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Error Exponents for the Gaussian Channel
With Active Noisy Feedback

Young-Han Kim, Member, IEEE, Amos Lapidoth, Fellow, IEEE, and Tsachy Weissman, Senior Member, IEEE

Abstract—We study the best exponential decay in the block-
length of the probability of error that can be achieved in the
transmission of a single bit over the Gaussian channel with an
active noisy Gaussian feedback link. We impose an expected block
power constraint on the forward link and study both almost-sure
and expected block power constraints on the feedback link. In
both cases the best achievable error exponents are finite and
grow approximately proportionally to the larger between the
signal-to-noise ratios on the forward and feedback links. The
error exponents under almost-sure block power constraints are
typically strictly smaller than under expected constraints. Some
of the results extend to communication at arbitrary rates below
capacity and to general discrete memoryless channels.

Index Terms—Active feedback, coded feedback, error exponent,
Gaussian channel, noisy feedback.

I. INTRODUCTION

T HIS paper studies error exponents for the Gaussian
channel with noisy feedback as depicted in Fig. 1. Unlike

our previous work, which focused on passive feedback [1]–[3],
here we focus on active feedback. Thus, the time- symbol
fed to the feedback channel need not be the time- received
symbol ; it can be a function of and of the previous
received symbols . As in our previous work, we
consider only transmission schemes of a deterministic block-
length . (Random transmission times for discrete memoryless
channels with active feedback are discussed in [4].) And, al-
though some of our results extend to more general models, we
focus on the Gaussian model, where both the forward channel
and the feedback channel are additive white Gaussian noise
channels. To simplify the analysis, we focus on the case where
the message to be transmitted is binary, taking on the values 0
and 1 equiprobably (but see (13) which is applicable to all rates
of communication between zero and capacity).

Critical to our analysis is the precise nature of the power con-
straints that are imposed on the forward and feedback channels.
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Fig. 1. Gaussian channel with a coded noisy feedback link.

On the forward channel, we impose an expected block power
constraint, where the time-average of the squared channel in-
puts is a random variable (whose realization may depend on
the message and on the realization of the forward and feed-
back channels) whose expectation (over the message and over
the noise sequences on the forward and feedback channels) is
upper-bounded by some fixed (deterministic) positive constant

; see (8) ahead. For the feedback link we consider two types
of power constraints: an expected block power constraint [(10)
ahead] and an almost-sure block power constraint [(9) ahead].
In the latter, the time-average of the squared inputs to the feed-
back channel must not exceed irrespective of the message
and of the channel realizations. Clearly, an almost-sure power
constraint is more restrictive than an expected power constraint.

We do not consider an almost-sure block power constraint on
the forward channel because under this constraint even a noise-
free feedback link does not improve the error exponent for trans-
mission of two codewords [5], [6].

In this paper, we provide upper and lower bounds on the best
achievable exponent for both expected and almost-sure block
power constraints. Our main result is that—although a noise-
free feedback link allows the probability of error to decay faster
than exponentially in [7], [8]—if the feedback link is noisy
the probability of error cannot decay faster than exponentially.
This is true even when we only impose an expected block power
constraint on the feedback link. At high SNRs on the feedback
link, the error exponents in both cases grow as an affine func-
tion of the SNR. A more precise description of the results will
follow the formal statement of the problem in Section II.

II. THE PROBLEM STATEMENT AND MAIN RESULTS

We consider a transmission problem of a single bit , where
takes on the values 0 and 1 equiprobably. Let the sets , , ,

and all be the reals. A blocklength- code for transmitting
over our channel consists of a forward-channel encoding rule,
a feedback-channel encoding rule, and a decoder as described
next. A forward-channel encoding rule is specified by func-
tions1 , where

(1)

1All functions to in this paper are assumed to be Borel measurable.
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It is understood that the time- channel input is computed
according to the rule

(2)

where we use to denote and where, for conve-
nience, we set

(3)

The feedback-channel encoding rule is a collection of func-
tions , where

(4)

It is understood that the symbol that is fed to the feedback
channel at time is

(5)

(The special case where corresponds to pas-
sive—also known as “uncoded” or “symbol-by-symbol”—
feedback.)

A decoder is a decision rule for guessing based on

(6)

We denote the decision regions by and so

(7)

where we use to denote the -tuple .
The communication system under our consideration operates

as follows. The message, along with the forward and backward
channel noise components, , are in-
dependent random variables, where and

for every . We assume throughout
that and are strictly positive. At time , the input to
the forward channel is generated according to (2). This input is
corrupted by the forward channel noise, yielding the forward-
channel output . The feedback-channel en-
coder now computes the symbol from according to (5).
The symbol , which forms the time- input to the feedback
channel is corrupted by the feedback-channel noise to yield

at the output of that channel. The conditional
density of given is thus

and the conditional density of given is

We assume throughout that the forward-channel encoding
rules satisfy the expected block power constraint

(8)

where is some given constant designating the allowed
average power (per transmission) on the forward-channel. Note
that under the almost-sure block power constraint

the least probability of error that can be achieved by a block-
length- coding scheme is achieved by the antipodal signaling

if ,
if

regardless of (even in the noisefree feedback case [5], [6]).
Thus, we only consider the expected block power constraint (8)
for forward-channel encoding rules.

For the feedback-channel encoding rules we consider two
types of power constraints. An almost-sure block power
constraint

(9)

and an expected block power constraint

(10)

In both cases, we assume that is strictly positive. (The case
where corresponds to the no-feedback case.) We can
now present our main results.

Almost-Sure Block Power Constraints: Let us denote by
the least probability of error that

can be achieved by a blocklength- coding scheme subject to
the almost-sure constraint (9). We show in Section IV that

(11)

and we present in Section V a sequence of codes that proves that

(12)
It is shown in Section IV that (11) generalizes to the case

where there are more than two codewords. If we denote by
the rate of communication, i.e., the ratio of the logarithm of the
number of messages to the block length, and if we denote by

the best achievable error exponent, then

(13)

where is the reliability function of the forward
channel in the absence of feedback.

Expected Block Power Constraints: Let us denote by
the least probability of error that

can be achieved by a blocklength- coding scheme subject
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to the expected block power constraint (10). We show in
Section VI that2

(14)

and we present in Section VII a sequence of codes that proves
that

(15)

III. SOME PRELIMINARIES

Fix some code, and consider its use for transmitting the bit
over our channel. Let denote the forward-channel inputs that
result from such use through (2). Similarly define the forward-
channel output sequence , the feedback-channel inputs , and
the feedback-channel outputs . Let denote the joint law of

induced by the coding scheme, and let de-
note the joint density of . Let the conditional versions of
the joint law and density given be denoted by and

. Similarly we use and when the condi-
tioning is on . Thus, for

(16)

where the last equality follows from our assumption that both
the forward and feedback channels are memoryless and that the
noise components of these channels are independent. Since
takes on the values 0 and 1 equiprobably,

(17)

and the probability of error can be expressed as

(18)

(19)

IV. INACHIEVABILITY UNDER A.S. POWER CONSTRAINTS

The derivation of (11) is based on a reference channel that we
define next.

2Section VI also presents a tighter bound than (14).

Fig. 2. The new channel in which � is generated at random.

A. A Reference Channel

We consider a new channel in which the forward-channel en-
coder, feedback-channel encoder, and channel decoder are as
above, but in which the sequence fed to the forward-channel
encoder is generated independently of according to some law

as in Fig. 2. Later we shall assume that this law is the mar-
ginal law that is induced by the original channel and code.
We denote the density of this law by . Thus, the new channel
operates like the original channel except that the sequence that
is fed to the channel encoder is not the output of the feedback
channel but rather a randomly generated sequence drawn inde-
pendently of according to . We denote by the joint
distribution of , , , and that results when the original
forward-channel encoder (2) is applied as in Fig. 2. Thus, if we
factorize the marginal law of on as

(20)

then

(21)

(Under the sequence is generated “without looking at .”
Nevertheless, and are not necessarily independent under
because is influenced via the forward-channel by , which
in turn is influenced by via the forward-channel encoder.)

The conditional laws of conditional on and
are denoted by , . Similarly, the unconditional and condi-
tional joint densities of are denoted by , ,
and .

Note that according to the random sequence is generated
independently of the hypothesis , so

(22)

Also,

(23)
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where the first equality follows from the chain rule; the second
from another application of the chain rule; the third from (21);
and the fourth from the chain rule.

The importance of the reference law is that the set-up of Fig. 2
is no better than the no-feedback set-up. And since antipodal
signaling is optimal in the absence of feedback,

(24)

where is the probability that a standard Normal random
variable exceeds [9, Section 19.4].

B. Relating and

We next try to relate the original law and the reference law
. By (16) and (23) it follows that

(25)

where

(26)

In order to lower-bound in terms of , we
need a lower bound on . We derive one for the choice of

as . Henceforth we thus assume

(27)

It follows from (26) and (27) that in order to lower-bound
we need to upper-bound . To that end, we first use

(16) to express as

(28a)

where

(28b)

For a fixed , the second product on the RHS of (28a)
is a probability density function that integrates to one over the
set of all sequences that, via (28b), induce sequences
satisfying

(29)

Since the average is upper-bounded by the maximum, we obtain

(30)

(31)

where the maximum is over all the sequences that
satisfy (29).

Using the explicit form of the Gaussian distribution and the
Triangle inequality we obtain for

(32)

where denotes the standard Euclidean norm on ; and
where denotes the larger of zero and , i.e., . Since
(32) holds for both and , we can average over to
obtain

(33)
We continue to lower-bound , which is defined in (26)

by lower-bounding the numerator using (9). Again, using the ex-
plicit form of the Gaussian distribution and the Cauchy-Schwarz
inequality, we obtain

(34)

Combining (26), (27), (33), and (34), we obtain

(35)

and

(36)

(37)

These two inequalities can be combined to yield

(38)

Consequently, by (25)

(39)

Note that the RHS of (38) is monotonically decreasing in .

C. Lower-Bounding the Probability of Error

Fix some and smaller than . Define

(40)
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Note that

(41)

By the almost-sure block power constraint on the feedback
channel (9), there exists some positive integer (which de-
pends on the choice of ) such that for any code of blocklength

exceeding
(42)

where

(43)

By Markov’s inequality and by the expected block power
constraint on the forward channel (8), it follows that for any code
the subset of consisting of those sequences that cause
the transmitted symbols on the forward link to have an average
power that does not exceed , i.e., the set

(44)

satisfies
(45)

It follows from (45) and (42) that

(46)

Recalling (41) and the monotonicity of the RHS of (38), we
conclude that for we can lower-bound by

(47a)

where

(47b)

Recalling (22) and (27), we can now lower-bound the condi-
tional probabilities of error as follows:

(48)

Similarly

(49)
Averaging (48) and (49) over the uniform prior of , we obtain

(50)

where the first line follows from our assumption that the prior on
is uniform; the second from (48) and (49); the third because

under the hypothesis is independent of ; the fourth from
(24) and because for the transmitted energy is bounded
by (44); and the fifth line from (46).

It follows from (50) and from the definition of in (47b) that

where we have used the elementary lower bound on cf.,
e.g., [9, Proposition 19.4.2]. Since and can be taken as small
as we wish, and since by (40)

we conclude that

(51)

thus establishing (11).
Note: The lower bound on the error probability in the case

of almost-sure block power constraints can be easily extended
to the case of more than two codewords and to any positive
communication rate. Indeed, the definition of in (25)
and (26), and the argument leading to (38) carry over verbatim
regardless of the size of the message set where takes its
values. In turn, the arguments in the current subsection carry
over directly, with (50) generalizing to

(52)
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where denotes the minimum probability
of error in communicating one of equiprobable messages
with no feedback, SNR equal to , and block-length . The
rest of the arguments remain unchanged, generalzing (51) to the
conclusion that at any rate , the error exponent with
an almost-sure block power constraint is upper-bounded by

(53)

where is the reliability function of the forward
channel in the absence of feedback. We note that the second
term on the right side of (53) is inherited without change from
the case of binary messages, since it originates from our lower
bound on in (47a) which holds independent of the
number of messages.

V. ACHIEVABILITY UNDER A.S. POWER CONSTRAINTS

We next describe a sequence of codes that establishes (12).

A. The Scheme

Fix some . At time-1 we send the message using
antipodal signaling

if
if .

(54)

At the subsequent times the trans-
mitter is silent

(55)

Based on the sign of , the receiver forms a tentative decision
on and feeds it back via the feedback link using antipodal
signaling

if
if .

(56)

The encoder chooses the time- transmitted symbol based
on and as follows. If

(57)

then the transmitter assumes that the tentative decision that the
receiver made based on is correct and it sends nothing at time

, i.e., it sets . Likewise, if

(58)

then the transmitter sets . In all other cases we say
that a re-transmission event Re-Tx occurred and the transmitter

retransmits the message using antipodal signaling with a huge
instantaneous power, i.e., by sending , where
is the probability of retransmission (which we shall soon see is
exponentially small). Thus

if and ,

if and

otherwise.
(59)

To make its final decision, the receiver considers and com-
pares it to a threshold . (We shall later choose to equal the
blocklength .) If , then the receiver assumes that a
retransmission took place and decides “ .” Similarly, if

, it assumes that a retransmission occurred and de-
cides “ .” Otherwise, if , it decides that a retrans-
mission did not take place and that its tentative decision was
correct: it declares “ ” if and declares “ ” if

. If denotes the final decision, then

if or if and

if or if and .
(60)

B. Analysis

It is straightforward to see that the expected average trans-
mitted power on the forward link is and that with probability
one the average transmitted power on the feedback link does not
exceed . We focus on the probability of error. We shall as-
sume throughout that ; the analysis of the case where

is very similar. When , a retransmission occurs if
the event

(61)

occurs. Substituting the event for and for in
the inequality

(62)

yields that the conditional probability of a retransmission
is upper-bounded by

(63)

(64)
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By a similar argument, one can show that this also upper-bounds
the probability of retransmission when we condition on .
Thus

(65)

Notice that for a fixed , it follows from (65) that tends to
zero exponentially in . Consequently, the amplitude in
the retransmission phase is much larger than the noise variance,
and, in fact, the ratio

(66)

grows exponentially in . If we choose , then

(67a)

(67b)

and

(67c)
We conclude from (67b) and (67c) that the probability that a
retransmission takes place and a decoding error occurs decays
faster than exponentially in

(68)

The dominant error that will determine the exponential decay
of the probability of error of our scheme is thus the probability
that a retransmission does not take place and an error occurs.
As before, the probability of this event does not depend on the
hypothesis. Conditional on , the probability of this event
is

(69)

where the second term on the RHS of (69) decays faster than
exponentially to zero by (67a). As to the first term, we have

(70)

Expressions analogous to (69) and (70) can also be derived con-
ditional on . These combine with (67a) and (68) to
demonstrate that our scheme achieves the error exponent

(71)

By considering the limit of we obtain that any exponent
smaller than

(72)

is achievable. In fact, by letting tends to zero very slowly with
, we can achieve the exponent (72) and thus establish (12).

VI. INACHIEVABILITY UNDER EXPECTED POWER CONSTRAINTS

In this section, we prove (14). We begin with some
definitions.

A. Some Definitions

Given and some blocklength- coding scheme,
define the set

(73)

The set depends on , , the blocklength , and the feed-
back-channel encoding rule under consideration, but our nota-
tion does not make this explicit.

Given and some blocklength- coding scheme we
define the set

(74)
This set depends on , , the blocklength , and the forward-
channel encoder under consideration.

B. Preliminary Lemmas

We present here some lemmas that will be useful in proving
(14).

Lemma 1: The following inequality holds:

(75)

Proof: By (16)

(76)

(77)

For a fixed , the product

(78)
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is a density on . Integrating (77) over , we thus obtain

Lemma 2: The following inequality holds:

(79)

Proof: By (16)

(80)

(81)

For a fixed , the product

is a density on . Integrating over we thus obtain

Lemma 3: The following inequality holds:

(82)

Proof: By (16), we note that

(83)

and we proceed to lower-bound each of the products separately
for and . For such and

(84)

We next turn to the second product in (83). For and as above

(85)

Inequalities (85) and (84) combine with (83) to prove the
lemma.

Lemma 4: The following inequality holds:

(86)

Proof: For every
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where the last inequality follows from Lemma 3, i.e., from (82).
It remains to lower-bound the volume of as follows:

where the last inequality follows from Lemma 2, i.e., from (79).

Lemma 5: The following inequality holds:

(87)

Proof: Follows from Lemma 4 and Lemma 1, i.e., from
(86) and (75).

Lemma 6: The following inequality holds:

(88)

Proof: This follows from Lemma 5, i.e., from (87) as fol-
lows:

C. A Proof of (14)

We now use Lemma 6 to prove (14). Suppose we are given
a sequence of codes, with a code corresponding to each block-
length . To establish (14), we need to show that from every
subsequence of blocklengths tending to infinity we can
extract a subsequence such that

(89)

where denotes the probability of error of the code
corresponding to the blocklength . We refer to this as “our

claim” and proceed to prove it. We thus start with some sub-
sequence and proceed to prove the existence of a subse-
quence tending to infinity for which (89) holds.

Before proving our claim, we make several reductions. The
first reduction is in assuming that the subsequence is such
that

(90)

There is no loss in generality in making this assumption because
otherwise we can pick to be a subsequence for which for
some the limit as of is not 1,
in which case the LHS of (89) zero and hence trivially smaller
than its RHS.

Before stating the second reduction we introduce some no-
tation. For a given sequence of codes indexed by the block-
length- , we define for every blocklength

(91)

where are the mappings that define the for-
ward-channel encoder of the code indexed by . (The de-
pendence of the encoding mappings on the blocklength is
omitted for brevity.) Note that by the block power constraint (8)

(92)

The second reduction we make is in assuming that the subse-
quence is such that the limits defining and as

(93)

exist and satisfy

(94)

There is no loss in generality in making this assumption be-
cause the more general case where the above does not neces-
sarily hold follows from the less-general case by applying the
less-general result to the subsequence of that we denote
by and that we define as follows. We pick a subsequence

of for which the limit of exists; we call the limit
; we define the subsequence of —and hence also

of —as a subsequence of for which the limit of

also exists; and we finally define as this limit. We then ob-
serve that (94) then follows from (92).

For our third reduction, we define for every blocklength

(95)

where are the mappings that define the feedback-
channel encoder. The third reduction we make is in assuming
that the limits defining and as

(96)
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exist and satisfy

(97)

This entails no loss of generality by arguments analogous to
those we used for the second reduction.

We are now ready to prove our claim subject to the above
assumptions. Let (smaller than ) be fixed. Choose

(98)

(99)

(100)

(101)

where the positive numbers , , , and satisfy

(102)

and

(103)

Let the sets and be those defined in (73) and (74). Using
the bound

and Markov’s inequality we obtain

It follows from (98), (99), and (102) that for all sufficiently large

(104)

From this and (90), we can infer that for all sufficiently large

(105)

By similar arguments we can show that for all sufficiently
large

(106)

From Lemma 6, we then have

(107)

(108)

(109)

In view of (98)–(103), since can be chosen as small as we wish,
we conclude that no error exponent higher than

(110)

is achievable, where the infimum is over all positive
satisfying (102) and (103).

We could, of course, have also reversed the roles of
and to obtain that no error exponent higher than

(111)

is achievable. Thus, our best bound is

(112)

where the supremum is over all positive
satisfying (94) and (97).

A suboptimal choice for is

(113)

which leads to

(114)

(115)

Opening the square and using (94) and (97) we obtain

(116)
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and

(117)

and the error exponent is upper-bounded by

(118)

Now it is easy to see that the bound is maximized with
and . Indeed, the error expo-

nent is upper-bounded by

(119)

(120)

with equality if and .
Here, the inequality (119) follows from Jensen’s inequality.

We conclude from (120) that the suboptimal choice (113)
demonstrates that the error exponent is upper-bounded by

(121)

This concludes the proof of (14).

Note that while the choice (113) is in general suboptimal,
optimizing over , , , and cannot yield any bound lower
than half the bound of (121), because (102) and (103) imply that

VII. ACHIEVABILITY UNDER EXPECTED POWER CONSTRAINTS

We begin with the description of a “building block” com-
prising a transmission scheme upon which we shall build when
coding under an expected power constraint on the feedback link.

A. A Building Block

The Scheme: The building block transmits a single bit, which
we denote by . Its parameters are the blocklength , the trans-
mitted average power on the forward link , the noise
variances on the forward and backward links, and
the average transmitted power on the feedback link .
Note that will not influence the error exponent of the building
block. Consequently, when we later use the building block we
shall typically choose very small to save power. An additional
parameter is some arbitrary (small) .

The key elements of the building block are transmission,
ACK/NACK, and retransmission. The transmission is based on
antipodal signaling to send the bit over channel uses

if ,
if ,

(122)

The first symbols sent by the receiver are zero

(123)

Based on the received symbols , the receiver
computes

(124)

If

then the decoder declares that a NACK event has occurred. Oth-
erwise, it declares that an ACK event has occurred. It then uses

to tell the transmitter which of these two events occurred

if
if (125)

Note that a NACK is a rare event of exponentially small
probability:

(126)
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where here and throughout the notation indicates that
tends to zero as tends to infinity. Also note

that, by symmetry

(127)

Based on the transmitter guesses whether a
or occurred. It does so by comparing to some
threshold . If exceeds , then the transmitter guesses
that a was sent. We refer to this event as a .
Otherwise, if is smaller than , then the transmitter
guesses that an was sent and we refer to this as
an event. The threshold is chosen so that both

and decay in to
zero faster than any exponential

(128a)

(128b)

In view of (125) and (126), this can be accomplished, for ex-
ample, by choosing .

The time- transmitted symbol is now determined as fol-
lows. If , then the transmitter sends the zero symbol;
otherwise it re-transmits using antipodal signaling with very
large power

if ,
if and
if and .

(129)
Note that has an exponentially small probability.

(This follows because is a rare event (126) and because
of (128).) Consequently, in (129) the symbol that is sent if

occurs has a huge magnitude so

(130a)

(130b)

We next consider how the receiver forms its guess for .
If , then the receiver guesses based on the sign of . If

, then it guesses based on the sign of . Thus

if and or and
if and or and .

(131)
Analysis: We next analyze the probability of error. Since the

scheme is completely symmetric, it suffices to compute the con-
ditional probability of error conditional on , namely,

. We express this probability as

(132)

We next study :

(133)

(134)

(135)

(136)

(137)

Since can be chosen as small as we want, we conclude
from (132) and (137) that the building block we described can
achieve any error exponent smaller than

(138)

In fact, if we allow for to tends to zero very slowly with , we
can even achieve this exponent irrespective of how small
is.

B. The Proposed Scheme and Its Performance

The Scheme: The proposed scheme has three phases: a trans-
mission phase, an echo phase, and a re-transmission phase. To
simplify the exposition we shall assume that the blocklength
is odd and define

(139)

(To code for an even blocklength we can use the proposed
scheme for and then append a zero symbol to the trans-
mission.) Fix some (later to be chosen
arbitrarily small).

In the transmission phase, we use the building block of
Section VII-A to transmit in channel uses using power

on the forward link and power on the feedback link.
We denote the receiver’s guess of after this phase by . By
(138) and (139)

(140)
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In the echo phase, we use the building block of Section VII-A
to send from the receiver to the transmitter. We thus think
of the original feedback channel from the receiver to the trans-
mitter as the forward channel in the building block, and we think
of the original forward channel from the transmitter to the re-
ceiver as the feedback channel in the building block. The re-
ceiver uses power and the transmitter uses power .
We denote the transmitter’s guess for at the end of this phase
by . Substituting in (138) for and for ,
we obtain using the independence between the phases

(141)

Note that by (140) and (141)

(142)

In the final re-transmission phase which comprises of one
channel use, the transmitter compares and . If they are
equal, it sends the zero symbol. Otherwise it re-transmits
using antipodal signaling with amplitude

if ,
if ,
if .

(143)

At the end of the re-transmission phase, the receiver makes its
final guess of . It does so by comparing to a threshold

if ,
if ,
if .

(144)

Notice that by (142) the amplitude is ex-
ponentially large, so there is no difficulty finding a threshold
(e.g., ) such that

(145a)

(145b)

(145c)

Analysis: We shall analyze the probability of error condi-
tional on . It is identical to the one given

(146)

where the last approximation follows from (142). By symmetry,
, so (146) implies that the error exponent

(147)

is achievable. Since, can be chosen arbitrarily small, it follows
that any exponent smaller than

(148)

is achievable. In fact, if we let tend to zero very slowly with
, we can achieve the error exponent (148).

VIII. SUMMARY AND POSSIBLE EXTENSIONS

We presented results on the best achievable error exponents
in transmitting one bit over the Gaussian channel with an active
noisy Gaussian feedback link. [In the case of an almost sure
block power constraint on the feedback link we also obtained
an upper bound on the error exponent for arbitrary rates of com-
munication; see (53).] We have shown that even if both the for-
ward link and the feedback link are subjected to expected block
power constraints, the best error exponents are finite. Roughly
speaking—irrespective of the nature of the feedback power con-
straint—the best error exponent is roughly proportional to the
larger of the signal-to-noise ratio on the forward link and
the signal-to-noise ratio on the feedback channel . In
this very rough sense, active feedback is not much different from
passive symbol-by-symbol feedback [2].

However, a more careful analysis based on our previous re-
sults [1], [2] shows that the best error exponent for two messages
with passive (symbol-by-symbol) feedback is upper-bounded
by

(149)

which can be further upper-bounded by

(150)

On the other hand, an achievable error exponent (148) for an
active feedback with the same feedback signal-to-noise ratio is

Hence, the freedom to code over the feedback link can at least
quadruple the error exponent of binary communication. It
would be interesting to see how much active feedback gains
over passive feedback for a positive rate .

While our focus has been on Gaussian channels with
Gaussian feedback channels, some of our techniques are more
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general. For example, consider a setting where the forward
and feedback channels are binary symmetric channels (BSCs)
with crossover probabilities . In this case, we can
apply the technique of Section IV (with the sets and being

) to obtain that the reliability function with noisy active
feedback cannot exceed

(151)

where is the reliability function of the BSC of
crossover probability . In some cases, particularly when the
feedback channel is very noisy, this bound can be tighter than
the trivial bound

(152)

which is obtained by bounding the reliability function by the
one with perfect feedback and by bounding the latter by the
best two-codeword error exponent. (The fact that feedback does
not improve the best two-codeword error exponent on a discrete
memoryless channel appears in the Ph.D. thesis of Berlekamp
[10] who attributes this result to Gallager and Shannon.)

The bound in (151) complements the recent work of Burna-
shev and Yamamoto [11], [12] on the reliability function of the
binary symmetric channel with a binary symmetric feedback
link. (Upper bounds on the latter reliability function can be de-
rived using techniques similar to those we used in [2].)
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