
3132 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 5, MAY 2011

Noisy Network Coding
Sung Hoon Lim, Student Member, IEEE, Young-Han Kim, Member, IEEE, Abbas El Gamal, Fellow, IEEE, and

Sae-Young Chung, Senior Member, IEEE

Abstract—A noisy network coding scheme for communicating
messages between multiple sources and destinations over a general
noisy network is presented. For multi-message multicast networks,
the scheme naturally generalizes network coding over noiseless
networks by Ahlswede, Cai, Li, and Yeung, and compress-forward
coding for the relay channel by Cover and El Gamal to discrete
memoryless and Gaussian networks. The scheme also extends the
results on coding for wireless relay networks and deterministic
networks by Avestimehr, Diggavi, and Tse, and coding for wireless
erasure networks by Dana, Gowaikar, Palanki, Hassibi, and Ef-
fros. The scheme involves lossy compression by the relay as in the
compress-forward coding scheme for the relay channel. However,
unlike previous compress-forward schemes in which independent
messages are sent over multiple blocks, the same message is sent
multiple times using independent codebooks as in the network
coding scheme for cyclic networks. Furthermore, the relays do
not use Wyner-Ziv binning as in previous compress-forward
schemes, and each decoder performs simultaneous decoding of
the received signals from all the blocks without uniquely decoding
the compression indices. A consequence of this new scheme is
that achievability is proved simply and more generally without
resorting to time expansion to extend results for acyclic networks
to networks with cycles. The noisy network coding scheme is
then extended to general multi-message networks by combining
it with decoding techniques for the interference channel. For the
Gaussian multicast network, noisy network coding improves the
previously established gap to the cutset bound. We also demon-
strate through two popular Gaussian network examples that noisy
network coding can outperform conventional compress-forward,
amplify-forward, and hash-forward coding schemes.

Index Terms—Compress-forward, discrete memoryless net-
work, Gaussian network, interference relay channel, network
coding, noisy network coding, relaying, two-way relay channel.

I. INTRODUCTION

C ONSIDER the -node discrete memoryless network de-
picted in Fig. 1. Each node wishes to send a message to

a set of destination nodes while acting as a relay for messages
from other nodes. What is the capacity region of this network,
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Fig. 1. � -node discrete memoryless network.

that is, the set of rates at which the nodes can reliably commu-
nicate their messages? What is the coding scheme that achieves
the capacity region? These questions are at the heart of network
information theory, yet complete answers remain elusive.

Some progress has been made toward answering these ques-
tions in the past forty years. In [1] and [2], a general cutset
outer bound on the capacity region of this network was estab-
lished. This bound generalizes the max-flow min-cut theorem
for noiseless single-message unicast networks [3], [4], and has
been shown to be tight for several other classes of networks.

In their seminal paper on network coding [5], Ahlswede, Cai,
Li, and Yeung showed that the capacity of noiseless multicast
networks coincides with the cutset bound, thus generalizing the
max-flow min-cut theorem to multiple destinations. Each relay
in the network coding scheme sends a function of its incoming
signals over each outgoing link instead of simply forwarding
incoming signals. Their proof of the network coding theorem
is in two steps. For acyclic networks, the relay mappings are
randomly generated and it is shown that the message is correctly
decoded with high probability provided the rate is below the
cutset bound. This proof is then extended to cyclic networks
by constructing an acyclic time-expanded network and relating
achievable rates and codes for the time-expanded network to
those for the original cyclic network.

The network coding theorem has been extended in several
directions. Dana, Gowaikar, Palanki, Hassibi, and Effros [6]
studied the multi-message multicast erasure network as a
simple model for a wireless data network with packet loss.
They showed that for the case when the network erasure pattern
is known at the destination nodes, the capacity region coincides
with the cutset bound and is achieved via network coding.
Ratnakar and Kramer [7] extended network coding to charac-
terize the multicast capacity for single-message deterministic
networks with broadcast but no interference at the receivers.
Avestimehr, Diggavi, and Tse further extended this result to
deterministic networks with broadcast and interference to
obtain a lower bound on the multicast capacity that coincides
with the cutset bound when each channel output is a linear
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function of the input signals over a finite field. Their proof
again involves two steps. As in the original proof of the network
coding theorem, random coding is used to establish the lower
bound for layered deterministic networks. A time-expansion
technique is then used to extend the result to arbitrary nonlay-
ered deterministic networks. Their coding scheme is further
extended to layered and nonlayered Gaussian networks via a
quantize-map–forward (QMF) scheme in which scalar quan-
tization transforms a Gaussian network into a deterministic
network. A bound on the achievable rate of the QMF scheme
is then obtained from a multi-letter expression. This bound is
shown to be within a constant gap of the cutset bound.

In an earlier and seemingly unrelated line of investigation,
van der Meulen [8] introduced the relay channel with a single
source , single destination , and a single relay with trans-
mitter-receiver pair . Although the capacity for this
channel is still not known in general, several nontrivial upper
and lower bounds have been developed. In [9], Cover and El
Gamal proposed the compress-forward coding scheme in which
the relay compresses its noisy observation of the source signal
and forwards the compressed description to the destination.
Despite its simplicity, compress-forward was shown to be
optimal for classes of deterministic [10] and modulo-sum [11]
relay channels. The Cover-El Gamal compress-forward lower
bound on capacity has the form

(1)

where the maximum is over all pmfs
such that . This lower bound
was established using a block Markov coding scheme—in each
block the sender transmits a new message and the relay com-
presses its received signal and sends the bin index of the com-
pression index to the receiver using Wyner-Ziv coding [12]. De-
coding is performed sequentially. At the end of each block, the
receiver first decodes the compression index and then uses it to
decode the message sent in the previous block. Kramer, Gastpar,
and Gupta [13] used an extension of this scheme to establish a
compress-forward lower bound on the capacity of general relay
networks. Around the same time, El Gamal, Mohseni, and Za-
hedi [14] put forth the equivalent characterization of the com-
press-forward lower bound

(2)

where the maximum is over all pmfs .
As we will see, this characterization is a special case of a more
general extension of compress-forward to networks.

The above two lines of investigation have motivated us to de-
velop the noisy network coding scheme that unifies and extends
the above results. On the one hand, our scheme naturally gener-
alizes compress-forward to noisy networks. The resulting inner
bound on the capacity region extends the equivalent character-
ization in (2), rather than the original characterization in (1).
On the other hand, our scheme includes network coding and its
variants as special cases. Hence, while the coding schemes for
deterministic networks and erasure networks can be viewed as

bottom-up generalizations of network coding to more compli-
cated networks, our coding scheme represents a top-down ap-
proach for general noisy networks.

The noisy network coding scheme employs lossy compres-
sion by the relay as in the previous compress-forward coding
schemes in [9] and [13]. However, unlike these schemes, where
different messages are sent over multiple blocks and decoded
one message at a time, each source node in noisy network
coding transmits the same message over multiple blocks using
independently generated codebooks. The relay operation is
also simpler than previous compress-forward schemes—the
compression index of the received signal in each block is sent
without Wyner-Ziv binning. After receiving the signals from
all the blocks, each destination node performs simultaneous
decoding of the messages without uniquely decoding the com-
pression indices. As we will demonstrate throughout the paper,
these differences result in better performance than the previous
compress-forward schemes [13], [15]–[18] for networks with
more than one relay node or more than one message.

Note that each of the three key ideas involved in our scheme
has been previously used in other network information theory
problems.

1) Sending the same message over multiple blocks has been
used implicitly in the time-expansion technique for cyclic
noiseless networks [5] and nonlayered deterministic net-
works [19]. Unlike these time-expansion proofs, however,
our achievability proof does not require a two-step ap-
proach that depends on the network topology.

2) Relaying the compression indices without binning has
again used implicitly in network coding and its extensions.

3) Simultaneous nonunique decoding has been used in var-
ious settings, e.g., interference channels [20] and broadcast
channels [21].

The key contribution of the paper lies in the manner in which
these three ideas are combined and in the careful analysis of the
corresponding probability of error, which yields a single-letter
characterization of the achievable rate. In fact, using only two
of these three ideas fails to achieve the same performance as
noisy network coding. The simplicity of our scheme makes it
straightforward to combine with decoding techniques for in-
terference channels. Indeed, the noisy network coding scheme
can be viewed as transforming a multi-hop relay network into a
single-hop interference network where the channel outputs are
compressed versions of the received signals. We develop two
coding schemes for general multiple source networks based on
this observation. At one extreme, noisy network coding is com-
bined with decoding all messages, while at the other, interfer-
ence is treated as noise.

We apply these noisy network coding schemes to Gaussian
networks. For the multi-message multicast case, noisy network
coding yields a single-letter inner bound that is within a tighter
gap to the cutset bound than that of the QMF scheme by Aves-
timehr, Diggavi, and Tse [19] and its extension by Perron [22].
The reason for the tighter gap is that the QMF scheme uses
scalar quantization and the bound on the achievable rate is ob-
tained from a multi-letter expression. In comparison, noisy net-
work coding uses a lossy source coding scheme (vector quan-
tization), which, together with more general information theo-
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retic analysis, enables us to obtain the exact single-letter expres-
sion of the achievable rate instead of a bound. We also show that
noisy network coding can outperform other specialized schemes
for two-way relay channels [15], [16] and interference relay
channels [17], [18].

The rest of the paper is organized as follows. In the next sec-
tion, we formally define the problem of communicating mul-
tiple messages over a general network and discuss the main re-
sults. We also show that previous results on network coding are
special cases of our main theorems and compare noisy network
coding to other schemes. In Section III, we present the noisy
network coding scheme for multi-message multicast networks.
In Section IV, the scheme is extended to general multi-mes-
sage networks. Results on Gaussian networks are discussed in
Section V.

Throughout the paper, we follow the notation in [23]. In
particular, a sequence of random variables with node index

and time index is denoted as
. A tuple of random variables is de-

noted as .

II. PROBLEM SETUP AND MAIN RESULTS

The -node discrete memoryless network (DMN)
depicted in Fig. 1 consists

of sender-receiver alphabet pairs , , and
a collection of conditional pmfs .
Each node wishes to send a message
to a set of destination nodes, . Formally, a

code for the DMN consists of message
sets , a set of encoders with encoder

that assigns an input symbol to each pair
for , and a set of decoders with decoder

that assigns message estimates to
each , where is the set
of nodes that send messages to destination . For simplicity we
assume for all destination nodes.

We assume that the messages , , are indepen-
dent of each other and each message is uniformly distributed
over its message set. The average probability of error is defined
as

A rate tuple is said to be achievable if there exists
a sequence of codes with as

. The capacity region of the DMN is the closure of the
set of achievable rate tuples.

We are ready to state our main results.

A. Multi-Message Multicast Networks

In Section III, we establish the following noisy network
coding theorem for multicasting multiple messages over a
DMN. The coding scheme and techniques used to prove this
theorem, which we highlighted earlier, constitute the key con-
tributions of our paper.

Theorem 1: Let . A rate tuple
is achievable for the DMN if

(3)

for all subsets such that for some pmf
, where .

This inner bound has a similar structure to the cutset bound

(4)

for all such that . The first term
of (3), however, has replaced by the “compressed” version

. Another difference between the bounds is the negative term
appearing in (3), which quantifies the rate requirement to convey
the compressed version. In addition, the maximum in (3) is only
over independent .

Theorem 1 can be specialized to several important network
models as follows:

Noiseless Networks: Consider a noiseless network modeled
by a weighted directed cyclic graph , where

is the set of nodes, is the set of
edges (links), and is the set of
link capacities. Each node transmits

and receives . Thus, each
link carries a symbol noiselessly from
node to node with link capacity . Now for
each cut separating some source and destination pair

with equality if has a uniform product pmf.
Hence, by evaluating the inner bound in Theorem 1 with the
uniform pmf on and for all , it can be easily
shown that the inner bound coincides with the cutset bound, and
thus the capacity region is the set of rate tuples
such that

(5)

for all with . This recovers previous
results in [5].

Relay Channels: Consider the relay channel .
By taking , , , and

, it can be readily checked that the inner bound in Theorem
1 reduces to the alternative characterization of the compress-
forward lower bound in (2).
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Wireless Erasure Networks: Consider a wireless data net-
work with packet loss modeled by a hypergraph
with random input erasures. Each node broadcasts a
symbol to a subset of nodes over a hyperedge (wireless
broadcast link) and receives from
nodes for , where

with probability
with probability .

Note that the capacity of each hyperedge (with no era-
sure) is . We assume that the erasures are inde-
pendent of each other. Assume further that the erasure pattern of
the entire network is known at each destination node. By eval-
uating the inner bound in Theorem 1 with the uniform product
pmf on and for all , it can be easily shown that
the inner bound coincides with the cutset bound and the capacity
region is the set of rate tuples such that

(6)

for all such that . This recovers the
previous result in [6].

Deterministic Networks: Suppose ,
. By setting , , Theorem

1 implies that a rate tuple is achievable for the
deterministic network if

(7)

for all such that for some pmf
. This recovers previous results in [19] for

the single-message case and in [22] for the multi-message case.
Note that the inner bound in (7) is tight when the cutset bound is
attained by the product pmf, for example, as in the deterministic
network without interference [7] or the finite-field linear deter-
ministic network [19].

Note that in all the above special cases, the channel output at
node can be expressed as a deterministic function of the input
symbols and the destination output symbol ,
i.e.,

(8)

for every and . Under this semideterministic
structure, the inner bound in Theorem 1 can be simplified by
substituting for in (3) to obtain the
following generalization.

Corollary 1: Let . A rate tuple
is achievable for the semideterministic DMN (8)

if there exists some pmf such that

(9)

for all such that .
We also show in Appendix E that our noisy network coding

scheme can strictly outperform the extension of the original

compress-forward scheme for the relay channel to networks in
[13, Theorem 3].

B. General Multi-Message Networks

We extend the noisy network coding theorem to general
multi-message networks. As a first step, we note that Theorem
1 continues to hold for general networks with multicast com-
pletion of destination nodes, that is, when every message is
decoded by all destination nodes . Thus, we can
obtain an inner bound on the capacity region for the DMN in
the same form as (3) with .

This multicast-completion inner bound can be improved by
noting that noisy network coding transforms a multi-hop relay
network into a single-hop interference network

, where the effective channel output at decoder is
and the compressed channel outputs

are described to the destination nodes with some
rate penalty. This observation leads to a modified decoding rule
that does not require each destination to decode unintended
messages correctly, resulting in the following improved inner
bound.

Theorem 2: A rate tuple is achievable for the
DMN if

(10)

for all subsets such that for
some pmf , where

.
The proof of this theorem is given in Section IV-A.
As an alternative, each destination node can simply treat in-

terference as noise rather than decoding it. Using this approach,
we establish the following inner bound on the capacity region.

Theorem 3: A rate tuple is achievable for the
DMN if

(11)

for all subsets and such that
and for some pmf

, where .
Unlike the coding schemes in Theorems 1 and 2 where each

node maps both its own message and the compression index to
a single codeword, here each node applies superposition coding
[24] for forwarding the compression index along with its own
message. (Note that when a node does not have its own message
and it acts only as a relay, there is no difference in the relay
operation from the previous schemes.) The details are given in
Section IV-B.

C. Gaussian Networks

In Section V, we present an extension of the above results to
Gaussian networks and compare the performance of noisy net-



3136 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 5, MAY 2011

work coding to other specialized coding schemes for two pop-
ular Gaussian networks.

Consider the Gaussian network

(12)

where is the channel gain matrix and is a vector
of independent Gaussian random variables with zero mean and
unit variance. We further assume average power constraint on
each sender .

In Section V-A, we establish the following result on the mul-
ticast capacity region of this general Gaussian network.

Theorem 4: Let . For any rate tuple
in the cutset bound for the Gaussian network

(12), the rate tuple is in
the inner bound in Theorem 1, regardless of the values of the
channel gain matrix and power constraint .

We also demonstrate through the following two examples
that noisy network coding can outperform previous coding
schemes, some of which are developed specifically for these
channel models.

Two-Way Relay Channel (Section V-B): Consider the
Gaussian two-way relay channel

(13)

in which source nodes 1 and 2 wish to exchange messages re-
liably with the help of relay node 3 (multicast with
and ). Various coding schemes for this channel have
been investigated in [15], [16]. In Fig. 2, we compare noisy
network coding with decode-forward, compress-forward, and
amplify-forward studied in [15]. As shown in the figure, noisy
network coding uniformly outperforms compress-forward. Fur-
thermore, we can see that noisy network coding achieves uni-
formly within 1.5 bits from the cutset bound. In Appendix F,
we show that the gap from the cutset bound for noisy network
coding is within 1 bit for the individual rates and within 1.5 bits
for the sum rate, while decode-forward, compress-forward, and
amplify-forward have arbitrarily large gaps.

Interference Relay Channel (Section V-C): Consider the
Gaussian interference relay channel with orthogonal receiver
components in Fig. 3.

The channel outputs are

where is the channel gain from node to node . Source
node 1 wishes to send a message to destination node 4, while
source node 2 wishes to send a message to destination node
5. Relay node 3 helps the communication of this interference
channel by sending some information about over a common
noiseless link of rate to both destination nodes. In Fig. 4, we
compare noisy network coding (Theorems 2 and 3) to compress-
forward (CF) and hash-forward (HF) in [18]. The curve repre-
senting noisy network coding depicts the maximum of achiev-
able sum rates in Theorems 2 and 3. At high signal-to-noise

Fig. 2. Comparison of coding schemes for � � � � ���, � � � �

���, and � � � � �.

Fig. 3. Gaussian interference relay channel.

ratio (SNR), Theorem 2 provides further improvement, since de-
coding other messages is a better strategy when interference is
strong. Note that, although not shown in the figure, Theorem 3
alone outperforms the other two schemes for all channel gains
and power constraints. In Appendix G we give a detailed com-
parison of noisy network coding (Theorem 3) and the other two
schemes.

III. NOISY NETWORK CODING FOR MULTICAST

To illustrate the main idea of the noisy network coding
scheme and highlight the differences from the standard com-
press-forward coding scheme [9], [13], we first prove Theorem
1 for the 3-node relay channel and then extend the proof to
general multicast networks.

Let denote , ; thus
. To send a

message , the source node transmits
for each block . In block , the relay finds a “com-
pressed” version of the relay output conditioned on ,
and transmits a codeword in the next block. After

block transmissions, the decoder finds the correct message
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TABLE I
NOISY NETWORK CODING FOR THE RELAY CHANNEL

Fig. 4. Comparison of coding schemes for � � � � �, � � � �

� � ���, � � ���, � � �.

using by joint typicality de-
coding for each of blocks simultaneously. The details are as
follows.

Codebook Generation: Fix . We ran-
domly and independently generate a codebook for each block.

For each , randomly and independently generate
sequences each according to

. Similarly, randomly and indepen-
dently generate sequences
each according to . For each

randomly and con-
ditionally independently generate sequences

each according to
.

This defines the codebook

Encoding and decoding are explained with the help of Table I.
Encoding: Let be the message to be sent. The relay, upon

receiving at the end of block , finds an index
such that

where by convention. If there is more than one such
index, choose one of them at random. If there is no such index,
choose an arbitrary index at random from . The code-
word pair is transmitted in block

.
Decoding: Let . At the end of block , the decoder finds

the unique message such that

for all for some . If there is none or more
than one such message, it declares an error.

Analysis of the Probability of Error: To bound the probability
of error, assume without loss of generality that and

. Then the decoder makes an error
only if one or more of the following events occur:

Thus, the probability of error is bounded as

By the covering lemma [23, Lecture Note 3] and the union of
events bound (over blocks), tends to zero as if

. By the conditional typicality lemma
[23, Lecture Note 2] and the union of events bound, the second
term tends to zero as . For the third term,
define the events

and consider
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where follows since the codebook is generated inde-
pendently for each block and the channel
is memoryless. Note that if and , then

is independent of
and hence by the joint typi-

cality lemma [23, Lecture Note 2]

(14)

where . Similarly, if and
, then

is independent of . Hence, by Lemma 2 in Appendix A,
which is an easy application of the joint typicality lemma

(15)

where . If the binary
sequence has 1s, then by (14) and (15)

Therefore

which tends to zero as if

Finally, by eliminating , substituting
and , and taking , we have shown that the proba-

bility of error tends to zero as if

This completes the proof of achievability.
We now describe the noisy network coding scheme for multi-

message multicast over a general DMN . In this set-
ting, each node is a source as well as a relay and hence it sends
both a message and compression index. Furthermore, destina-
tion nodes decode a set of messages and hence the error events
involve cutsets of the nodes based on the messages (correctly
decoded ones vs. the rest) in addition to cutsets based on both
the messages and the compression indices. These two types of
cutsets are simplified at the last stage of the proof.

For simplicity of notation, we consider the case .
Achievability for an arbitrary time-sharing random variable
can be proved using the coded time-sharing technique [23, Lec-
ture Note 4].

Codebook Generation: Fix .
For each block and node , ran-
domly and independently generate sequences

, ,
each according to . For each
node and each

randomly and
conditionally independently generate sequences

each according to
. This de-

fines the codebook

for .
Encoding: Let be the messages to be sent.

Each node , upon receiving at the end of block
, finds an index such that

where , , by convention. If there is more
than one such index, choose one of them at random. If there is
no such index, choose an arbitrary index at random from

. Then each node transmits the codeword
in block .

Decoding: Let . At the end of block , decoder
finds the unique index tuple , where

for and , such that there exist
some , , and ,

, satisfying

for all .
Analysis of the Probability of Error: Let denote the mes-

sage sent at node and , , ,
denote the index chosen by node for block . To bound the
probability of error for decoder , assume without loss of
generality that and
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, where . Then the decoder
makes an error only if one of the following events occur:

Thus, the probability of error is bounded as

By the covering lemma and the union of events bound,
tends to zero as if ,

. By the Markov lemma [23, Lecture Note 13] and the union
of events bound, the second term tends to zero as

. For the third term, define the events

Then

where follows since the codebook is generated indepen-
dently for each block and the channel is memoryless.

For each , , and , define
. Note that depends

only on and hence we write it as . We
further define . Note that

and (recall
our convention ).

Define to be the set of ,
, where and are the corre-

sponding elements in and , respectively. Similarly define

and . Then, by Lemma 2
and the fact that

is independent of ,
we have

where

Furthermore, by the definitions of and , if
with , then

where the minimum is over such that
and . Hence

(16)
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where the minimum in (16) is over all such that
and . Thus, (16) tends to zero as if

for all such that and . By
eliminating and letting , the
probability of error tends to zero as if

for all such that and .
Furthermore, note that

Therefore, the probability of error tends to zero as if

(17)

for all such that and .
Since for every such that and the
inequalities with are inactive due to the inequality with

in (17), the set of inequalities can be further simplified
to

(18)

for all such that . Thus, the probability of
decoding error tends to zero for each destination node as

, provided that the rate tuple satisfies (18).
By the union of events bound, the probability of error for

all destinations tends to zero as if the rate tuple
satisfies

for all such that for some
. Finally, by coded time sharing, the

probability of error tends to zero as if the rate tuple
satisfies

for all subsets such that for some
. This completes the proof of

Theorem 1.

IV. EXTENSIONS TO GENERAL MULTI-MESSAGE NETWORKS

A. Proof of Theorem 2 via Multicast Completion With
Simultaneous Nonunique Decoding

We modify the decoding rule in the previous section to estab-
lish Theorem 2 as follows.

Decoding: At the end of block , decoder finds
the unique index tuple such that there exist
some and satisfying

for all , where for ,
, for , and , .

The analysis of the probability of error is similar to that for
Theorem 1 in Section III. For completeness, the details are given
in Appendix B.

B. Proof of Theorem 3 via Treating Interference as Noise

Codebook Generation: Again we consider the case .
Fix . We randomly and indepen-
dently generate a codebook for each block. For each
and , randomly and independently generate

sequences , , each ac-
cording to . For each
and each , randomly
and conditionally independently generate sequences

, , each according to
. For each

and each
randomly and conditionally independently generate se-
quences each according to

. This defines
the codebook

for .
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Encoding: Let be the messages to be sent.
Each node , upon receiving at the end of block

, finds an index such that

where , , by convention. If there is more
than one such index, choose one of them at random. If there is
no such index, choose an arbitrary index at random from

. Then each node transmits the codeword
in block .

Similarly as before, decoding is done by simultaneous
nonunique decoding. However, since we are treating inter-
ference as noise, codewords corresponding to the unintended
messages are discarded, which leads to the
following.

Decoding: At the end of block , decoder finds
the unique index tuple such that there exists
some satisfying

for all , where and and
, , and , .

The analysis of the probability of error is delegated to
Appendix C.

V. GAUSSIAN NETWORKS

We consider the additive white Gaussian noise network
in which the channel output vector for an input vector
is , where is the channel
gain matrix and is a vector of independent additive white
Gaussian noise with zero mean and unit variance. We assume
average power constraint on each sender, i.e.,

for all and . For each cutset
, define a channel gain submatrix such that

In the following subsection, we prove Theorem 4. In
Sections V-B and V-C, we provide the capacity inner bounds
for the Gaussian two-way relay channel and the Gaussian
interference relay channel used in Figs. 2 and 4.

A. Gaussian Multicast Capacity Gap (Proof of Theorem 4)

The cutset bound for the Gaussian multi-message multicast
network can be further upper bounded by the use of the fol-
lowing lemma, the proof of which is delegated to Appendix D.

Lemma 1: Let and be positive semidefinite matrices
such that , , and . Suppose

and

if
otherwise.

Then, .
Now let and consider the cutset bound

(19)

where is the covariance matrix of and follows
by Lemma 1 with , , and

.
On the other hand, the inner bound in Theorem 1 yields the

inner bound characterized by the set of inequalities

(20)

for all with , where . To
show this, first note that by the standard procedure [23, Lecture
Note 3], Theorem 1 for the discrete memoryless network can be
easily adapted for the Gaussian network with power constraint,
which yields the inner bound in (3) on the capacity region with
(product) input distributions satisfying ,

. Let and , , be i.i.d. Gaussian with
zero mean and variance . Let

where , , are i.i.d. Gaussian with zero mean and
variance . Then for each such that
and
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where the first inequality is due to the Markovity
. Furthermore

Substituting these two bounds in Theorem 1 yields (20).
We now show that if a rate tuple is in the cutset

bound, then is in the inner bound in
Theorem 1, where

, and . Let

where and .

Then, by (19), for and any rate tuple in
the cutset bound, the rate tuple
must satisfy

for all such that . However, since

we have

for all such that . Thus, by (20), the
rate tuple is achievable for every

.
Finally, we minimize over . Consider

where, for

if
otherwise

and for

if
otherwise.

Numerical evaluation of this bound yields , which
completes the proof of Theorem 4.

B. Gaussian Two-Way Relay Channels

Recall the Gaussian two-way relay channel model (13) in
Section II. Rankov and Wittneben [15] showed that the decode-
forward (DF) coding scheme results in the inner bound on the
capacity region that consists of all rate pairs such that

for some and , while the amplify-
forward (AF) coding scheme results in the inner bound on the
capacity region that consists of all rate pairs such that

for some , where
,

, ,
and . They also showed that
an extension of the original compress-forward (CF) coding
scheme for the relay channel to the two-way relay channel
results in the following inner bound on the capacity region that
consists of all rate pairs such that

(21)

for some

(22)
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Specializing Theorem 2 to the two-way relay channel yields
the inner bound that consists of all rate pairs such that

for some . By setting
and with , this inner bound

simplifies to the set of rate pairs such that

(23)

for some . The sum rates of the above inner bounds are
plotted in Fig. 2 in Section II.

C. Gaussian Interference Relay Channels

Recall the Gaussian interference relay channel model with
orthogonal receiver components in Fig. 4. Djeumou, Belmaga,
and Lasaulce [17], and Razaghi and Yu [18] showed that an
extension of the original compress-forward (CF) coding scheme
for the relay channel to the interference relay channel results in
the inner bound on the capacity region that consists of all rate
pairs such that

(24)

for some

where and
.

Razaghi and Yu [18] generalized the hash-forward coding
scheme [10], [25] for the relay channel to the interference relay
channel, in which the relay sends the bin index (hash) of its noisy
observation and destination nodes use list decoding. This gen-
eralized hash-forward scheme yields the inner bound on the ca-

pacity region that consists of the set of rate pairs such
that

(25)

for some satisfying

where and are the same as above.
Specializing Theorem 2 by setting with

yields the inner bound that consists of all rate pairs
such that

where , , and
, for some . By the same choice of , the inner

bound in Theorem 3 can be specialized to the set of rate pairs
such that

(26)

for some . The sum rates of these inner bounds are
plotted in Fig. 4. In Appendix G, we show that the inner bound
in (26) is tighter than both compress-forward and hash-forward
inner bounds in (24) and (25).

VI. CONCLUDING REMARKS

We presented a new noisy network coding scheme and used
it to establish inner bounds on the capacity region of general
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multi-message noisy networks. This scheme unifies and extends
previous results on network coding and its extensions, and on
compress-forward for the relay channel. We demonstrated that
the noisy network coding scheme can outperform previous net-
work compress-forward schemes. The reasons are: first, a source
node sends the same message over multiple blocks, second,
the relays do not use Wyner-Ziv coding (no binning indices to
decode), and third, simultaneous nonunique decoding over all
blocks is used without requiring the compression indices to be
decoded uniquely.

How good is noisy network coding as a general-purpose
scheme? As we have seen, noisy network coding is optimal in
some special cases. It also performs generally well under high
SNR conditions in the network. In addition, it is a robust and
scalable scheme in the sense that the relay operations do not
depend on the specific codebooks used by the sources and des-
tinations or even the topology of the network. Noisy network
coding, however, is not always the best strategy. For example,
for a cascade of Gaussian channels with low SNR, the optimal
strategy is for the relay to decode the message and then forward
it to the final destination. This simple multi-hop scheme can
be improved by using the information from multiple paths
and coherent cooperation as in the decode-forward scheme
for the relay channel [9] and its extensions to networks [13],
[26]. Further improvement can be obtained by only partially
decoding of messages at the relays [9], and by combining
noisy network coding with partial decode-forward to obtain the
type of hybrid schemes in [9] and [13]. Another direction for
improvement is to incorporate more sophisticated compression
strategies at relays. For instance, as shown in [27], each relay
node can compress its observation into multiple indices to
leverage asymmetry in link quality and side information. On
the receiver side, noisy network coding for multiple messages
can be potentially improved by using more sophisticated inter-
ference coding schemes, such as interference alignment [28]
and Han–Kobayashi superposition coding [29].

APPENDIX A
AN APPLICATION OF THE JOINT TYPICALITY LEMMA

Lemma 2: Let . Let be
distributed according to an arbitrary pmf and

independent of . Then there exists that tends to zero as
such that

Proof: By the joint typicality lemma [23, Lecture Note 2]

APPENDIX B
ERROR PROBABILITY ANALYSIS FOR THEOREM 2

The analysis follows the same steps of the multicast case ex-
cept that with in error event .
Thus

(27)

where the minimum in (27) is over such that
. Hence, (27) tends to zero as if

for all such that , , and
. By eliminating , letting
, and removing inactive inequalities, the probability of

error tends to zero as if

for all such that and . The rest
of the proof is identical to the multicast case.

APPENDIX C
ERROR PROBABILITY ANALYSIS FOR THEOREM 3

Let denote the message sent at node and ,
, , denote the index chosen by node for

block . To bound the probability of error for decoder ,
assume without loss of generality that and
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, where . Then the
decoder makes an error only if one or more of the following
events occur:

Here, with , and
with for . Then

the probability of error is upper bounded as

By the covering lemma and the union of events bound,
as , if , , and by

the Markov lemma and the union of events bound, the second
term tends to zero as . For the third term,
define the events

for and all . Following similar steps to the multicast
case

For each and , define
and . By definition,

, where . Then, by
Lemma 2

where

Furthermore, by the definitions of and , if
with , then

Denote . Then

where the minimum is over such that .
Hence, tends to zero as if

for all and such that . By
eliminating and letting , the
probability of error tends to zero as if
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for all and such that .
Furthermore, note that

Therefore, the probability of error tends to zero as if

(28)

for all and such that . Since
for every , the inequalities corresponding to

are inactive due to the inequality with
in (28), the set of inequalities can be further simplified to

(29)

for all such that and
, where . Thus, the probability of decoding

error tends to zero for each destination node as ,
provided that the rate tuple satisfies (29). The rest of the proof
is identical to the multicast case.

APPENDIX D
PROOF OF LEMMA 1

For and , let

if
otherwise

where is chosen such that . Then, by
diagonalizing and water filling under the constraint

(30)

where are the eigenvalues of ,
, , , , and

We further upper bound (30) as follows:

if
otherwise

where follows since for , follows since
, follows since for , follows

since , follows by relaxing by
, and follows since is maximized when

. Finally, to justify step we use the following.

Lemma 3: Suppose for
. If , then

Proof: Let . Note
that it suffices to prove the lemma for , which we
assume here. For every , is convex on the simplex
defined by and , , since

is positive semidefinite on the simplex. Therefore,
restricted to the intersection of and the polytope

is maximized at one of the corner points of the intersection. By
symmetry, we only need to consider .
Then, the corresponding corner points of the intersection have
the form for some ,
where for and

. Hence

(31)
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where the range of is given by

if
if .

Let denote the right-hand side (RHS) of (31). If
or , then it is easy to verify that is strictly

decreasing in and is thus maximized at , which
corresponds to . For the case , let be
parametrized by such that . Then

Hence

where follows since for
and , follows since the RHS of is monotonically
increasing in for given and , and is thus minimized at ,
and follows since
for and . This implies that
is maximized when , which again corresponds to

. Therefore, for all , it suffices to assume
. Finally

where and holds for all . This completes
the proof of Lemma 3, which, in turn, completes the proof of
Lemma 1.

APPENDIX E
COMPARISON TO A PREVIOUS EXTENSION OF

COMPRESS-FORWARD TO MULTICAST NETWORKS

For a single-message multicast network with source node 1
and destination nodes , a hybrid scheme proposed
by Kramer, Gastpar, and Gupta [13, Theorem 3] achieves the
capacity lower bound

(32)

where the maximum is over

such that

(33)

for all , all partitions of , and all
such that . The complements and

are the complements of the respective and in .
This hybrid coding scheme uses an extension of the original
compress-forward scheme for the relay channel as well as de-
coding of the compression indices at the relays.

In the following subsections, we compare noisy network
coding with the hybrid scheme. First we show that noisy net-
work coding always outperforms the compress-forward part of
the scheme (without compression index decoding at the relays),
which corresponds to in (32). Then we consider a
layered network and show that noisy network coding achieves a
positive rate while the hybrid scheme in (32) achieves zero rate.

1) Comparison to the Compress-Forward Part: The com-
press-forward part of (32) without decoding yields the capacity
lower bound

(34)

where the maximum is over all pmfs such
that

for all and . This bound is identical
to (32) and (33) with , . By similar steps to
those in [14, Appendix C] and some algebra, lower bound (34)
can be upper bounded as

(35)
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where the maximums are over .
Here equality (35) follows from

(36)

(37)

(38)

(39)

(40)

(41)

(42)

for all , and ,
where the last equality follows from the Markovity

.
On the other hand, the inner bound in Theorem 1 can be

specialized to the single-message case by setting and
to yield

where the maximum is over all pmfs
and . Thus, Theorem 1 achieves a higher rate
than (34) with gap

for each and .

2) Comparison to the General Hybrid Scheme: Consider
an -node DMN with single source node 1 and single destina-
tion node . Assume that . Suppose the network
is layered, that is, the channel pmf has the form

where partitions such that and
. In the following, we assume that and show

that the rate achievable by the Kramer-Gastpar–Gupta hybrid
scheme in (32) is zero for this case.

First, note that the constraint in (33) corresponding to
, and is given by

(43)

Now the RHS of (43) is zero since

which follows by the Markov relationship
for , and

which follows by . Thus, (43)
implies that a feasible pmf for the hybrid scheme must satisfy

(44)

By (32), an achievable rate of the hybrid scheme satisfies
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where follows by (44) and the fact that

and follows since .
Thus the hybrid scheme achieves zero rate for every layered
network with 4 or more layers.

In comparison, it is easy to find a layered-network example
for which noisy network coding achieves a positive rate (and the
capacity itself). For instance, consider a 4-node layered network

, where are binary,
, and . The capacity of this

network is 1 bit/transmission, and by (5) it is achieved by noisy
network coding.

APPENDIX F
COMPARISON TO PREVIOUS SCHEMES FOR THE TWO-WAY

RELAY CHANNEL

1) Comparison to Compress-Forward: We show that the
compress-forward inner bound is included in the noisy network
coding inner bound for the Gaussian two-way relay channel. Fix
the channel gains and power constraint. Denote

Then, by using the above notation, we can write the noisy net-
work coding inner bound (23) by

for some . On the other hand, the compress-forward inner
bound (21) can be written by

for some , where

Note that , , is nonincreasing and ,
, is nondecreasing since

Furthermore and ,
where and

. Hence,
and for . Since

, the noisy network coding
inner bound (23) is equal to the compress-forward inner bound
(21) for , i.e., the range of that satisfies
the compress-forward constraint, and the noisy network coding
inner bound is tighter than the compress-forward inner bound
for , in which case compress-forward
achieves zero rate.

2) Comparison of Gap From Capacity: We first show that
noisy network coding achieves within 1 bit for individual rates
and 1.5 bit for the sum rate from the cutset bound. We begin
by presenting some properties of the cutset bound and the noisy
network coding inner bound.

Consider a looser version of the cutset bound [30] for the
two-way relay channel

Note that if then

(45)

and if then satisfies

(46)

where . Similarly, if
then

(47)

and if then satisfies

(48)

where . On the other
hand, by the choice of , noisy network coding inner
bound is given by the set of rate pairs that satisfies

(49)

(50)

Hence, by (45)–(50), the individual rates of the noisy network
coding inner bound are within 1 bit of those in the cutset bound.

Next we bound the gap for the sum rate. Consider the cutset
bound on the sum rate
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and the sum rate of the noisy network coding inner bound

We consider the following cases:
1) and : By (45) and (47),

. On the other hand, by
(49) and (50), .
Hence, the gap is upper bounded by 1 bit.

2) and : First suppose . By
taking for the noisy network coding inner bound

Note that is the cutset upper bound and is
the compress-forward rate for the 3 node one-way relay
channel when node 1 is the source and node 2 is the desti-
nation. Since compress-forward achieves uniformly within
1/2 bit for the 3-node one-way relay channel [31], the first
term is bounded as

To upper bound the second term, first note that

since by the standing assumption. Hence

(51)

Combining (48) and (51), we have

and the sum rate gap is within 1.5 bits.
Next, suppose . By symmetry, the gap is again
within 1.5 bits by taking in the noisy network
coding inner bound.

3) and : Take for the noisy
network coding inner bound. Then, by (45), (48), (49), and
(50), it can be shown that the sum rate gap is within 1.5
bits.

4) and : By switching the roles of users
1 and 2 in the third case above, the gap is again within 1.5
bits for this case.

Since we have covered all possible cases, the sum rate gap is
within 1.5 bits, regardless of the channel gains and power con-
straint.

We now show that decode-forward, amplify-forward, and
compress-forward have arbitrarily large gap from the cutset
bound.

1) Decode-forward: Suppose ,
. Then, the sum rate of the cutset bound is

. On the other hand, the decode-forward sum rate is
bounded as

Hence, the sum rate gap for decode-forward becomes arbi-
trarily large as .

2) Amplify-forward and compress-forward: Suppose
, , and .

Then, the sum rate of the cutset bound is . On the
other hand, the amplify-forward inner bound is simplified
to the set of rate pairs such that

Similarly, the compress-forward inner bound is simplified
to the set of rate pairs such that

Compared to the cutset bound, these bounds have arbi-
trarily large gap as .

APPENDIX G
COMPARISON TO PREVIOUS SCHEMES FOR THE INTERFERENCE

RELAY CHANNEL

We show that the inner bound in Theorem 3 is tighter than
both hash-forward and compress-forward inner bounds in [17],
[18]. Fix the channel gains and power constraint . Define

where and . Then,
the hash-forward inner bound is given by



LIM et al.: NOISY NETWORK CODING 3151

for some , where

and

Using the above notation, compress-forward inner bound can be
written as

for some . Similarly, the inner bound in The-
orem 3 can be written as

for some . Note that , , is nonincreasing
in and , , is nondecreasing in , since

(52)

(53)

From (52), the sum rate of the compress-forward scheme is max-
imized by , and from (53), the sum rate of
the hash-forward scheme is maximized by .
Furthermore, it can be easily shown that
and . Hence, in

, , and in , .
Therefore, the noisy network coding inner bound is equal to the
compress-forward inner bound for , i.e., the
range of that satisfies the compress-forward constraint, and is
equal to the hash-forward inner bound for ,
i.e., the range of that satisfies the hash-forward constraint.
Finally, when , the noisy
network coding inner bound is tighter than both bounds.
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