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Abstract—The capacity region of the � -sender Gaussian mul-
tiple access channel with feedback is not known in general. This
paper studies the class of linear-feedback codes that includes (non-
linear) nonfeedback codes at one extreme and the linear-feedback
codes by Schalkwijk and Kailath, Ozarow, and Kramer at the
other extreme. The linear-feedback sum-capacity ����� � � under
symmetric power constraints � is characterized, the maximum
sum-rate achieved by linear-feedback codes when each sender
has the equal block power constraint � . In particular, it is shown
that Kramer’s code achieves this linear-feedback sum-capacity.
The proof involves the dependence balance condition introduced
by Hekstra and Willems and extended by Kramer and Gastpar,
and the analysis of the resulting nonconvex optimization problem
via a Lagrange dual formulation. Finally, an observation is
presented based on the properties of the conditional maximal cor-
relation—an extension of the Hirschfeld-Gebelein-Rényi maximal
correlation—which reinforces the conjecture that Kramer’s code
achieves not only the linear-feedback sum-capacity, but also the
sum-capacity itself (the maximum sum-rate achieved by arbitrary
feedback codes).

Index Terms—Feedback, Gaussian multiple access channel,
Kramer’s code, linear-feedback codes, maximal correlation,
sum-capacity.

I. INTRODUCTION

F EEDBACK from the receivers to the senders can improve
the performance of the communication systems in various

ways. For example, as first shown by Gaarder and Wolf [1],
feedback can enlarge the capacity region of memoryless mul-
tiple access channels by enabling the distributed senders to co-
operate via coherent transmissions.

In this paper, we study the sum-capacity of the additive white
Gaussian noise multiple access channel (Gaussian multiple ac-
cess channel in short) with feedback depicted in Fig. 1. For
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senders, Ozarow [2] established the capacity region
which—unlike for the point-to-point channel—is strictly larger
than the one without feedback. The capacity-achieving code
proposed by Ozarow is an extension of the Schalkwijk-Kailath
code [3], [4] for Gaussian point-to-point channels.

For , the capacity region is not known in general.
Thomas [5] proved that feedback can at most double the sum
capacity, and later Ordentlich [6] showed that the same bound
holds for the entire capacity region even when the noise se-
quence is not white (cf. Pombra and Cover [7]). More recently,
Kramer [8] extended Ozarow’s linear-feedback code to
senders, and proved that this code achieves the sum-capacity
under symmetric block power constraints on all the senders,
when the power is above a certain threshold (see (4) in
Section II) that depends on the number of senders .

In this paper, we focus on the class of linear-feedback codes,
where the feedback signals are incorporated linearly into the
transmit signals (see Definition 1 in Section II). This class of
codes includes the linear-feedback codes by Schalkwijk and
Kailath [3], Ozarow [2], and Kramer [8] as well as arbitrary
(nonlinear) nonfeedback codes.

We characterize the linear-feedback sum-capacity
under symmetric block power constraints , which is the max-
imum sum-rate achieved by linear-feedback codes under equal
block power constraints at all the senders. Our main contribu-
tion is the proof of the converse. We first prove an upper bound
on , which is a multiletter optimization problem over
Gaussian distributions satisfying a certain functional relation-
ship (cf. Cover and Pombra [9]). Next, we relax the functional
relationship by considering a dependence balance condition, in-
troduced by Hekstra and Willems [10] and extended by Kramer
and Gastpar [11], and derive an optimization problem over the
set of positive semidefinite (covariance) matrices. Lastly, we
carefully analyze this nonconvex optimization problem via a La-
grange dual formulation [12].

The linear-feedback sum-capacity is achieved by
Kramer’s linear-feedback code. Hence, this rather simple code,
which iteratively refines the receiver’s knowledge about the
messages, is sum-rate optimal among the class of linear-feed-
back codes. For completeness, we briefly describe Kramer’s
linear-feedback code and analyze it via properties of discrete
algebraic Riccati recursions (cf. Wu et al. [13]). This analysis
differs from the original approaches by Ozarow [2] and Kramer
[8].

The complete characterization of the sum-capacity
under symmetric block power constraints , i.e., the maximum
sum-rate achieved by arbitrary feedback codes, still remains
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Fig. 1. � -sender Gaussian multiple access channel.

open. However, it has been commonly believed (cf. [11],
[13]) that linear-feedback codes achieve the sum-capacity, i.e.,

. We offer an observation that further
supports this conjecture. By introducing and analyzing the
properties of conditional maximal correlation, which is an ex-
tension of the Hirschfeld-Gebelein-Rényi maximal correlation
[14] to the case where an additional common random variable
is shared, we show in Section V that the linear-feedback codes
are greedy optimal for a multiletter optimization problem that
upper bounds .

The rest of the paper is organized as follows. In Section II
we formally state the problem and present our main result.
Section III provides the proof of the converse and Section IV
gives an alternative proof of achievability via Kramer’s
linear-feedback code. Section V concludes the paper with a
discussion on potential extensions of the main ideas to nonequal
power constraints and arbitrary feedback codes, and with a
proof that linear-feedback codes are greedy optimal for a
multiletter optimization problem that upper bounds .

We closely follow the notation in [15]. In particular, a random
variable is denoted by an upper case letter (e.g., ) and its
realization is denoted by a lower case letter (e.g., ). The
shorthand notation is used to denote the tuple (or the column
vector) of random variables , and is used to
denote their realizations. A random column vector and its real-
ization are denoted by boldface letters (e.g., and ) as well.
Uppercase letters (e.g., ) also denote deterministic ma-
trices, which can be distinguished from random variables based
on the context. The element of a matrix is denoted by

. The conjugate transpose of a real or complex matrix is
denoted by and the determinant of is denoted by . For
the cross-covariance matrix of two random vectors and ,
we use the shorthand notation
and for the covariance matrix of a random vector we use

. Calligraphic letters (e.g., ) denote dis-
crete sets. Let be a tuple of random variables
and . The subtuple of random variables
with indices from is denoted by . For
every positive real number , the shorthand notation
is used to denote the set of integers .

II. PROBLEM SETUP AND THE MAIN RESULT

Consider the communication problem over a Gaussian mul-
tiple access channel with feedback depicted in Fig. 1. Each

sender wishes to transmit a message
reliably to the common receiver. At each time , the
output of the channel is

(1)

where is a discrete-time zero-mean white Gaussian noise
process with unit average power, i.e., , and is inde-
pendent of . We assume that the output symbols
are causally fed back to each sender, and that the transmitted
symbol from sender at time can thus depend on both the
previous channel output sequence
and the message . We define a feed-
back code as

1) message sets , where
for ;

2) a set of encoders, where encoder as-
signs a symbol to its message
and the past channel output sequence for

; and
3) a decoder that assigns message estimates

, to each received sequence .
We assume throughout that is uni-
formly distributed over . The
probability of error is defined as

A rate tuple and its corresponding sum-rate
are said to be achievable under the power constraints

if there exists a sequence of
feedback codes such that the expected block power constraints

are satisfied and . The supremum over all
achievable sum-rates is referred to as the sum-capacity. In most
of the paper, we will be interested in the case of symmetric
power constraints . In this case
we denote the sum-capacity by .

Our focus will be on the special class of linear-feedback codes
defined as follows.
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Definition 1: A feedback code is said
to be a linear-feedback code if the encoder has
the form

where
1) the (potentially nonlinear) nonfeedback mapping is

independent of and maps the message to a -di-
mensional real vector (message point) for some

; and
2) the linear-feedback mapping maps the message point

and the past feedback output sequence to the
channel input symbol .

The class of linear-feedback codes includes as special cases
the feedback codes by Schalkwijk and Kailath [3], Ozarow [2],
and Kramer [8], and all nonfeedback codes. To recover the codes
by Schalkwijk and Kailath [3] and Ozarow [2] it suffices to
choose ; for Kramer’s code [8] we need ; and to
recover all nonfeedback codes we have to choose and
each message point equal to the codeword sent by encoder .

The linear-feedback sum-capacity is defined as the maximum
achievable sum-rate using only linear-feedback codes. Under
symmetric block power constraints , we
denote the linear-feedback sum-capacity by .

We are ready to state the main result of this paper.

Theorem 1: For the Gaussian multiple access channel with
symmetric block power constraints , the linear-feedback sum-
capacity is

(2)

where is the unique solution to

(3)

in the interval .
The proof of Theorem 1 has several parts. The converse is

proved in Section III. The proof of achievability follows by [8,
Theorem 2] and can be proved based on Kramer’s linear-feed-
back code [8]. For completeness, we present a simple descrip-
tion and analysis of Kramer’s code in Section IV. Finally, the
property that (3) has a unique solution in is proved in
Appendix A.

Remark 1: Kramer showed [8] that when the power constraint
exceeds the threshold , which is the unique positive

solution to

(4)

then the sum-capacity is given by the right-hand side
(RHS) of (2). Thus, for this case Theorem 1 follows directly
from Kramer’s more general result. Consequently, when

, then the linear-feedback sum-capacity coincides with
the sum-capacity, i.e., . It is not known
whether this equality holds for all powers ; see also our dis-
cussion in Section V-B.

Remark 2: Since , we can define a param-
eter so that . Intuitively,

measures the correlation between the transmitted signals. For
example, when , the corresponding coincides with
the optimal correlation coefficient in [2]. Thus,

captures the amount of cooperation (coherent power gain)
that can be established among the senders using linear-feedback
codes, where corresponds to no cooperation and
corresponds to full cooperation. For a fixed is
strictly increasing (see Appendix A); thus, more power allows
for more cooperation. Moreover, as and

as , which is seen as follows. We rewrite
(3) as

(5)

and notice that the left-hand side (LHS) of (5) can be written as
, where tends to 0 faster than .

Thus, the LHS of (5) can equal its RHS only if
as , or equivalently, as

. On the other hand, as , the LHS tends to a
constant while the RHS tends to infinity unless tends to
0. Thus, by contradiction, as .

By the above observation, we have the following two corol-
laries to Theorem 1 for the low and high signal-to-noise ratio
(SNR) regimes.

Corollary 1: In the low SNR regime, almost no cooperation
is possible and the linear-feedback sum-capacity approaches the
sum-capacity without feedback

Corollary 2: In the high SNR regime, the linear-feedback
sum-capacity approaches the sum-capacity with full coopera-
tion where all the transmitted signals are coherently aligned with
combined SNR equal to

III. PROOF OF THE CONVERSE

In this section, we show that under the symmetric block power
constraints , the linear-feedback sum-capacity is
upper bounded as

(6)

where is defined in (3).
The proof involves five steps. First, we derive an upper bound

on the linear-feedback sum-capacity based on Fano’s inequality
and the maximum entropy property of Gaussian distributions
(see Lemma 1). Second, we relax the problem by replacing the
functional structure in the optimizing Gaussian input distribu-
tions (8) with a dependence balance condition [10], [11], and
we rewrite the resulting nonconvex optimization problem as one
over positive semidefinite matrices (see Lemma 2). Third, we
consider the Lagrange dual function , which yields an
upper bound on for every (see Lemma
3). Fourth, by exploiting the convexity and symmetry of the
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problem, we simplify the upper bound into an uncon-
strained optimization problem (which is still nonconvex) that
involves only two optimization variables (see Lemma 4). Fifth
and last, using brute-force calculus and strong duality, we show
that there exist such that the corresponding upper
bound coincides with the RHS of (6) (see Lemma 5).

The details are as follows.

Lemma 1: The linear-feedback sum-capacity is
upper bounded as

where1

(7)

and the maximum is over all inputs of the form

(8)

such that the function is linear, the vector
is Gaussian, independent of the noise vector

and the tuple , and the power constraint
is satisfied.

Proof: By Fano’s inequality [16]

for some that tends to zero along with as . Thus,
for any achievable rate tuple , the sum-rate can
be upper bounded as follows:

(9)

(10)

(11)

where (10) and (11) follow by the data processing inequality and
the memoryless property of the channel, respectively. There-
fore, the linear-feedback sum-capacity is upper bounded as

(12)

where the maximum is over all input distributions induced
by a linear-feedback code satisfying the symmetric power
constraints , i.e., over all choices of independent random
vectors and linear functions such that the

1For simplicity of notation we do not include the parameter � explicitly in
most functions that we define in this section, e.g., � �� �.

inputs satisfy the power constraints
. Now let

be a Gaussian random vector with the same covariance matrix
as , independent of . Using the same linear
functions as in the given code, define

(13)

where is the channel output of a Gaussian MAC corre-
sponding to the input tuple . It is not hard to see that

is jointly Gaussian with zero mean and of the
same covariance matrix as . Therefore, by the
conditional maximum entropy theorem [5, Lemma 1] we have

(14)

Combining (12) and (14) and appropriately defining in (8)
from in (13) completes the proof of Lemma 1.

We define the following functions on -by- covariance
matrices :

(15a)

(15b)

It can be readily checked that both functions are concave in
(see Appendix B).

Lemma 2: The linear-feedback sum-capacity is
upper bounded as

(16)

where the maximum is over -by- covariance matrices
such that

(17)

(18)

Proof: Since is defined by the (causal) functional rela-
tionship in (8), by [10], [11, Theorem 1] we have the dependence
balance condition

(19)
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Furthermore, recall that is jointly Gaussian.
Therefore, for every , conditioned on

, the input (column) vector
is zero-mean Gaussian with covariance matrix

irrespective of . Now consider

(20)

Also consider

which implies that

(21)

Hence, (19) reduces to (18). Rewriting (7) in terms of covariance
matrices via (20) and relaxing the functional relationship (8)
by the dependence balance condition (18) completes the proof
of Lemma 2.

Remark 3: Although both functions and are
concave, their difference is neither concave nor
convex. Hence, the optimization problem in (16) is nonconvex.

Lemma 3: Let and be defined as in (15a) and
(15b). Then for every

(22)

where

(23)

Proof: By the standard Lagrange duality [12], for any
, the maximum in (16) is upper bounded as

where the maximum is over (without any
other constraints). Here, are the Lagrange mul-
tipliers corresponding to the power constraints (17) and

is the Lagrange multiplier corresponding to the dependence bal-
ance constraint (18). Finally, we choose ,
which yields

and completes the proof of Lemma 3.

Lemma 4: For every

(24)

where

(25)

and

(26a)

(26b)

Proof: Suppose that a covariance matrix attains the
maximum in (23). For each permutation on , let

be the covariance matrix obtained by permuting the rows
and columns of according to , i.e.,
for . Let

be the arithmetic average of over all permutations.
Clearly, is positive semidefinite and of the form

...
...

. . .
...

(27)

for some and . (The conditions on
and assure that is positive semidefinite.) We now show

that also attains the maximum in (23). First, notice that the
function depends on the matrix only via the sum of its
entries and hence
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Similarly

Also, by symmetry we have . Hence, by the
concavity of (see Appendix B) and Jensen’s inequality,

. Therefore

and the maximum of (23) is also attained by . Finally, defining
and simplifying (15a) and (15b)

yields

which completes the proof of Lemma 4.

Remark 4: The symmetric in (27) was also considered
in [5] and [8] to evaluate the cutset upper bound, which cor-
responds to taking .

Lemma 5: There exist such that

where is defined in (3).
Proof: Consider the optimization problem over ,

which defines in (24). Note that given by
(25) is neither concave or convex in for . However,

is concave in for fixed as shown in
Appendix C.

Let be the unique nonnegative solution to

or equivalently to

(28)

(That such a unique solution exists is easily verified considering
the equivalent quadratic equation; see (70) in Appendix D.)
Then, by the concavity of in for fixed and

(29)

for any . (The inequality follows because might
be larger than .)

Now let . Then, is non-
decreasing and concave in for fixed as shown in Appendix D.
Thus

(30)

where the first equality follows by Slater’s condition [12] and
strong duality, and the last equality follows by the monotonicity
of in . Alternatively, the equality in (30) can be viewed
as the complementary slackness condition [12]. Indeed, since

is not bounded from above, the optimal Lagrange mul-
tiplier must be positive. Therefore, the corresponding
constraint is active at the optimum, i.e., .

Finally, we choose , where

which assures that coincides with ; see (28).
Since is nonnegative by (57) in Appendix A and thus is a
valid choice

which, combined with (30), concludes the proof of Lemma 5
and of the converse.

IV. ACHIEVABILITY VIA KRAMER’S CODE

We present (a slightly modified version of) Kramer’s linear-
feedback code and analyze it based on the properties of discrete
algebraic Riccati equations (DARE). In particular, we establish
the following:

Theorem 2: Suppose that are real num-
bers and are distinct complex numbers on the unit
circle. Let be a diagonal matrix,

be the all-one column vector, and be the
unique positive-definite solution to the discrete algebraic Ric-
cati equation (DARE)

(31)

Then, a rate tuple is achievable under power con-
straints , provided that and

.
Achievability of Theorem 1 will be proved in

Subsection IV-C as a corollary to Theorem 2.
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A. Kramer’s Linear-Feedback Code

Following [8], we represent a pair of consecutive uses of the
given real Gaussian MAC as a single use of a complex Gaussian
MAC. We represent the message point of sender by the com-
plex scalar (corresponding to in the original real
channel) and let be the (column) vector
of message points.

The coding scheme has the following parameters: real
coefficients and distinct complex numbers

on the unit circle.
Nonfeedback Mappings: For , we divide the

square with corners at on the complex plane into
equal subsquares. We then assign a different message

to each subsquare and denote the complex
number in the center of the subsquare by . The message
point of sender is then .

Linear-Feedback Mappings: Let de-
note the (column) vector of channel inputs at time . We use the
linear-feedback mappings

(32)

where

(33)

is a diagonal matrix with and

is the linear minimum mean squared error (MMSE) estimate of
given .

Decoding: Upon receiving , the decoder forms a message
estimate vector

(34)

and for each chooses such that is the
center point of the subsquare containing .

B. Analysis of the Probability of Error

Our analysis is based on the following auxiliary lemma. We
use the short-hand notation .

Lemma 6:

(35)

where is the unique positive-definite solution to the DARE
(31).

Proof: We rewrite the channel outputs in (1) as

(36)

From (32) we have

(37)

where is the error co-
variance matrix of the linear MMSE estimate of given .
Combining (36) and (37) we obtain the Riccati recursion [17]

(38)

for . Since has no unit-circle eigenvalue
and the pair is detectable,2 we use Lemma 2.5 in [19] to
conclude (35).

We now prove that Kramer’s code achieves any rate tuple
such that

(39)

Define the difference vector . Since the min-
imum distance between message points is , by
the union of events bound and the Chebyshev inequality, the
probability of error of Kramer’s code is upper bounded as

(40)

Rewriting the encoding rule in (32) as

and comparing it with the decoder’s estimation rule in (34) we
have . Hence, with
diagonal elements and (40) can
be written as

(41)

But by Lemma 6, . Therefore,
as .

Finally, by Lemma 6 and the Césaro mean lemma [20], the
asymptotic power of sender satisfies

Hence, Kramer’s code satisfies the power constraints
for sufficiently large , provided that

(42)

This completes the proof of Theorem 2.

2A pair ����� is said to be detectable if there exists a column vector � such
that all the eigenvalues of � � �� lie inside the unit circle. For a diagonal
matrix � � ������ � � � � � � �, the pair ����� is detectable if and only if
all the unstable eigenvalues � , i.e., the ones on or outside the unit-circle, are
distinct [18, Appendix C].
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C. Achievability Proof of Theorem 1

Fix any such that

(43)

and choose

(44a)

(44b)

for . Under this choice of parameters, by The-
orem 2, Kramer’s code achieves any sum-rate

provided that (42) holds. To show (42) we use the
following lemma (see Appendix E for a proof).

Lemma 7: When is defined through (33) and (44), then
the unique positive-definite solution to the DARE (31) is
circulant with all real eigenvalues satisfying

, and with the largest eigenvalue satisfying

(45)

(46)

Now by the lemma and the standing assumption (43) on ,
we have

Thus

(47)

On the other hand, from (45) and (46) we have

Hence, by the definition of the function in (3),

(48)

Combining (47) and (48), we obtain
. Finally, by the monotonicity of (see

Appendix A), we conclude that , which
completes the achievability proof of Theorem 1.

V. DISCUSSION

In this paper, we established the linear-feedback sum-ca-
pacity for symmetric power constraints . Below,
we discuss the complications in extending our proof technique
to establish the linear-feedback sum-capacity under asymmetric
power constraints or the sum-capacity .

A. General Power Constraints

The main difficulty in generalizing our proof to asymmetric
power constraints lies in extending Lemma 4.

The proof of Lemma 4 heavily relies on the fact that covari-
ance matrices of the form (27) are optimal for the optimiza-
tion problem in (23). This allows us to reduce the optimization
problem (23) over covariance matrices to the much simpler opti-
mization problem in (24) over only two variables and . How-
ever, covariance matrices of the form (27) are not necessarily
optimal for the equivalent optimization problem under asym-
metric power constraints.

B. Sum-Capacity

It is commonly believed that under symmetric power con-
straints the linear-feedback sum-capacity generally equals the
sum-capacity, i.e., for all values of
and (cf. [11]). However, currently a proof is only known when
the power constraint is larger than a certain threshold—the
unique positive solution to (4)—that depends on [8]. The
main difficulty in establishing this conjecture for all values of

lies in proving that Lemma 1 also holds for .
The rest of the proof remains valid even for arbitrary (nonlinear)
feedback codes.

Below, we provide an observation based on the properties
of Hirschfeld-Gebelein-Rényi maximal correlation [14], which
further supports the conjecture that .

C. Greedy Optimality of Linear-Feedback Codes

Let

(49)

where the maximum is over the set of arbitrary functions
satisfying the symmetric block power con-

straint and are independent standard (real)
Gaussian random variables. As shown in Appendix G, the
sum-capacity is upper bounded as

(50)

We introduce a new notion of conditional maximum correlation
to show that for every linear functions are greedy optimal for
the optimization problem defining in (49).

Recall that the maximal correlation between two
random variables and is defined [14] as

(51)

where the supremum is over all functions and
such that and

. We extend this notion of
maximal correlation to a conditional one. The conditional
maximal correlation between and given another random
variable (or vector) is defined as

(52)

where the supremum is over all functions and
such that

and almost surely.
The assumption that and are orthogonal to
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is crucial; otherwise, both could be chosen as functions only
of and trivially.

Let denote the correlation between and . We
define the (expected) conditional correlation between and
given as

where denotes the correlation between and
conditioned on . It can be shown (see Appendix F) that

if is jointly Gaussian, then

and linear functions and of the form

(53)

attain .
Back to our discussion on , consider the case

for simplicity. Then, is upper bounded (see
Appendix H) by

(54)

where ;
the inner maximum is over the set satis-
fying ; and the outer maximum is over the
set satisfying . Suppose that linear
functions are used up to time and
therefore is jointly Gaussian. By definition,

, which by Appendix F equals
and is attained by linear functions and

. In this sense, choosing linear is greedy optimal for the
inner maximization in (54). Note that when is
jointly Gaussian, then a linear choice of and implies
that also is jointly Gaussian. This observation,
which can be easily extended to any number of senders ,
further corroborates the conjecture that
for all symmetric power constraints .

Incidentally, global optimality of linear-feedback codes of the
form would also imply that the perfor-
mance of Kramer’s code, which uses complex signaling

, can be achieved by real signaling. In this case, the optimal
real signaling would involve nonstationary or cyclostationary
operations, because a stationary extension of Ozarow’s scheme
to senders is strictly suboptimal [21].

APPENDIX A
PROPERTIES OF

We fix the integer and prove that for the
solution to (3) is unique and increasing in . Note that
the identity in (3) is equivalent to

(55)

where and are defined in (26). We prove
the uniqueness of by showing that

, and for . The
fact that is immediate. For , note that

for , or equivalently

Thus

(56)

which implies that and
thus that . The condition is equiv-
alent to

(57)

Rearranging terms in (57) we have
which holds for all . This completes the proof

of the uniqueness. We next prove the monotonicity of
in . By (3), we have

(58)

or equivalently

(59)

Moreover, since for

(60)

Multiplying (58) by (59) and considering (60), we obtain

(61)

From (61), it is straightforward to verify that

(62)

Finally, by differentiating (55), we have

(63)

Combining (62), (63), and the fact that [shown in
(57)], we conclude that for .

APPENDIX B
CONCAVITY OF AND

Our proof is based on the following general lemma.

Lemma 8: Let be a Gaussian random vector with
covariance matrix . Let . Then,

is concave in .
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Proof: Fix and . Let , and be given,
and . For , let

and , and
let be a binary random variable with

. Assume that , and are
independent. Then

where the last inequality follows by the conditional maximum
entropy theorem [5, Lemma 1] and the fact that has
the covariance matrix .

Now let and , where
is independent of . Then

and the concavity of and in follows immediately from
Lemma 8.

APPENDIX C
CONCAVITY OF IN

Comparing the definitions of and in (15) with
the definitions of and in (26), respectively, we
see that when has the symmetric form in (27) with ,
then and .
We prove in the following that for every the function

is concave in over the set of positive
semi-definite matrices with fixed diagonal elements.
This implies the concavity of in for fixed .

Let and , where
is independent of . Then,

By Lemma 8 in Appendix B, and are concave
in . Since depends only on the di-
agonal elements of , the claim follows.

APPENDIX D
PROPERTIES OF IN

For simplicity, we do not include explicitly in our notation:
and . We first show that

is monotonically nondecreasing in . Since

satisfies (28) and , we obtain

(64)

(65)

where (64) follows by (28) and (65) follows since and
have the same sign; see (28). Thus,

is nondecreasing in .
We now show that is concave in . We first note

that for the function
is concave in because for symmetric matrices

of the form in (27) with both
and are concave in (see Appendix B).
Thus, for any , and

(66)

(67)

where (66) follows by the concavity of and (67) fol-
lows by the definition of . This establishes the concavity
of for .

To prove the concavity for , we show that the second
derivative is negative. Define

(68)

Then, by (64)
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Since the denominator and are positive, the following in-
equality concludes the proof of concavity for :

(69)

We now establish (69). Rearranging terms in (28), we obtain
that is the solution to the quadratic equation

(70)

where ,
and . Since , there is a unique positive
solution . Taking the derivative
of (70) with respect to , we find

(71)

where and
are derivatives of and with respect to , respectively, and

. Note by simple algebra
that . Because is the unique
positive solution to (70) with , we have ,
or equivalently, for every . Hence,

is strictly increasing in and
. Therefore

(72)

On the other hand, since and for

(73)

we have

which, combined with (72), implies

(74)

Applying (73) to (74) once again, we obtain

which, combined with (71), establishes (69).

APPENDIX E
PROOF OF LEMMA 7

We first show that the circulant matrix with all real eigen-
values satisfying for , and with

satisfying (45) is a solution to the DARE (31). We then show
that this also implies (46).

Recall that every circulant matrix can be written as
, where is the -point discrete Fourier trans-

form (DFT) matrix with
and is a diagonal matrix. We
can therefore write , and rewrite the DARE
(31) as

. By our choice of in (33)
and (44), and since is the -point DFT matrix

...
...

. . .
...

...

and the DARE in (31) can be expressed in terms of diagonal
matrices only. Thus, in this case the DARE is equivalent to a set
of equations, where the first equations are

(75)

and the -th equation is

(76)

By (45) and since for , we conclude
that satisfies (75) and (76), and hence is a solution to the
DARE (31).

To prove (46), we notice that by the DARE (31) the diagonal
entries of must satisfy

(77)

Also, since is the -point DFT matrix, ,
and since is circulant, for

. Thus, . Combining these two observa-
tions with (77), we obtain

which, combined with (45), yields (46) (with replaced by
).

APPENDIX F
CONDITIONAL MAXIMAL CORRELATION

Let be jointly Gaussian. Then, the pair
is jointly Gaussian also when conditioned on , and the
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conditional correlation does not depend on
and

(78)

where we recall that .
Moreover, by the maximal correlation property of jointly
Gaussian random variables [22], for every

(79)

when the supremum on the RHS is over all functions and
(implicitly dependent on ) that are of zero mean and unit

variance with respect to the conditional distribution of
given . Hence

(80)

where the equality in (80) follows by (78) and (79), and because
and are zero-mean for each .
Verifying that the linear functions and in (53) satisfy

, and
concludes the proof.

Note that the proof remains valid also when is a Gaussian
vector (instead of a scalar).

APPENDIX G
UPPER BOUND ON

By the standard arguments, we have

(81)

where the maximum is over the set of arbitrary functions
. Define now for each an -tuple of inde-

pendent auxiliary random variables , where is
uniformly distributed over . Also, let

where denotes the cumulative distribution function of a stan-
dard Gaussian random variable. Since
is uniformly distributed over . Furthermore,
by the strict monotonicity of , it is possible to reconstruct

from . Hence, the set of feasible functions in (81)
can only increase if we consider instead of

. This establishes the upper bound in (50).

APPENDIX H
UPPER BOUND ON

Let and
. It is not hard to see that and

for and . To establish
the upper bound (54), consider

(82)

(83)

(84)

where the equality in (82) holds because is a
function of ; the inequality in (83) follows since

form a Markov chain; and the inequality
in (84) follows by the maximum entropy theorem [16] and the
fact that .
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