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Abstract—Optimal coding over the additive white Gaussian
noise channel under the peak energy constraint is studied when
there is noisy feedback over an orthogonal additive white Gaussian
noise channel. As shown by Pinsker, under the peak energy con-
straint, the best error exponent for communicating an -ary
message, , with noise-free feedback is strictly larger than
the one without feedback. This paper extends Pinsker’s result and
shows that if the noise power in the feedback link is sufficiently
small, the best error exponent for communicating an -ary
message can be strictly larger than the one without feedback. The
proof involves two feedback coding schemes. One is motivated by
a two-stage noisy feedback coding scheme of Burnashev and Ya-
mamoto for binary symmetric channels, while the other is a linear
noisy feedback coding scheme that extends Pinsker’s noise-free
feedback coding scheme. When the feedback noise power is
sufficiently small, the linear coding scheme outperforms the
two-stage (nonlinear) coding scheme, and is asymptotically op-
timal as tends to zero. By contrast, when is relatively larger,
the two-stage coding scheme performs better.

Index Terms—Error exponent, Gaussian channel, noisy feed-
back, peak energy constraint.

I. INTRODUCTION AND MAIN RESULTS

W E consider a communication problem for an additive

white Gaussian noise (AWGN) forward channel with
feedback over an orthogonal AWGN backward channel as de-
picted in Fig. 1. Suppose that the sender wishes to communicate

a message over the (forward)

AWGN channel

where , , and , respectively, denote the channel input,

channel output, and additive Gaussian noise. The sender has

a causal access to a noisy version of over the feedback

(backward) AWGN channel
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Fig. 1. Gaussian channel with noisy feedback.

where is the Gaussian noise in the backward link. We as-

sume that the forward noise process and the backward

noise process are independent of each other, and white

Gaussian and respectively.

We define an code with the encoding functions

, , and the decoding function . We

assume a peak energy constraint

(1)

The probability of error of the code is defined as

where is distributed uniformly over and is

independent of .

As is well known, the capacity of the channel (the supremum

of such that there exists a sequence of codes

with ) stays the same with or without feed-

back. Hence, our main focus is the reliability of communication,

which is captured by the error exponent

of the given code. The error exponent is sensitive to the presence

of noise in the feedback link. Schalkwijk and Kailath showed

in their celebrated work [1] that noise-free feedback can im-
prove the error exponent dramatically under the expected energy
constraint

(2)

(in fact, decays much faster than exponentially in ). Kim

et al. [2] studied the optimal error exponent under the expected
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energy constraint and noisy feedback, and showed that the error

exponent is inversely proportional to for small . Another

important factor that affects the error exponent is the energy

constraint on the channel inputs—the peak energy constraint

in (1) versus the expected energy constraint in (2). Wyner [3]

showed that the error probability of the Schalkwijk–Kailath

coding scheme [1] degrades to an exponential form under the

peak energy constraint. In fact, Shepp et al. [4] showed that
for the binary-message case , the best error expo-

nent under the peak energy constraint is achieved by simple

nonfeedback antipodal signaling, regardless of the presence

of feedback. This negative result might lead to an impression

that under the peak energy constraint, even noise-free feedback

does not improve the reliability of communication. Pinsker [5]

proved the contrary by showing that the best error exponent

for sending an -ary message does not depend on and,

hence can be strictly larger than the best error exponent without

feedback for .

In this paper, we show that noisy feedback can improve the

reliability of communication under the peak energy constraint,

provided that the feedback noise power is sufficiently small.
Let

where denotes the best error probability over all

codes for the AWGN channel with the noisy feedback.

Thus, denotes the best error exponent for commu-

nicating an -ary message over the AWGN channel without
feedback. Shannon [6] showed that

(3)

This follows by first upper bounding the error exponent with
the sphere packing bound and then achieving this upper bound

by using a regular simplex code on the sphere of radius ,

i.e., each codeword satisfies and is

at the same Euclidean distance from every other codeword. In

particular, for ,

and

At the other extreme, denotes the best error exponent

for communicating an -ary message over the AWGN channel

with noise-free feedback. Pinsker [5] showed that

for all . In particular,

Clearly, is decreasing in and

for every and .

Is strictly larger than (i.e., is noisy feed-

back better than no feedback)? Does tend to as

(i.e., does the performance degrade gracefully with small

noise in the feedback link)?What is the optimal feedback coding

scheme that achieves ? To answer these questions, we

establish the following results.

Theorem 1: For ,

where

By comparing the lower bound with (3) and identifying the crit-

ical point , we obtain the following.

Corollary 1:

Thus, if the noise power in the feedback link is sufficiently
small, then the noisy feedback improves the reliability of com-

munication even under the peak energy constraint. The proof

of Theorem 1 is motivated by recent results of Burnashev and

Yamamoto in a series of papers [7], [8], where they considered a

communication model with a forward BSC and a backward

BSC , and showed that when is sufficiently small, the best
error exponent is strictly larger than the one without feedback.

The lower bound in Theorem 1 shows that

which is strictly less than . To obtain a better

asymptotic behavior for , we establish the following.

Theorem 2:

This theorem leads to the following.

Corollary 2:

Thus, the lower bound in Theorem 2 is tight for . The

proof of Theorem 2 extends Pinsker’s linear noise-free feedback

coding scheme [5] to the noisy case.

Fig. 2 compares the two bounds for the case. The

linear noisy feedback coding scheme performs better when
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Fig. 2. Comparison of the two noisy feedback coding scheme for .

is sufficiently small, while the two-stage noisy feedback coding
scheme performs better when is relatively larger.

The rest of the paper is organized as follows. In Section II, we

study a two-stage noisy feedback coding scheme motivated by

recent results of Burnashev and Yamamoto and establish The-

orem 1. In Section III, we extend Pinsker’s noise-free linear

feedback coding scheme to the noisy feedback case and estab-

lish Theorem 2. Section IV concludes the paper.

II. TWO-STAGE NOISY FEEDBACK CODING SCHEME

A. Background

It is instructive to first consider a two-stage noise-free feed-
back coding scheme for . This two-stage scheme has

been studied by Schalkwijk and Barron [9] and Yamamoto and

Itoh [10] for a general .

Encoding. Fix some . For simplicity of notation,

assume throughout that is an integer. To send message

, during the transmission time interval (namely,

stage 1), the encoder uses the simplex signaling:

for

for

for .
(4)

Based on the feedback , the encoder then chooses the two

most probable message estimates and , where

(5)

and in case of a tie the one with the smaller index is chosen.

Since the channel is Gaussian and is uniform, (5) can be

written as

where denotes the Euclidean distance. During the transmis-

sion time interval (stage 2), the encoder uses an-

tipodal signaling for if and transmits all-zero

sequence, otherwise,

otherwise.

Decoding. At the end of stage 1, the decoder chooses the two
most probable message estimates and based on as

the encoder does. At the end of stage 2, the decoder declares

that is sent if

Analysis of the probability of error. Let and denote

the two most probable message estimates at the end of stage 1.

The decoder makes an error if and only if one of the following

events occurs:

Thus, the probability of error is

By symmetry, we assume without loss of generality that

is sent. For brevity, we do not explicitly condition on the event

in probability expressions in the following, whenever

it is clear from the context. Referring to Fig. 3, let

we have

where follows since

(see [11, Problem 2.26]).

On the other hand, is determined by the distance be-

tween the simplex signaling in stage 1 and the distance between

the antipodal signaling in stage 2 (see Fig. 4). In particular,
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Fig. 3. The error event when . Here and 1, 2, and 3
denote , , and , respectively.

Fig. 4. The error event . Here and .

Thus

Therefore, the error exponent of the two-stage feedback coding

scheme is lower bounded as

Now, let . Then, it can be readily verified that both
terms in the minimum are the same and we have

Remark 1: Since , this two-stage noise-free

feedback coding scheme is strictly suboptimal.

Remark 2: We need only three transmissions: two for stage
1 and one for stage 2. Thus, actually divides only the total

energy , not the block length .

Fig. 5. Signal protection regions. The shaded areas for are the
signal protection regions for , , and , respectively. Here

for some parameter to be
optimized later.

B. Two-Stage Noisy Feedback Coding Scheme
Based on the two-stage noise-free feedback coding scheme in

the previous section and a new idea of signal protection intro-
duced by Burnashev and Yamamoto [7], [8], we present a two-

stage noisy feedback coding scheme for . The coding

scheme for an arbitrary is given in the Appendix.

In the two-stage noise-free feedback coding scheme, the en-

coder and decoder agree on the same set of message estimates

and at the end of stage 1. When there is noise in the feed-

back link, however, this coordination is not always possible. To

solve this problem, we assign a signal protection region ,

, to each signal as depicted in Fig. 5. Let

and denote the transmitted and received signals, respec-

tively, and denote the feedback sequence at the encoder.

Let and the signal protec-

tion region for , are defined as

(6)

which means that message is the most probable and the other

messages and are of approximately equal posterior prob-

abilities. Here is a fixed parameter which
will be optimized later in the analysis.

Encoding. In stage 1, the encoder uses the same simplex sig-
naling as in the noise-free feedback case [see (4)]. Then based

on the noisy feedback , the encoder chooses and such

that

In stage 2, the encoder uses antipodal signaling for if

and transmits all-zero sequence otherwise.

Decoding. The decoder makes a decision immediately at the
end of stage 1 if the received signal lies in one of the signal

protection regions, i.e., for . Otherwise,
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it chooses the two most probable message estimates and

and wait for the transmission in stage 2. At the end of stage 2,

the decoder declares that is sent if

Remark 3: The signal protection region corresponds to the
case in which the two least probable messages are of approxi-

mately equal posterior probabilities, i.e.,

.

Analysis of the probability of error. Let ( , ) and ( ,

) denote the pairs of the two most probable message esti-

mates at the encoder and the decoder, respectively. As before,

we assume that is sent. Referring to Fig. 5, let

where

The decoder makes an error only if one or more of the fol-

lowing events occur.

1) Decoding error at the end of stage 1

2) Miscoordination due to the feedback noise

3) Decoding error at the end of stage 2

Thus, the probability of error is upper bounded as

To simplify the analysis, we introduce a new param-

eter such that .

It can be easily checked that corresponds to

and that this constraint guarantees that

[see Fig. 6(a)].

Hence, for the first term

(7)

Fig. 6. (a) The error event when . Since , we have

(b) The error event

when and . Here

.

The second term can be upper bounded [see Fig. 6(b)]

as

(8)

Finally, the third term can be upper bounded in the

exactly same manner as in the noise-free feedback case
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Therefore, the error exponent of the two-stage noisy feedback

coding scheme is lower bounded as

Now let

and

Then, it can be readily verified that all the three terms in the
minimum are the same and we have

(9)

Note that if ,

and is monotonically increasing over . Thus,

This completes the proof of Theorem 1 for the case.

Remark 4: It can be easily checked that the lower bound in
(9) is tight and characterizes the exact error exponent of

the two-stage noisy feedback coding scheme.

III. LINEAR NOISY FEEDBACK CODING SCHEME

A. Background

It is instructive to revisit (a slightly simplified version of) the
linear noise-free feedback coding scheme by Pinsker [5], which

shows that for all . This

lower bound is tight since [4] and is

nonincreasing in .

Encoding. To send message , the encoder

transmits

(10)

Because of the feedback , the encoder can learn the noise

. Subsequently, it transmits

and afterward, where will be optimized later and

the random time is the largest such

that

Decoding. Upon receiving , the decoder estimates by

and declares that is sent if

Remark 5: It can be easily checked that each time ,

the encoder transmits the error

in the decoder’s current estimate of the initial transmission (up

to scaling). Thus, Pinsker’s coding scheme is another instance

of iterative refinement used in the Schalkwijk–Kailath coding
scheme [1] for the Gaussian channel and the Horstein coding

scheme [12] for the binary symmetric channel.

Analysis of the probability of error. For simplicity of no-
tation, assume throughout that is an integer. We use

to denote a generic sequence of nonnegative numbers that

tends to zero as . When there are multiple such func-

tions , we denote them all by with the un-

derstanding that . It is easy to see

that decoding error occurs only if .

The probability of error is thus upper bounded as

The key idea in the analysis is to introduce a “virtual”

transmission

(11)

Let

(12)

and define the estimate of as

(13)
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Then, it can be easily shown that

Thus, we have

Now we upper bound the two terms. For the first term, we
have

For the second term, note that for all if and

only if (i.e., ), and thus that

only if . Therefore

where follows since [recall (10)] and denotes

a chi-square random variable with degrees of freedom.

By upper bounding the tail probability of the chi-square random

variable [13] as

(14)

we have

where tends to zero as . Therefore, the error exponent

of the linear feedback coding scheme is lower bounded as

for any . Now let

which tends to zero as . Then, the limits of both terms

in the minimum are the same. Therefore,

which completes the proof of achievability.

B. Linear Noisy Feedback Coding Scheme
Now we formally describe and analyze a linear noisy feed-

back coding scheme based on Pinsker’s noise-free feedback

coding scheme.

Encoding. Fix some . To send message

, the encoder transmits

(15)

Because of the noisy feedback , the encoder can learn

. Subsequently, it transmits

where will be optimized later and the random time

is the largest such that

Decoding. Upon receiving , the decoder estimates by

and declares that is sent if

Remark 6: The main difference between this noisy feed-
back coding scheme and Pinsker’s noise-free feedback coding

scheme in the previous section is that we let the power of

the initial transmission grow linearly with the block length

[exploiting the peak energy constraint in (1)] and thus the

initial transmission contains much more information about
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the message than in Pinsker’s scheme. This makes the coding

scheme more robust to combat the noise in the feedback link.

Analysis of the probability of error. As before, we assume
that is an integer. Let

(16)

and let and be defined as in (12) and (13). Then, it can
be easily shown that

Thus, we have

Now we upper bound the two terms. For the first term, we have

where

where tends to zero as . Thus,

(17)

For the second term, we have

where follows since [recall (15)]. By (14), we

have

(18)

where tends to zero as . Therefore, the error exponent

of the linear noisy feedback coding scheme is lower bounded as

Now let

and

Then, it can be readily verified that both terms in the minimum
are the same and we have

which completes the proof of Theorem 2.
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IV. DISCUSSION

When is very small, the linear feedback coding scheme

(which is optimal for noise-free feedback) outperforms the two-

stage (nonlinear) feedback coding scheme. When is relatively

large, however, linear feedback coding scheme amplifies the
feedback noise, while the two-stage scheme achieves a more

robust performance via signal protection. While this dichotomy

agrees with the usual engineering intuition, it would be aesthet-

ically more pleasing if a single feedback coding scheme per-

forms uniformly better over all ranges of , and the search

for such a coding scheme invites further investigation. We fi-
nally note that is the threshold for all in the

two-stage noisy feedback coding scheme (see the Appendix). In

both schemes, the error exponents are strictly larger than those

for the no feedback case only when is sufficiently small. Thus,
it is natural to ask whether the noisy feedback is useful for all

or there exists a fundamental threshold beyond which noisy

feedback becomes useless.

Following Burnashev and Yamamoto’s work [14] on noisy

feedback communication over the binary symmetric channel at

positive rates, we can extend our result to a positive rate, i.e.,

with . Let denote the maximum

error exponent, namely, the reliability function. Although the

is not known for all (see, e.g., [15]),

Shannon [6] showed that

We can easily adapt the analysis of our two-stage noisy feedback

coding scheme in the Appendix to show that

Moreover, it can be shown that

where is the root of . Thus, the

best error exponent can be strictly larger than the one without

feedback if the rate and the feedback noise power are sufficiently
small.

Finally, we note that our discussion has been limited to the

peak energy constraint (1). In some practical systems, however,

it would be more relevant to consider peak power constraints

or

It remains to be seen whether noisy feedback still improves the

reliability under these more stringent conditions.

APPENDIX

PROOF OF THEOREM 1 FOR THE GENERAL CASE

Encoding. In stage 1, the encoder uses the simplex signaling
for an -ary message

where and

Then based on the noisy feedback , the encoder chooses

the two most probable message estimates and among

candidates. In stage 2, the encoder uses antipodal signaling for

if and transmits all-zero sequence otherwise.

Decoding. The signal protection region for the -ary mes-

sage is defined as in (6) (with , , ). The de-

coder makes a decision immediately at the end of stage 1 if the

received signal lies in one of the signal protection regions.

Otherwise, it chooses the two most probable message estimates

and , and wait for the transmission in stage 2. At the end

of stage 2, the decoder declares that is sent if

Analysis of the probability of error. Let ( , ) and ( ,

) denote the pairs of the two most probable message esti-

mates at the encoder and the decoder, respectively. The decoder

makes an error only if one ormore of the following events occur.

1) Decoding error at the end of stage 1

2) Miscoordination due to the feedback noise

3) Decoding error at the end of stage 2

Thus, the probability of error is upper bounded as

As before, we assume that was sent. For the first term,
by the union of events bound,
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For , again by the union of events bound,

We use , , to denote the distances corresponding to

in the case (see Fig. 6). It can be easily checked that

. Thus, by replacing by in (7)

and by in (8), we have

and

The third term can be upper bounded in the same manner

as for the case,

Therefore,

Now let

and

Then, it can be readily verified that all the three terms in the
minimum are the same and we have

Note that if ,

and is monotonically increasing over . Thus,

This completes the proof of Theorem 1 for the general case.

Remark 7: Note that is decreasing in , while

is still independent of .
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