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Abstract—In this paper, we consider the problem of exact sup-
port recovery of sparse signals via noisy linear measurements. The
main focus is finding the sufficient and necessary condition on the
number of measurements for support recovery to be reliable. By
drawing an analogy between the problem of support recovery and
the problem of channel coding over the Gaussian multiple-access
channel (MAC), and exploiting mathematical tools developed for
the latter problem, we obtain an information-theoretic framework
for analyzing the performance limits of support recovery. Specif-
ically, when the number of nonzero entries of the sparse signal is
held fixed, the exact asymptotics on the number of measurements
sufficient and necessary for support recovery is characterized. In
addition, we show that the proposed methodology can deal with a
variety of models of sparse signal recovery, hence demonstrating
its potential as an effective analytical tool.

Index Terms—Compressed sensing, Gaussian multiple-access
channel (MAC), noisy linear measurement, performance tradeoff,
sparse signal, support recovery.

I. INTRODUCTION

C ONSIDER the problem of estimating a sparse signal
in high dimension via noisy linear measure-

ments , where is the measurement
matrix and is the measurement noise. A sparse signal in-
formally refers to a signal whose representation in a certain
basis contains a large proportion of zero elements. In this
paper, we mainly consider signals that are sparse with respect
to the canonical basis of the Euclidean space. The goal is to
estimate the sparse signal by making as few measurements
as possible. This problem has received much attention from
many research principles, motivated by a wide spectrum of
applications such as compressed sensing [1], [2], biomagnetic
inverse problems [3], [4], image processing [5], [6], bandlim-
ited extrapolation and spectral estimation [7], robust regression
and outlier detection [8], speech processing [9], channel esti-
mation [10], [11], echo cancellation [12], [13], and wireless
communication [10], [14].
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Computationally efficient algorithms for sparse signal re-
covery have been proposed to find or approximate the sparse
signal in various settings. A partial list includes matching
pursuit [15], orthogonal matching pursuit [16], LASSO [17],
basis pursuit [18], FOCUSS [3], sparse Bayesian learning [19],
finite rate of innovation [20], CoSaMP [21], and subspace pur-
suit [22]. At the same time, many exciting mathematical tools
have been developed to analyze the performance of these algo-
rithms. In particular, Donoho [1], Donoho et al. [23], Candès
and Tao [24], and Candès et al. [25] presented sufficient con-
ditions for -norm minimization algorithms, including basis
pursuit, to successfully recover the sparse signals with respect
to certain performance metrics. Tropp [26], Tropp and Gilbert
[27], and Donoho et al. [28] studied greedy sequential selection
methods such as matching pursuit and its variants. In these
papers, the structural properties of the measurement matrix ,
including coherence metrics [15], [23], [26], [29] and spectral
properties [1], [24], are used as the major ingredient of the
performance analysis. By using random measurement matrices,
these results translate to relatively simple tradeoffs between
the dimension of the signal , the number of nonzero entries
in , and the number of measurements to ensure asymptoti-
cally successful reconstruction of the sparse signal. When the
measurement noise is present, i.e., , the performance of
the sparse signal recovery algorithms has been measured by
the Euclidean distance between the true signal and the estimate
[23], [25].
In many applications, however, finding the exact support of

the signal is important even in the noisy setting. For example,
in applications of medical imaging, magnetoencephalography
(MEG) and electroencephalography (EEG) are common ap-
proaches for collecting noninvasive measurements of external
electromagnetic signals [30]. A relatively fine spatial resolution
is required to localize the neural electrical activities from a huge
number of potential locations [31]. In the domain of cognitive
radio, spectrum sensing plays an important role in identifying
available spectrum for communication, where estimating the
number of active subbands and their locations becomes a
nontrivial task [32]. In multiple-user communication systems
such as a code-division multiple-access (CDMA) system, the
problem of neighbor discovery requires identification of active
nodes from all potential nodes in a network based on a linear
superposition of the signature waveforms of the active nodes
[14]. In all these problems, finding the support of the sparse
signal is more important than approximating the signal vector
in the Euclidean distance. Hence, it is important to understand
performance issues in the exact support recovery of sparse
signals with noisy measurements. Information-theoretic tools
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have proven successful in this direction. Wainwright [33], [34]
considered the problem of exact support recovery using the
optimal maximum-likelihood decoder. Necessary and sufficient
conditions are established for different scalings between the
sparsity level and signal dimension. Using the same decoder,
Rad [35] derived sharp upper bounds on the error probability
of exact support recovery. Meanwhile, Fletcher et al. [36],
[37] improved the necessary condition with the same decoder.
Wang et al. [38], [39] also presented a set of necessary con-
ditions for exact support recovery. Akçakaya and Tarokh [40]
analyzed the performance of a joint typicality decoder and
applied it to find a set of necessary and sufficient conditions
under different performance metrics including the one for exact
support recovery. In addition, a series of papers have leveraged
many information-theoretic tools, including rate-distortion
theory [41], [42], expander graphs [43], belief propagation and
list decoding [44], and low-density parity-check codes [45],
to design novel algorithms for sparse signal recovery and to
analyze their performances.
In this paper, we develop sharper asymptotic tradeoffs be-

tween the signal dimension , the number of nonzero entries ,
and the number of measurements for reliable support recovery
in the noisy setting. Especially, when is fixed, we show that

is sufficient and necessary. We give a com-
plete characterization of that depends on the values of all
nonzero entries of . This result provides a clear insight into
the role of nonzero entries in support recovery, which improves
upon many existing results where only the minimum nonzero
magnitude entered the performance tradeoffs. When increases
in certain manners as specified later, we obtain sufficient and
necessary conditions for perfect support recovery which can be
tight in the order.
Our main results are inspired by the analogy to communi-

cation over the Gaussian multiple-access channel (MAC) [46],
[47]. According to this connection, the columns of the measure-
ment matrix form a common codebook for all senders. Code-
words from the senders are individually multiplied by unknown
channel gains, which correspond to nonzero entries of . Then,
the noise-corrupted linear combination of these codewords is
observed. Thus, support recovery can be interpreted as decoding
messages from multiple senders.
Despite these similarities between the problem of support

recovery and that of MAC communication, there are also
important differences between them, namely, the common
codebook problem and the unknown channel gain problem,
which make a straightforward translation of known results
nontrivial. We customize tools from multiple-user information
theory (e.g., distance decoding and Fano’s inequality) to tackle
the support recovery problem. Moreover, the analytical frame-
work in this paper can be extended to different models of sparse
signal recovery, such as non-Gaussian measurement noise,
sources with random activity levels, and multiple measurement
vectors (MMVs).
Some analogies between sparse signal recovery (in a broad

sense) and channel coding have been observed from various
perspectives in parallel work [41], [48, Sec. IV-D], [38, Sec.
II-A], [40, Sec. III-A], [28, Sec. 11.2]. We first note that our ap-
proach is different from the analytical perspective in [41] where

the Gaussian channel capacity and rate-distortion analysis were
employed to established design constraints, and is also different
from the point-to-point Gaussian channel coding perspective
in [48, Sec. IV-D] and [38, Sec. II-A]. In [40, Sec. III-A], the
sparse signal recovery problem was related to communica-
tion over a single-user multiple-input–single-output (MISO)
channel, which was then employed to obtain a necessary condi-
tion under the assumption that the channel gains were known at
the receiver. Unlike these approaches, we connect the problem
of sparse signal recovery explicitly to a MAC communication
problem where no coordination exists among senders. The
advantage of this approach is evident in our main result that
establishes matching sufficient and necessary conditions for
reliable support recovery. To be fair, we note that the similarity
between sparse signal recovery and multiple-user detection was
described in [28, Sec. 11.2], but only at an intuitive level. Here
we clarify the connection between the two problems and extend
the analytical tool set for multiple-user communication, which
is useful particularly in establishing the sufficient condition for
support recovery.
The rest of the paper is organized as follows. We formally

state the support recovery problem in Section II. To motivate the
main results of the paper and their proof techniques, we discuss
in Section III the similarities and differences between the sup-
port recovery problem and the multiple-access communication
problem. Our main results are presented in Section IV, together
with comparisons to existing results in the literature. The proofs
of the main theorems are presented in Appendixes I–IV, respec-
tively. Section V further extends the results to different signal
models and measurement procedures. Section VI concludes the
paper with further discussions.
Throughout this paper, a set is a collection of unique ob-

jects. Let denote the -dimensional real Euclidean space.
Let denote the set of natural numbers. Let
denote the set . The notation denotes the

cardinality of set , denotes the -norm of a vector ,
and denotes the Frobenius norm of a matrix . The ex-
pression denotes ,

denotes as for some con-
stant , denotes and

, denotes ,
and denotes .

II. PROBLEM FORMULATION

Let , where for all . Let
be such that are chosen

uniformly at random from without replacement. Then, the
signal of interest is generated as

if
if .

(1)

Thus, the support of is . According
to the signal model (1), . Throughout this paper,
we assume is known. The signal is said to be sparse when

.
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We measure through the linear operation

(2)

where is the measurement matrix, is the
measurement noise, and is the noisy measurement.
We further assume that the elements of the measurement matrix
are independently generated according to , and the

noise is independently and identically distributed (i.i.d.) ac-
cording to the Gaussian distribution . We assume is
known.
Upon observing the noisy measurement , one wishes to re-

cover the support of the sparse signal . A support recovery
map is defined as

(3)

Given the signal model (1), the measurement model (2), and
the support recovery map (3), the performance metric is defined
to be the average probability of error in support recovery, i.e.,

for each (unknown) signal value vector . Note that the
probability here is taken over the random signal support vector
, the measurement matrix , and the noise .

III. AN INFORMATION-THEORETIC PERSPECTIVE ON
SPARSE SIGNAL RECOVERY

In this section, we will introduce an interpretation of the
problem of sparse signal recovery via a communication problem
over the Gaussian MAC. The similarities and differences be-
tween the two problems will be elucidated, hence progressively
unraveling the intuition and facilitating technical preparation
for the main results and their proof techniques.

A. Brief Review of the Gaussian MAC

We start by reviewing the background on the -sender
MAC. Suppose the senders wish to transmit information to
a common receiver. Each sender has access to a codebook

, where is a codeword
and is the number of codewords in . The rate for the
sender is . To transmit information, each
sender chooses a codeword from its codebook, and all senders
transmit their codewords simultaneously over a Gaussian MAC
[49]

(4)
where denotes the input symbol from sender to the
channel at transmission time , denotes the channel gain as-
sociated with sender , is the additive noise, i.i.d. ,
and is the channel output.
Upon receiving , the receiver needs to determine

the codewords transmitted by each sender. Since the senders in-
terfere with each other, there is an inherent tradeoff among their
operating rates. The notion of capacity region is introduced to
capture this tradeoff by characterizing all possible rate tuples

at which reliable communication can be
achieved with diminishing probability of decoding error. By as-
suming each sender obeys the power constraint
for all and all , the capacity region of a
Gaussian MAC with known channel gains [49] is

(5)

B. Connecting Sparse Signal Recovery to the Gaussian MAC

In the measurement model (2), one can remove the columns
in which are nulled out by zero entries in and obtain the
following effective form of the measurement procedure:

(6)

By contrasting (6) to the Gaussian MAC (4), we can draw the
following key connections that relate the two problems [46].
1) A nonzero entry as a sender: We can view the existence of
a nonzero entry position as sender that accesses the
MAC.

2) as a codeword: We treat the measurement matrix as
a codebook with each column , , as a codeword.
Each element of is fed one by one to the channel (4) as
the input symbol , resulting in uses of the channel. The
noise and measurement can be related to the channel
noise and channel output in the same fashion.

3) as a channel gain: The nonzero entry in (6)
plays the role of the channel gain in (4). Essentially, we
can interpret the vector representation (6) as consecutive
uses of the -sender Gaussian MAC (4) with appropriate
stacking of the inputs/outputs into vectors.

4) Similarity between objectives: In the problem of sparse
signal recovery, the goal is to find the support
of the signal. In the problem of MAC communication, the
receiver’s goal is to determine the indices of codewords,
i.e., , that are transmitted by the senders.

Based on the aforementioned aspects, the two problems share
significant similarities which enable leveraging the information-
theoretic methods for performance analysis of support recovery
of sparse signals. However, as we will see next, there are domain
specific differences between the support recovery problem and
the channel coding problem that should be addressed accord-
ingly to rigorously apply the information-theoretic approaches.

C. Key Differences

1) Common codebook: In MAC communication, each sender
uses its own codebook. However, in sparse signal recovery,
the “codebook” is shared by all “senders.” All senders
choose their codewords from the same codebook and hence
operate at the same rate. Different senders will not choose
the same codeword, or they will collapse into one sender.

2) Unknown channel gains: In MAC communication, the ca-
pacity region (5) is valid assuming that the receiver knows
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the channel gain [50]. In contrast, for sparse signal re-
covery problem, is actually unknown and needs to
be estimated. Although coding techniques and capacity re-
sults are available for communication with channel un-
certainty, a closer examination indicates that those results
are not directly applicable to our problem. For instance,
channel training with pilot symbols is a common practice
to combat channel uncertainty [51]. However, it is not ob-
vious how to incorporate the training procedure into the
measurement model (2), and hence the related results are
not directly applicable.

Once these differences are properly accounted for, the con-
nection between the problems of sparse signal recovery and
channel coding makes available a variety of information-the-
oretic tools for handling performance issues pertaining to the
support recovery problem. Based on techniques that are rooted
in channel capacity results, but suitably modified to deal with
the differences, we will present the main results of this paper in
the next section.

IV. MAIN RESULTS AND THEIR IMPLICATIONS

A. Fixed Number of Nonzero Entries

To discover the precise impact of the values of the nonzero
entries on support recovery, we consider the support recovery
of a sequence of sparse signals generated with the same signal
value vector . In particular, we assume that is fixed. Define
the auxiliary quantity

(7)

For example, when

We can see from Section III that this quantity is closely related
to the two-sender MAC capacity with equal-rate constraint.
The following two theorems summarize our main results

under this setup. The subscript in denotes possible de-
pendence between and . The proofs of the theorems are
presented in Appendixes I and II, respectively.

Theorem 1: If

(8)

then there exists a sequence of support recovery maps
, , such that

(9)

Theorem 2: If

(10)

then for any sequence of support recovery maps ,
, we have

(11)

We provide the following observations. First, Theorems 1 and
2 together indicate that is sufficient and
necessary for exact support recovery. The constant is ex-
plicitly characterized, capturing the role of all nonzero entries of
a sparse signal in support recovery. Second, the proof of The-
orem 2 for the necessary condition employs the assumption that
the values of the nonzero entries are known. Immediately, it fol-
lows that even if the values of the nonzero entries are known,
the sufficient condition for successfully recovering the support
is still given by (8). This observation indicates that the unknown
channel gain problem indeed does not pose a serious obstacle in
support recovery for the case of fixed . Further, the benefit of
exploiting the connection between sparse signal recovery and
multiple-access communication is also supported by the theo-
rems. Resorting to channel capacity results enables us to explic-
itly extract the constant and obtain the tight sufficient and
necessary conditions.

B. Growing Number of Nonzero Entries

Next, we consider the support recovery for the case where
the number of nonzero entries grows with the dimension of
the signal . We assume that the magnitude of a nonzero entry
is bounded from both below and above.
First, we present a sufficient condition for exact support re-

covery. The proof is given in Appendix III.

Theorem 3: Let be a sequence of vectors satis-
fying and for
all . If

(12)

then there exists a sequence of support recovery maps
, , such that

Note that, according to our proof technique, the upper bound
is not needed for performing support recovery, and it does

not appear in the sufficient condition above. In the proof, how-
ever, we use the assumption that the nonzero signal values are
uniformly bounded from above to show that the probability of
error tends to zero as . To better understand Theorem
3, we present the following implication of (12) that shows the
tradeoffs between the order of versus and .

Corollary 1: Under the assumption of Theorem 3
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TABLE I
SUFFICIENT CONDITIONS FOR SUPPORT RECOVERY IN DIFFERENT

SPARSITY REGIONS [WHEN ]

TABLE II
SUFFICIENT CONDITIONS FOR SUPPORT RECOVERY IN THE

EXISTING LITERATURE [WHEN ]

provided that

In particular, we have the following:
1) when , the sufficient number of measure-
ments is ;

2) when , the sufficient number of
measurements is .

Table I summarizes the sufficient conditions on paired with
different relations between and in Corollary 1.
In the existing literature, Wainwright [34], Akçakaya and

Tarokh [40], and Rad [35] derived sufficient conditions for
exact support recovery. Under the same assumption of The-
orem 3, the sufficient conditions presented in these papers,
respectively, are summarized in Table II.1

To compare the results, we first examine the case of
(i.e., sublinear sparsity). Note that in the regime where

, our sufficient condition on is among the
best existing results. In the remaining sublinear regime and in
the linear regime, i.e., , our results are
not as tight as the best existing results. More discussions will be
provided in Section IV-C.
Next, we present a necessary condition, the proof of which is

given in Appendix IV.

Theorem 4: Let be a sequence of vectors satis-
fying and for
all . If

(13)

1We use Theorem 5 in [35] in the table. The sufficient condition in Corollary
6.6 therein seems to be incorrect.

TABLE III
NECESSARY CONDITIONS FOR SUPPORT RECOVERY [WHEN ]

then for any sequence of support recovery maps ,
, we have

To compare with existing results under the same assumption2

of Theorem 4, we first note that when (linear spar-
sity), Theorem 4 indicates as the neces-
sary condition. Compared to the best known sufficient condi-
tion (see Table II), there is a nontrivial gap. When

(sublinear sparsity), we summarize the necessary
conditions developed in previous papers in Table III.3

In this case, is the best known necessary
condition.4

C. Further Discussions

We offer more insights into the analytical framework and
proof techniques.
The sufficient conditions in this paper are derived based on

the distance decoding technique which was used in channel de-
coding problem [52]. In order to perform the distance decoding,
the channel gains need to be known or can be estimated. This is
in contrary to the fact that the nonzero entries of a sparse signal
are unknown, and therefore raises the unknown channel gain
problem in Section III-C. To tackle this problem, we employ
the following procedure in the proofs for sufficient conditions.
1) Find an estimate of , and denote it by .
2) Find a set of points which can be viewed as -covering
of the -dimensional hypersphere of radius . By construc-
tion of , there exists a such that
with high probability.

3) Find such that

(14)

for some . We declare as the es-
timated support of the sparse signal. As a byproduct, the

2The necessary conditions derived in [34], [39], and [40] were originally de-
rived under slightly different assumptions. Here we adapted them to compare
the asymptotic orders of .
3This result is implied in [40], by identifying in Theorem 1.6

therein, and clarifying the order of . The proof of Theorem 1.6 states
that [below its (25)] asymptotically reliable support recovery is not possible
if . Note that

. Hence, we consider an
appropriate necessary condition resulting from the proof in [40].
4Note that when , we can show that is necessary

for both linear and sublinear sparsity [39]. Hence, when ,

is the best known necessary condition.
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elements of the corresponding can be viewed as esti-
mates of the values of the nonzero entries.

The success of this support recovery procedure is closely re-
lated to the estimation quality of and the cardinality of the
set . Accordingly, our methodology shows different strength
in different regions of sparsity levels. First, in the case for fixed
number of nonzero entries, consistent estimation of can be
obtained, and the cardinality of can be bounded from above.
This provides the opportunity to discover the exact sufficient
and necessary conditions for successful support recovery. Next,
in the case with growing number of nonzero entries, the estima-
tion quality of and the cardinality of must be carefully
controlled. To this end, the constraint , which is im-
plied by Theorem 3, is needed for the estimation of to be
consistent, and as the upper bound for the nonzero mag-
nitudes is needed for controlling the cardinality of . Note that
for the sublinear sparsity with , our sufficient
and necessary conditions both indicate , and
hence are tight in terms of order. As increases with at a
faster rate, our sufficient and necessary conditions have gaps,
which is a consequence of the difficulty in consistently esti-
mating and handling the large size of .
Another interesting region which has been extensively dis-

cussed in previous work is the case where
[34], [37], [38]. Although Theorem 4 can be extended to provide
a necessary condition for this case, it does not offer improve-
ment upon existing results. Theorem 3 may not be extended to
this scenario, which indicates that our analytical technique for
proving sufficient conditions is not suited for this scaling.

V. EXTENSIONS

The connection between the problems of support recovery
and channel coding can be further explored to provide the
performance tradeoff for different models of sparse signal
recovery. Next, we discuss its potential to address several
important variants.

A. Non-Gaussian Noise

Note that the rules for support recovery, mainly reflected in
(20) and (26) in the proof of Theorem 1 in Appendix I, are
similar to the method of nearest neighbor decoding in infor-
mation theory. Following the argument in [52], one can show
that by replacing the assumption in (2) on measurement noise

by any non-Gaussian noise with ,
the previous sufficient conditions continue to hold.

B. Random Signal Activities

In Theorem 1, is assumed to be a fixed vector of nonzero
entries. We now relax this condition to allow random , which
leads to sparse signals whose nonzero entries are randomly gen-
erated and located. For simplicity of exposition, assume that
is fixed. Interestingly, the model (2) with this new assumption
can now be contrasted to a MAC with random channel gains

(15)

The difference between (15) and (4) is that the channel gains
are random variables in this case. Specifically, in order to

contrast the problem of support recovery of sparse signals,
should be considered as being realized once and then kept fixed
during the entire channel use [46]. This channel model is usually
termed as a slow fading channel [50].
The following theorem states the performance of support re-

covery of sparse signals under random signal activities.

Theorem 5: Suppose has bounded support, and
Then, there exists a sequence of

support recovery maps , , such
that

where is defined as in (7).
Proof: Note that

(16)

(17)

where (16) follows from Fatou’s lemma [53] and (17) follows
by applying the proof of Theorem 1 to the integrand.

Theorem 5 implies that generally, rather than having a di-
minishing error probability, we have to tolerate certain error
probability which is upperbounded by , when the
nonzero values are randomly generated. Conversely, in order to
design a system with probability of success at least ,
one can find that satisfies . Note that

can be viewed as the outage probability of a
slow fading MAC given the target rate of each sender [50].
Thus, represents the probability that the channel
gains are realized too poorly to support the target rate.

C. Multiple Measurement Vectors

Recently, increasing research effort has been focused
on sparse signal recovery with MMVs [54]–[58]. In this
problem, we wish to measure multiple sparse signals

, and that possess a
common sparsity profile, that is, the locations of nonzero



JIN et al.: LIMITS ON SUPPORT RECOVERY OF SPARSE SIGNALS VIA MULTIPLE-ACCESS COMMUNICATION TECHNIQUES 7883

entries are the same in each . We use the same measurement
matrix to perform

(18)

where ,
is the measurement noise,

and is the noisy measurement.
Note that model (2) can be viewed as a special case of the

MMV model (18) with . The methodology that has been
developed in this paper has a potential to be extended to deal
with the performance issues for the MMV model by noting the
following connections to channel coding [46]. First, the same set
of columns in are scaled by entries in different , forming
outputs as elements in different . The nonzero entries of
can then be viewed as the coefficients that connect different
pairs of inputs and outputs of a channel. Second, each mea-
surement vector can be viewed as the received symbols at
receiver antenna , and hence the MMV model indeed corre-
sponds to a single-input–multiple-output (SIMO) MAC. Third,
the aim is to recover the locations of nonzero rows of upon
receiving . This implies that, in the language of SIMO MAC
communication, the receiver will decode the information sent
by all senders through multiple receiver antennas. Via proper
accommodation of the method developed in this paper, the ca-
pacity results for the SIMO MAC can be leveraged to shed
light on the performance tradeoff of sparse signal recovery with
MMV.

VI. CONCLUDING REMARKS

In this paper, we developed techniques rooted in multiple-
user information theory to address the performance issues in the
exact support recovery of sparse signals, and discovered neces-
sary and sufficient conditions on the number of measurements.
It is worthwhile to note that the interpretation of sparse signal re-
covery as MAC communication opens new avenues to different
theoretic and algorithmic problems in sparse signal recovery.
We conclude this paper by briefly discussing several interesting
potential directions stemming from this interpretation.
1) Among the large collection of algorithms for sparse signal
recovery, the sequential selection methods, including
matching pursuit [15] and orthogonal matching pursuit
(OMP) [16], determine one nonzero entry at a time, re-
move its contribution in the residual signal, and repeat this
procedure until a certain stopping criterion is satisfied. In
contrast, the class of convex relaxation methods, including
basis pursuit [18] and LASSO [17], jointly estimate the
nonzero entries. The sequential selection methods can be
potentially viewed as successive interference cancellation
(SIC) decoding [50] for MACs, whereas the convex relax-
ation methods can be viewed as joint decoding. It would
be interesting to ask whether one can make these analo-
gies more precise and use them to address performance
issues of these methods. Similarities at an intuitive level
between OMP and SIC have been discussed in [47] with
performance results supported by empirical evidence.
More insights are yet to be explored.

2) The design of channel codes and the development of
decoding methods have been extensively studied in the
contexts of information theory and wireless communi-
cation. Some of these ideas have been transformed into
design principles for sparse signal recovery [43]–[45],
[59], [60]. Thus far, however, the efforts in utilizing the
codebook designs and decoding methods are mainly fo-
cused on the point-to-point channel model, which implies
that the recovery methods iterate between first recovering
one nonzero entry or a group of nonzero entries by treating
the rest of them as noise and then removing the recovered
nonzero entries from the residual signal. In this paper, we
established the analogy between the sparse signal recovery
and the multiple-access communication. It motivates us
to envision opportunities beyond a point-to-point channel
model. One important question is, for example, whether
we can develop practical codes for joint decoding and
reconstruction techniques to simultaneously recover all
the nonzero entries.

APPENDIX I
PROOF OF THEOREM 1

The proof of Theorem 1 employs the distance decoding tech-
nique [52]. Let denote the th column of .
For simplicity of exposition, we describe the support re-

covery procedure for two distinct cases on the number of
nonzero entries.

Case 1: : In this case, the signal of interest is
. Consider the following support recovery

procedures. Fix . First form an estimate of as

(19)

Declare that is the estimated location for the nonzero
entry, i.e., , if it is the unique index such that

(20)

for either or . If there is none or more than one, pick
an arbitrary index.
We now analyze the average probability of error

Due to the symmetry in the problem and the measurement ma-
trix generation, we assume without loss of generality ,
that is

for some . In the following analysis, we drop superscripts and
subscripts on for notational simplicity when no ambiguity
arises. Define the events for

such that
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Then

(21)

Let

Then, by the union of events bound and the fact that

(22)

We bound each term in (22). First, by the weak law of large
numbers (LLN), Next, we consider

. If

(23)

For any , as , by the LLN

Hence, we have for the first term in (23)

Following a similar reasoning using LLN, for the second term
in (23)

and for the third term

Therefore, for any

which implies that

Similarly, if

Hence,

For the third term in (22), we need the following lemma,
whose proof is presented at the end of this Appendix.

Lemma 1: Let . Let be a real sequence
satisfying

Let be an i.i.d. random sequence where .
Then, for any

Continuing the proof of Theorem 1, we consider
for . Then

Since is independent of and , it follows from the def-
inition of and Lemma 1 (with and

) that

for , if is sufficiently small. Thus

and therefore

which tends to zero as , if

(24)

Therefore, by (22), the probability of error tends to zero
as , if (24) is satisfied. Finally, since is chosen
arbitrarily, we have the desired proof of Theorem 1.

Case 2: : In this case, the signal of interest is
, where and .

Consider the following support recovery procedures. Fix .
First, form an estimate of as

(25)

For , let be a minimal set of points in
satisfying the following properties.
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i) , where is the -dimensional hyper-
sphere of radius , i.e., ,

ii) For any , there exists such that
.

The following properties are useful.

Lemma 2:
1) such that .
2) is monotonically nondecreasing in
for fixed .

Lemma 2–1) will be proved at the end of this Appendix,
whereas Lemma 2–2) is obvious.
Given and , fix . Declare

is the recovered support of the
signal, if it is the unique set of indices such that

(26)

for some . If there is none or more than one such set,
pick an arbitrary set of indices.
Next, we analyze the average probability of error

As before, we assume without loss of generality that for
, which gives

for some . Define the event

and

such that

Then

(27)

where in this case

We now bound the terms in (27). First, by the LLN,
. Next, we consider . Note

that, for any

(28)

By applying the LLN to each term in (28), as similarly done in
Case 1, and using Lemma 2–1), we have

which implies that .
Next, we consider for

. Note that

(29)

For notational simplicity, define ,
, , and

.



7886 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011

For any permutation of and
any

(30)

Conditioned on and the chosen ,

is a fixed quantity satisfying

for some positive that depends on and only, and
is nondecreasing in . Meanwhile, is independent of

, and for . Hence, by Lemma 1 (with
and

), (30) is upperbounded by

Hence, by the union of events bound

Furthermore, conditioned on , and hence
by Lemma 2–2). Thus

(31)

Note that the probability upperbound (31) depends on
only through . Grouping the events

with the same

which tends to zero as , if

(32)

for all . Since is arbitrarily chosen, the proof of
Theorem 1 is complete.
Now, we prove Lemma 1. For simplicity, let . Denote

. The moment generating function of
is

(33)

Note that is a noncentral random vari-
able. Its moment generating function is given by [61] as

, for . By
changing variable , we have
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Back to (33), we obtain

The Chernoff bound implies

Define

Clearly, Denote

Then, let us focus on the minimization problem

It can be shown that the minimizing is

and hence

Next, for fixed and

For , there is only one stationary point , which
is a solution to . Check the second derivative

This confirms that is the minimum point of
, for . Hence, for fixed and with

As a result
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Hence, by changing the base of logarithm

Finally, we verify Lemma 2–1). For any , according to
LLN

Note that . According to the definition

of , there must exist such that
. Fundamental geometry implies

Hence

Choosing completes the proof.

APPENDIX II
PROOF OF THEOREM 2

The main techniques for the proof of Theorem 2 include
Fano’s inequality and the properties of entropy. It mimics the
proof of the converse for the channel coding theorem [49] with
proper modifications.
For any , denote the tuple of random variables

by . From Fano’s inequality [49], we have

(34)

where for no-
tation simplicity. On the other hand, by a basic permutation ar-
gument

(35)

where and

which tends to zero as . Hence, combining (34) and (35),
we have

(36)

(37)

(38)

where (36) follows the fact that conditioning reduces entropy,
(37) follows the chain rule of mutual information [49], and (38)
follows since we condition on the measurement matrix and
is independent of and .
Consider

(39)

where the last inequality follows since the Gaussian random
variable maximizes the differential entropy given a variance
constraint. To further upperbound (39), note that

(40)

and

According to the law of total variance
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Returning to (38), we have

(41)

Therefore

(42)

for all . Due to the fact that , we have

(43)

for all . Since , we reach the con-
clusion

for all , which completes the proof of Theorem 2.

APPENDIX III
PROOF OF THEOREM 3

We show that

provided that the condition

(44)

is satisfied. Note that (44) implies that
, which in turn implies

that .
We follow the proof of Theorem 1 in Appendix I. Recall that

in Case 2 of the proof of Theorem 1, we first proposed the
support recovery rule (26). Then, we formed estimates of the
nonzero values, and used them to test all possible sets of in-
dices. The key step was to analyze two types of errors. On the
one hand, the true support should satisfy the reconstruction rule

(26) with high probability. On the other hand, the probability
that at least one incorrect support possibility satisfies this rule
was controlled to diminish as the problem size increases.
By mainly replicating the steps in Appendix I with necessary

accommodations to the new setting with growing number of
nonzero entries, we present the proof of Theorem 3 as follows.
1) We first modify the support recovery rule by replacing (26)
with

(45)

2) The cardinality of a minimal can be upper-
bounded by

for some . This can be easily shown by first parti-
tioning the -dimensional hypercube of side into iden-
tical elementary hypercubes with side not exceeding
and then, for each elementary hypercube that intersects
the hypersphere, picking an arbitrary point on the hyper-
sphere within that elementary hypercube. The resulting set
of points provides the upper bound above for .

3) Define and to be the largest and smallest eigen-
values of the matrix

respectively. We replace the definition of by

Consider the asymptotic behaviors of the events. First, note
that

(46)

where is -distributed with mean

and variance . Then,

has mean and

variance .
It has been shown [62] that

Then, as , has asymptotic

mean and variance . Since
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, we have . Hence,
.

Second, and are shown [63] to almost surely
converge to and , respectively, where

. Thus, .
4) Next, we analyze the probability that the true support sat-
isfies the recovery rule. Note that

(47)

By using the fact that almost surely as
and Lemma 2–1), we have .

5) Now, suppose we have proceeded to a step similar to (30)
[that is, to be exact, equipped with the modified rule (45)
and a proper ]. Define the auxiliary vector
as

if
if
if .

(48)

Then

From Lemma 1, it follows that (for sufficiently small )

6) Note that, from [33]

Together with the modifications above, we follow the proof
steps of Theorem 1 to reach

(49)

Note that

(50)

It can be readily seen that from condition (44), the upper
bound in (50) becomes negative and thus as

.

APPENDIX IV
PROOF OF THEOREM 4

The proof of Theorem 2 can be adapted to establish Theorem
4; see [64] for detail. Since we need a bound corresponding to
only the sum rate, however, we use the following simple argu-
ment.
Suppose that each user uses a codebook of size

given by . (As-
sume without loss of generality that is an integer.) This
is equivalent to assuming that each nonzero entry appears in its
predefined subset of , i.e.,

(51)

Under this specific setup, if exact support recovery is asymp-
totically successful, it follows that every user can operate at the
rate . Immediately, (5) implies the neces-
sary condition
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which leads to

We conclude the proof by noting that the special setup in (51)
is equivalent to the original setup in Section II in terms of the
average probability of error in support recovery due to the sym-
metry in the random matrix .
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