crecy capacity as in (6). A closer look, however, reveals that
the Ahlswede–Cai coding scheme essentially extracts fresh ran-
domness in the fed back output symbols hidden from Eve and
uses that randomness as a key. Hence, the role of feedback for
secure communication is providing shared randomness. Our re-
sult shows explicitly that when Bob has a means of interacting
with Alice, he should allocate all resources to convey a key
rather than sending back the channel output.

Recently, additional studies have been conducted on charac-
terizing the secrecy capacity of various two-way communica-
tion systems. Lai, El Gamal, and Poor [8] studied the case of
the modulo-additive wiretap channel, where Eve receives the
modulo-sum of the source signal, the feedback signal, and the
noise. They showed that if Bob jams Eve completely, then Alice
can send messages securely at the capacity of the channel to
Bob. Tekin and Yener [9] presented an achievable rate region
for the two-way Gaussian wiretap channel. Similar to [8], the
model presented in [9] assumes that Eve receives the sum of sig-
nals from both transmitters corrupted by an additive Gaussian
noise. They showed that due to the multiple access nature of
Eve’s channel, each transmitter can simultaneously help to hide
the other user’s message from Eve and send some data secretly
to the other user. In both studies, the additive nature of Eve’s
channel gives the opportunity for jamming, in addition to pos-
sible backward information transfer. In comparison, our model
decouples the forward and backward communication channels,
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eliminating the possible use of jamming, and rather focuses on
the “inherent” value of the backward communication link. It
also seems that having independent forward and backward com-
munication links fits better the current practice of two-way com-
munications over orthogonal media such as different frequency
bands or time slots.

The rest of the paper is organized as follows. First, we give a
formal statement of our result in Section II. Then, we show the
upper bound on the secrecy capacity and the coding scheme in
Sections III and IV, respectively. Section V concludes the paper.

II. PROBLEM SETUP AND THE MAIN RESULT

We consider the communication problem depicted in
Fig. 2. Here Alice wishes to communicate a message index

reliably to the legitimate
receiver Bob over a wiretap channel , while keeping
it secret from the eavesdropper Eve, where the channel input

at time is received as and by Bob
and Eve, respectively. To enhance the secrecy of the communi-
cation, Bob can send back symbols ,
over a feedback link of rate secret from Eve. The feedback
symbol at time can depend causally on previous channel
outputs and previous feedback sym-
bols . We assume that the channel
alphabets , and the feedback alphabets are
finite, and Eve has complete knowledge of them and of the
coding scheme used by Alice and Bob. The wiretap channel

is memoryless, i.e.

for .
More formally, we define a code as

1) feedback alphabets such that their cardinalities
satisfy

(7)

2) stochastic encoding maps consisting of conditional proba-
bility distributions , de-
fined for each

and (in other words,
denotes the probability that the message , the previous
sent symbols and the previously received feedback
symbols are mapped to the channel input at time );

3) stochastic feedback maps consisting of conditional prob-
ability distributions (by convention,

independent of ); and
4) a decoding map resulting in the

decoded message

(8)

We assume throughout that the message is a random vari-
able uniformly distributed over . Given a
code, we define the probability of error as

and the secrecy leakage rate as

Definition 1: A secrecy rate is achievable if there exists a
sequence of codes such that as

(9)

(10)

Note that , where

is the equivocation as was defined originally by Wyner, and the
condition in Definition 1 is equivalent to the condition

, which was used by Wyner as the requirement for se-
cure communication. The secrecy capacity at feedback
rate is the supremum of all achievable secrecy rates.

We are now ready to state our main results.

Theorem 1: The secrecy capacity of the wiretap
channel with rate-limited feedback is upper bounded as

The proof is given in Section III.

Theorem 2: The secrecy capacity of the physically degraded
wiretap channel with rate-limited
feedback is

(11)

The converse follows immediately from Theorem 1. A ca-
pacity-achieving coding scheme is presented in Section IV, in
which Bob sends back pure randomness securely at rate , and
Alice uses that shared randomness as a secret key to increase the
secrecy rate.

Example 1: Consider the degraded wiretap channel shown
in Fig. 3, which is a cascade of two binary symmetric chan-
nels, BSC and BSC . By symmetry, the input distribu-
tion achieves the maximiza-
tion in , and with this distribution we have

where is the binary entropy
function and .

From Theorem 2, we have

Fig. 4 shows the plot of , which starts from
and increases linearly with until it

gets saturated at , for feedback rate
.
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Fig. 3. The physically degraded binary symmetric wiretap channel.

Fig. 4. Plot of � �� � for Example 1.

Fig. 5. The physically degraded Gaussian wiretap channel.

Example 2: In this example we look at the physically de-
graded Gaussian wiretap channel shown in Fig. 5. Here and

are assumed to be independent from each other, i.i.d. over
time, and distributed as and ,
where denotes the Gaussian distribution with zero
mean and variance .

Let be the input power constraint. Then we know [10] that

(12)

where the maximum is attained by . For the se-
crecy capacity without feedback we know [11] that

(13)

where the maximum is attained again with . While
we will not provide a detailed argument, it is straightforward
to show that Theorem 2 can be modified for additive Gaussian
noise channels to give

(14)

Fig. 6. An example of a degraded wiretap channel whose secrecy capacity is
sublinear in the feedback rate.

Since the maxima in (12) and (13) are achieved by the same
distribution, it can be verified that the maximum in (14) is also
achieved by and the secrecy capacity with rate-
limited feedback is

(15)

Similar to Fig. 4 in the previous example, starts from
and increases

linearly with until it gets saturated at
for feedback rate .

As we saw in the previous examples, when the same input
distribution maximizes and , the maximum
and the minimization in can be exchanged. Therefore

and one bit secure feedback is worth one bit in the secrecy ca-
pacity until we get saturated by the capacity of the channel be-
tween Alice and Bob. However, this is not always true. In fact,

could be strictly sublinear in ; namely,

as shown in the following example.

Example 3: Consider the degraded wiretap channel shown in
Fig. 6. By symmetry, the distribution and

achieves the maximum in (11). It is easy to
verify that with this input distribution we have

(16)

(17)

It follows that

(18)

Fig. 7 shows the plot of , which increases sublinearly
with until it gets saturated at for feedback rate

.

III. PROOF OF THE UPPER BOUND

In this section we show that if the secrecy rate is achievable,
then must satisfy

(19)
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Fig. 7. Plot of � �� � for Example 3. The dashed line shows
������ � ��� � � �.

To show (19) we prove the following two upper bounds for any
achievable secrecy rate :

(20)

(21)

where as . Then we use the usual technique
of introducing a time sharing random variable [10], and con-
cavity of mutual information in to obtain (19).

First, (20) follows easily from Fano’s inequality as in the stan-
dard converse proof of the channel coding theorem [10, The-
orem 7.7.1].

We now prove (21) using Fano’s inequality, the secrecy con-
straint (10), and the feedback rate-limit constraint (7). A recur-
sive argument (Lemma 1) is then used to obtain the single-letter
characterization.

By Fano’s inequality, we have

By the assumption that , we have as
. From (8) and the data processing inequality, we have

By the assumption that , we have

(22)

where as . It then follows that

(23)

(24)

(25)

(26)

where (23) follows from (22), (24) follows from Fano’s in-
equality, and (25) follows by defining .

The following lemma provides a recursive expression, which
is crucial to single-letterize (26).

Lemma 1: For each , we have

Proof: We have the following chain of inequalities:

(27)

(28)

(29)

(30)
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(31)

(32)

where
• (27) holds because the channel is memoryless and there-

fore
form a Markov chain,

• (28) holds because
form a Markov chain,

• (29) holds because
form a Markov chain,

• (30) and (32) follow from
and

respectively, and
• (31) holds because of the following Markov chain

.

Starting from (26), we apply Lemma 1 recursively to find the
single-letter characterization as follows:

(33)

Dividing (33) by and applying the feedback rate-limit con-
straint (7) we obtain (21) as follows:

To complete the proof, let be a time-sharing random vari-
able distributed uniformly over and independent
of . Then (21) can be written as

where . Now letting
and hence

(34)

Similarly, (20) can be written as

where as and we have

(35)

Note that is consistent with the
given wiretap channel and is independent of . Since

form a Markov chain, it follows from (34)

(36)

Similarly from (35)

(37)

Combining (36) and (37), we have

for some consistent with the given channel .
Therefore, we conclude that

which completes the proof of Theorem 1.

IV. A CAPACITY-ACHIEVING SCHEME FOR DEGRADED

CHANNELS

In this section, for the sake of completeness, we present a
coding scheme for the degraded wiretap channel with rate-lim-
ited feedback that achieves any secrecy rate satisfying

(38)

The coding scheme is based on a variation of Wyner’s original
scheme which allows the use of a shared key, and originally was
proposed by Yamamoto [5]. Ahlswede and Cai [7] use a similar
idea to enhance the secrecy rate after generating secret common
randomness through feedback.

We assume Bob uses the feedback link only to send back a
secret key of rate at the first instance; i.e., send
drawn uniformly from , so that Alice and Bob have a
shared key prior to their communication as shown in Fig. 8. In
the remainder, we will provide a coding scheme for the wiretap
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Fig. 8. The degraded wiretap channel with shared key.

channel with shared key of rate that achieves any secrecy
rate satisfying (38).

Fix any distribution and define

(39)

and

(40)

Let , where and are independent
random variables uniformly distributed over and ,
respectively. As shown below, the message will be trans-
mitted securely using Wyner’s original coding scheme while
the security of will be guaranteed by using a key of rate

. Note that from (38), (39) and (40) we have

The codebook is a collection of codewords , from
which the specific codeword is picked ran-
domly so as to confuse the eavesdropper. Therefore, there is no
predefined codeword for a specific message.

Codebook generation. Pick , such that
for some . Such always exists

since . Generate a random codebook con-
taining independent and identically distributed (i.i.d.) random
codewords , each drawn according
to . Divide the codebook into

disjoint sub-codebooks, each of which has
codewords. Label the sub-codebooks . Now,
divide each sub-codebook into sections

, each of which has codewords. Enumerate
the codewords in each section from to , so the code-
words in the th section of the th sub-codebook can be called
as (see Fig. 9).

Feedback. Let be uniform over . Bob sends
at time .

Encoding. We use as a key shared between Alice and Bob.
Generate a new variable , where is
the modulo addition over the set . Note that and
are uniformly distributed and pairwise independent, so is
uniformly distributed and independent of both and .

We pick as follows. According to we
pick the corresponding sub-codebook among ones.

Fig. 9. Structure of the codebook.

In that sub-codebook we pick one of the sections uniformly at
random and in that section we pick the corresponding codeword
among the codewords according to . We denote by

the index of the picked codeword in the sub-
codebook .

Decoding. The decoder looks for a unique index
such that , where is the set of jointly
typical sequences. If no such exists or if there is
more than one such, an error is declared. Having found , the
decoder finds the reconstructed message as follows.
It chooses as the index of the sub-codebook belongs
to. For , the decoder first finds , the index of in the
section it belongs to, and then it finds , where
is the modulo subtraction over .

Analysis of the error probability and the secrecy. We show
that there exists a codebook in the random collection of code-
books for which (9) and (10) are simultaneously satisfied; i.e.,

and .
Let and be the probability of error and

the secrecy leakage rate corresponding to a specific codebook
. Since , by the channel coding theorem [10,

Theorem 7.7.1] we have

(41)

where the expectation is over all random codebooks. As shown
below

as (42)

Combining (41) and (42), we have

as (43)

Therefore, there exists at least one codebook for which condi-
tions (9) and (10) are simultaneously satisfied.

Now, it remains to show that (42) holds. Let
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For the rest of the paper, all expectations are with respect to , so
we omit the subscript . From the definition of the conditional
mutual information we have

(44)

With these definitions we have the following lemma.

Lemma 2: Suppose as . Then
as .

Proof: Consider

(45)

where (45) follows from the fact that is independent of
for any choice of . This follows since is inde-

pendent of due to the independent and uniformly distributed
key , and form a Markov chain.

To complete the analysis, we show that as
. Recall is a random variable over that de-

notes the index of the picked codeword in the sub-codebook
. Based on the encoding scheme, is uniformly distributed

and independent of . Then it follows that

(46)

(47)

(48)

(49)

(50)

which tends to zero as and . Here

• inequality (46) follows from the fact that
form a Markov chain;

• equality (47) follows since is uniformly distributed
over and is independent of

;

• inequality (48) follows from Fano’s inequality and the fact
that as , where

where the minimization is taken over all functions
. This can be easily seen if one consider the

sub-codebook with elements as a code
for Eve’s channel given is sent, and apply the channel
coding theorem [10, Theorem 7.7.1]. Here, we have used
the notation to denote a sequence such that as

,
• inequality (49) follows from the fact that

form a Markov chain, and
• equality (50) follows from the fact that ’s are i.i.d

and the channel is memoryless, therefore,
.

To summarize, we showed that as , and
hence by Lemma 2, condition (42) holds. Putting (41) and (42)
together, we can conclude that there exists at least one code-
book which satisfies conditions (9) and (10) simultaneously.
This completes the proof.

Remark: This coding scheme can be easily modified to the
case in which the feedback channel has a time-invariant rate
constraint for all . By using block Markov
coding, we can send the key in the -th block that will be used
in the -th block.

V. CONCLUSION

We studied the wiretap channel with a secure rate-limited
feedback link and found an upper bound for the secrecy capacity
as a function of the feedback rate. The upper bound is achiev-
able in the case of the physically degraded wiretap channel.
To achieve the secrecy capacity in this case, Bob ignores the
channel output and simply sends back pure randomness, which
is used by Alice as a key. To position this result along Ahlswede
and Cai’s result [7], suppose that the feedback rate is suffi-
ciently large to send back the entire channel output itself, say,

(or even ). Our result shows that
when Bob has an option to choose an arbitrary (stochastic) feed-
back mapping rather than passively repeating what he has re-
ceived, the trivial scheme of sending an independently gener-
ated secret key is sufficient to achieve the secrecy capacity. In
other words, in contrast to the case of [7] where the feedback
(output symbols) is only partially useful for a key, the freedom
to choose what to send back allows for full utilization of the
feedback data rate . Using the same idea of the achievability
it can be shown that for any wiretap channel

where . In general, this is smaller than the
upper bound in Theorem 1, and the problem of closing the gap
for the wiretap channel models other than the (physically) de-
graded ones remains open for future studies.
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