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Abstract—The problem of state communication over a discrete
memoryless channel with discrete memoryless state is studied
when the state information is available strictly causally at the
encoder. It is shown that block Markov encoding, in which the
encoder communicates a description of the state sequence in
the previous block by incorporating side information about the
state sequence at the decoder, yields the minimum state estima-
tion error. When the same channel is used to send additional
independent information at the expense of a higher channel
state estimation error, the optimal tradeoff between the rate of
the independent information and the state estimation error is
characterized via the capacity–distortion function. It is shown
that any optimal tradeoff pair can be achieved via rate-splitting.
These coding theorems are then extended optimally to the case of
causal channel state information at the encoder using the Shannon
strategy.

I. INTRODUCTION

T HE problem of information transmission over channels
with state (also referred to as state-dependent channels)

is classical. One of the most interesting models is the scenario
in which the channel state is available at the encoder either
causally or noncausally. This framework has been studied
extensively for independent and identically distributed (i.i.d.)
states, starting from the pioneering work of Shannon [26],
Kusnetov and Tsybakov [18], Gelfand and Pinsker [12], and
Heegard and El Gamal [14]; see a recent survey by Keshet et
al. [16].
Most of the existing literature has focused on determining

the channel capacity or devising practical capacity-achieving
coding techniques for this channel. In certain communication
scenarios, however, the encoder may instead wish to help re-
veal the channel state to the decoder. In this paper, we study
this problem of state communication over a discrete memoryless
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channel (DMC) with discrete memoryless (DM) state, in which
the encoder has either strictly causal or causal state informa-
tion and wishes to help reveal it to the decoder subject to some
fidelity criterion. In the strictly causal case, the encoder has ac-
cess to the channel state sequence of the previous transmission
times, while in the causal case, the current state is additionally
available at the encoder. This problem is motivated by a wide
array of applications, including multimedia information hiding
in [22], digital watermarking in [2], data storage over memory
with defects in [14] and [18], secret communication systems
in [19], dynamic spectrum access systems in [21] and later in
[10], and underwater acoustic/sonar applications in [27]. Each
of these problems can be expressed as a problem of conveying
the channel state to the decoder. For instance, the encoder may
be able to monitor the interference level in the channel; it only
attempts to carry out communication when the interference level
is low and additionally assists the decoder in estimating the in-
terference for better decoder performance.
We show that block Markov encoding, in which the encoder

communicates a description of the state sequence in the pre-
vious block by incorporating side information about the state
sequence at the decoder, is optimal for communicating the state
when the state information is strictly causally available at the
encoder. For the causal case, this block Markov coding scheme
coupled with incorporating the current channel state using the
Shannon strategy [26] turns out to be optimal.
This same channel can also be used to send additional in-

dependent information. This is, however, accomplished at the
expense of a higher channel state estimation error. We charac-
terize the tradeoff between the amount of independent informa-
tion that can be reliably transmitted and the accuracy at which
the decoder can estimate the channel state via the capacity–dis-
tortion function, which is to be distinguished from the usual
rate–distortion function in source coding. We show that any op-
timal tradeoff can be achieved via rate splitting, whereby the en-
coder appropriately allocates its rate between information trans-
mission and state communication.
The problem of joint communication and state estimation

was introduced in [29], which established the capacity–distor-
tion function for the Gaussian channel with additive Gaussian
state when the state information is noncausally available at the
encoder; see [28] for a lower bound on the capacity–distortion
function for a general DMC with DM state. The other extreme
case was studied later in [31], in which both the encoder and
the decoder are assumed to be oblivious of the channel state; for
this case, the capacity–distortion was established for a general
DMCwith DM state. This paper connects these two sets of prior
results by considering causal (i.e., temporally partial) informa-
tion of the state at the encoder.
Note that the problem of communicating the causally (or

noncausally) available state and independent information over
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a state-dependent channel was also studied in [17] and its dual
problem of communicating independent information while
masking the state was studied by Merhav and Shamai [20].
Instead of reconstructing the state subject to some fidelity
criterion, however, the focus in [17] was the optimal tradeoff
between the information transmission rate and the state uncer-
tainty reduction rate (the list decoding exponent of the state).
We will later elucidate the connection between the results in
[17] and our results.
The rest of this paper is organized as follows. Section II

describes the basic channel model with discrete alphabets and
characterizes the minimum distortion in estimating the state
when the state information is available strictly causally at the
encoder. Section III extends the results to the setting with a
tradeoff between information transmission and state estima-
tion, and establishes the capacity–distortion function. Since the
intuition gained from the study of the strictly causal setting
carries over to the setting in which the encoder has causal
knowledge of the state sequence, the causal case is treated only
briefly in Section IV, along with three representative examples.
Section V concludes this paper.
Throughout this paper, we closely follow the notation in [11].

In particular, a random variable is denoted by an uppercase
letter (e.g., ) and its realization is denoted by a low-
ercase letter (e.g., ). The shorthand notation is used
to denote the tuple (or the column vector) of random variables

, and is used to denote their realizations. The
notation means that is the probability mass
function (pmf) of the random vector . Similarly,

means that is the conditional pmf of
given . For and , we define

the set of -typical -sequences (or the typical set in short)
[24] as

We say that form a Markov chain if
, that is, and are conditionally indepen-

dent of each other given . Finally,
denotes the Gaussian capacity function.

II. PROBLEM SETUP AND MAIN RESULT

Consider a point-to-point communication system with state
depicted in Fig. 1. Suppose that the encoder has strictly causal
access to the channel state sequence and wishes to commu-
nicate the state to the decoder. We assume a DMC with a DM
state model that consists of a finite
input alphabet , a finite output alphabet , a finite state al-
phabet , and a collection of conditional pmfs on .
The channel is memoryless in the sense that without feedback,

, and the state is mem-
oryless in the sense that the sequence is i.i.d. with

.
An code for strictly causal state communication

over the DMC with DM state consists of

Fig. 1. Strictly causal state communication.

1) an encoder that assigns a symbol to each
past state sequence for

, and
2) a decoder that assigns an estimate to each re-
ceived sequence .

The fidelity of the state estimate is measured by the expected
distortion

where is a distortion measure between a
state symbol and a reconstruction symbol . Without
loss of generality, we assume that for every symbol , there
exists a reconstruction symbol such that .
A distortion is said to be achievable if there exists a se-

quence of codes such that

We next characterize the minimum distortion , which is the
infimum of all achievable distortions .
Theorem 1: The minimum distortion for strictly causal state

communication is

where the minimum is over all conditional pmfs
and functions such that

To illustrate this result, we consider the following.
Example 1 (Quadratic Gaussian State Communication):

Consider the Gaussian channel with additive Gaussian state [5]

where the state and the noise are
independent. Assume an expected average transmission power
constraint

where the expectation is over the random state sequence .
We assume the squared error (quadratic) distortion measure

.
We compare different transmission strategies for estimating

the state at the decoder. In the classical communication para-
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digm, the encoder would ignore its knowledge of the channel
state (since the strictly causal state information at the encoder
does not increase the channel capacity) and transmit an agreed-
upon training sequence to the decoder. The minimum distor-
tion is achieved by estimating the state via minimum mean
squared error (MMSE) estimation from the noisy observation

(with the MMSE estimate )
and is given by

Note that this distortion is independent of the particular se-
quence , i.e., one could “send” , , and is
optimal when the encoder is oblivious of the state sequence as
shown in [31].
Alternatively, a block Markov coding scheme can be per-

formed, in which the encoder communicates a description of the
state sequence in the previous block using a capacity-achieving
code. This strategy is similar to a source–channel separation
scheme, whereby the state sequence is treated as a source
and the compressed version of the source is sent across the
noisy channel at a rate lower than the capacity. Since the
distortion–rate function of the state is
(see, for example, [8]) and the capacity of the channel
with strictly causal state information at the encoder) is

], the distortion achieved by this coding
scheme is . It is
straightforward to see that for some values of , , and ,
ignoring the state knowledge at the encoder can offer a lower
distortion than using this (suboptimal) block Markov encoding
scheme.
The minimum distortion can be achieved by performing

another block Markov coding scheme, wherein the encoder
communicates a description of the state sequence in the pre-
vious block by incorporating side information about
the state of the previous block at the decoder and using
a Wyner–Ziv coding at a rate equal to the capacity of the
channel . Thus, this strategy replaces

of the last scheme with the Wyner–Ziv
distortion–rate function
(see [30]) and the minimum distortion can be determined by
computing . (The proof
of optimality is provided in Section III.) Note that can be
attained by setting and in
Theorem 1, where is independent of
and .
In Sections II-A and II-B, we prove Theorem 1.

A. Proof of Achievability

We use transmission blocks, each block consisting of
symbols. In block , a description of the state sequence
in block is sent.
Codebook Generation: Fix a conditional pmf

and function such that , and
let . For each , ran-
domly and independently generate sequences ,

, each according to

. For each , randomly and con-
ditionally independently generate sequences ,

, each according to .
Partition the set of indices into equal-size bins

,
. This defines the codebook

where . The codebook is
revealed to both the encoder and the decoder.
Encoding: By convention, let . At the end of block ,

the encoder finds an index such that

If there is more than one such index, it selects one of them uni-
formly at random. If there is no such index, it selects an index
from uniformly at random. In block the encoder
transmits , where is the bin index of .
Decoding: Let . At the end of block , the decoder

finds the unique index such that .
(If there is more than one such index, it selects one of them uni-
formly at random. If there is no such index, it selects an index
from uniformly at random.) It then finds the unique
index such that

. Finally, it computes the reconstruction sequence as
for .

Analysis of Expected Distortion: Let , , and be
the indices chosen in block . We bound the distortion averaged
over the random choice of the codebooks , . Define
the “error” event

and consider the events

Then by the union of events bound

We bound each term. For the first term, let

and note that

By the independence of the codebooks (in particular,
the independence of and ) and the covering
lemma [11, Sec. 3.7], tends to zero as

if . Since and
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, by the conditional typicality lemma
[11, Sec. 2.5], tends to zero as .
Next, by the same independence of the codebooks and the

packing lemma [11, Sec. 3.2], and tend
to zero as if

(1)

Finally, following the same steps as in the analysis of
the Wyner–Ziv coding scheme [11, Sec. 11.3] (in par-
ticular, the analysis of ), it can be readily shown that

tends to zero as if

(2)

Combining the bounds (1) and (2), we have shown that
tends to zero as if

, which is satisfied by our choice of
for sufficiently small.

When there is no “error” in decoding the indices
. Thus, by

the law of total expectation and the typical average lemma [11,
Sec. 2.4], the asymptotic distortion averaged over the random
codebook, encoding, and decoding is upper bounded as

where . By taking
and , any distortion larger than is achievable
for a fixed conditional pmf and function
satisfying . Finally, by the continuity
of mutual information terms in , the same conclu-
sion holds when we relax the strict inequality to

. This completes the achievability proof of Theorem
1.
Remark 1: While the above achievability proof is for finite

alphabets, it can be easily adapted to the Gaussian setting in Ex-
ample 1 by incorporating cost constraints on the channel input
and applying the standard discretization argument [11, Sec. 3.4
and 3.8].

B. Proof of the Converse
In this section, we prove that for every code, the achieved dis-

tortion is lower bounded as . Given an code,
we identify the auxiliary random variables ,

. Note that, as desired, form a
Markov chain for . Consider

(3)

where follows since is a function of , follows
since is i.i.d., and follows by the Csiszár sum identity
[9], [11], [13, Sec. 2.3].
Let be the standard time-sharing random variable that

is uniformly distributed over and independent of
, and let , , ,

and . It can be easily verified that is independent
of , that form a Markov chain, and that

.
To lower bound the expected distortion of the given code, we

rely on the following result.
Lemma 1: Suppose form a Markov chain and

is a distortion measure. Then, for every reconstruction
function , there exists a reconstruction function
such that

This useful lemma traces back to Blackwell’s notion of
channel ordering [1], [25] and can be interpreted as a “data
processing inequality” for estimation. In the context of network
information theory, it has been utilized by Kaspi [15] (see also
[11, Sec. 20.3.3]) and appeared in the above simple form in [3]
and [4]. For completeness, the proof of this lemma is provided
in Appendix A.
Now consider

where follows from Lemma 1 by identifying as ,
as , and as , and

noting that form a Markov
chain. This completes the proof of Theorem 1.

C. Lossless Communication
Suppose that the state sequence needs to be communicated

losslessly, i.e., . We can establish
the following congruence of Theorem 1.
Corollary 1: If , then the

state sequence can be communicated losslessly. Conversely,
if the state sequence can be communicated losslessly, then

.
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To prove this, consider the special case of and a Ham-
ming distortion measure (i.e., if and 1
if ). By setting in the achievability proof of The-
orem 1 in Section II-A and noting that no “error” implies that

, we can conclude that the state sequence can be com-
municated losslessly if for some . The con-
verse follows immediately since the lossless condition that the
block error probability tends to zero as
implies the zero Hamming distortion condition that the average
symbol error probability tends to zero
as . Combining this observation with the converse proof
of Theorem 1 in Section II-B, we can conclude that must
be less than or equal to .
Remark 2: If we define , then

characterizes the state uncertainty reduction
rate, which captures the performance of the optimal list decoder
for the state sequence (see [17] for the exact definition). The
proof of this result again follows from Theorem 1 by letting
be the set of pmfs on and be the loga-
rithmic distortion measure, and adapting the technique by Cour-
tade and Weissman [6].

III. CAPACITY–DISTORTION TRADEOFF

Now suppose that in addition to the state sequence , the
encoder wishes to communicate a message independent of
. What is the optimal tradeoff between the rate of the mes-

sage and the distortion of state estimation?
A code for strictly causal state communication con-

sists of
1) a message set ,
2) an encoder that assigns a symbol to each
message and past state sequence

for , and
3) a decoder that assigns a message estimate
(or an error message ) and a state sequence estimate
to each received sequence .

We assume that is uniformly distributed over the mes-
sage set. The average probability of error is defined as

. As before, the channel state esti-
mation error is defined as . A rate–distortion
pair is said to be achievable if there exists a se-
quence of codes with and

. The capacity–distortion
function is defined as the supremum of the rates
such that is achievable.
We characterize this optimal tradeoff between information

transmission rate (capacity ) and state estimation (distortion
) as follows.
Theorem 2: The capacity–distortion function for strictly

causal state communication is

(4)

where the maximum is over all conditional pmfs
with and functions such that

.
The proof of Theorem 2 is similar to the zero-rate case in

Theorem 1 and thus we delegate it to Appendix B. Note that the

inverse of the capacity–distortion function, namely, the distor-
tion–capacity function for strictly causal state communication
is

(5)

where the minimum is over all conditional pmfs
and functions such that
. By setting in (5), we recover Theorem 1. (More in-

terestingly, we can recover Theorem 2 from Theorem 1 by con-
sidering a supersource , where the message source
is independent of , and two distortion measures—the Ham-

ming distortion measure and a generic distortion mea-
sure .) At the other extreme, by setting in (4), we
recover the capacity expression

(6)

of a DMC with DM state when the state information is avail-
able strictly causally at the encoder. (Unlike the general tradeoff
in Theorem 2, strictly causal state information is useless when
communicating the message alone.) Finally, by setting
in Theorem 2, we recover the result in [31] on the capacity–dis-
tortion function when the state information is not available at
the encoder.
Remark 3: Theorem 2 (as well as Theorem 1) holds for

any finite delay, that is, whenever the encoder is defined as
for some . More generally, it continues

to hold as long as the delay is sublinear in the block length .
Remark 4: The characterization of the capacity–distortion

function in Theorem 2, albeit very compact, does not bring out
the intrinsic tension between state estimation and independent
information transmission. It can be alternatively written as

(7)
where

is the Wyner–Ziv rate–distortion function [30] with side in-
formation . The rate can be viewed as the
price the encoder pays to estimate the channel state at the de-
coder under distortion by signaling with . In particular, if

is independent of for a fixed (i.e.,
), then by the convexity of the Wyner–Ziv rate–distor-

tion function, the alternative characterization of in (7)
simplifies to

(8)

where

Thus, in this case, the capacity is achieved by splitting the
unconstrained capacity into information transmission
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and lossy source coding of the past state sequence with side
information . This simple characterization will be very
useful in evaluating the capacity–distortion function in several
examples.
Remark 5: Along the same lines of [17], the optimal tradeoff

between the state uncertainty reduction rate and independent
information transmission rate can be characterized as the set
of pairs such that

for some . This result includes both the state uncertainty
reduction rate in Remark 2 and the channel capacity in (6) as
special cases.
In the following sections, we illustrate Theorem 2 via simple

examples.

A. Injective Deterministic Channels

Suppose that the channel output

is a function of and such that given every , the func-
tion is injective (one-to-one) in . This condition implies
that for every . For this class of injective
deterministic channels, the characterization of the capacity–dis-
tortion function in Theorem 2 can be greatly simplified.
Proposition 1: The capacity–distortion function of the injec-

tive deterministic channel is

(9)
In other words, we can achieve the unconstrained channel

capacity as well as perfect state estimation. This is no surprise
since the injective condition implies that given the channel input
and output , the state can be recovered losslessly. Note

that this result is independent of the distortion measure
as long as our standing assumption—for every , there exists an
with —is satisfied.
To prove achievability for Proposition 1, substitute

in Theorem 2 (which satisfies the Markovity condition
since is a function of ). For the converse,

consider

where follows since and follows from the
injective condition.

Example 2 (Additive Gaussian State With No Noise): Con-
sider the channel

where the state . Assume the squared error distor-
tion measure and an expected average power constraint on
. The capacity–distortion function of this channel is

which is the capacity without state estimation.
Example 3 (Additive Bernoulli State With No Noise): Con-

sider the channel

where and are binary and the state . Assume
the Hamming distortion measure. The capacity–distortion func-
tion of this channel is

In the following sections, we extend the above two examples
to the more general cases where there is additive noise.

B. Gaussian Channel With Additive Gaussian State

We revisit the Gaussian channel with additive Gaussian noise
(see Example 1)

where and . As before, we assume
an average expected power constraint and the squared error
distortion measure .
We note the following extreme cases of the capacity–distor-

tion function:
1) If , then .
2) If (the optimal distortion
mentioned in Example 1), then .

3) If (the minimum distortion achiev-
able when the encoder has no knowledge of the state), then

, which is achieved
by first decoding the codeword in a “noncoherent”
fashion, then utilizing along with the channel output

to estimate (see [31]).
More generally, we have the following.
Proposition 2: The capacity–distortion function of the

Gaussian channel with additive Gaussian state when the state
information is strictly causally available at the encoder is

.

Proposition 2 can be proved by evaluating the characteri-
zation in Theorem 2 with the optimal choice of the auxiliary
random variable and the estimation function . How-
ever, the alternative characterization in Remark 4 provides a
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more direct proof. Since the Wyner–Ziv rate–distortion func-
tion [30] for the Gaussian source with side information

is independent of , it follows immediately from (8)
that , which is equivalent to the
expression given in Proposition 2.

C. Binary Symmetric Channel With Additive Bernoulli State

Consider the binary symmetric channel

where the state , , and the noise
, , are independent of each other. Assume

the Hamming distortion measure .
We note the following extreme cases of the capacity–distor-

tion function:
1) If , then and .
2) If , then and .
3) If , then and .
4) If , then and .
5) If , then

.
More generally, we have the following.
Proposition 3: The capacity–distortion function of the binary

symmetric channel with additive Bernoulli state when the state
information is strictly causally available at the encoder is

where

(10)

with the minimum is over all
is the Wyner–Ziv rate–distortion function for the Bernoulli

source and Hamming distortion measure.
As in the Gaussian case, the proof of the proposition fol-

lows immediately from the alternative characterization of the
capacity–distortion function in Remark 4. Here, the Wyner–Ziv
rate–distortion function follows again from [30].

IV. CAUSAL STATE COMMUNICATION

So far in our discussion, we have assumed that the encoder
has strictly causal knowledge of the state sequence. What will
happen if the encoder has causal knowledge of the state se-
quence, that is, at time the previous and current
state sequence is available at the encoder? Now a
code, probability of error, achievability, and capacity–distortion
function are defined as in the strictly causal case in Section III,
except that the encoder is of the form , .
It turns out that the optimal tradeoff between capacity and

distortion can be achieved by a simple modification to the block
Markov coding scheme for the strictly causal case.
Theorem 3: The capacity–distortion function for causal state

communication is

(11)

where the maximum is over all conditional pmfs
with and
and functions and such that .
At one extreme point, if , then the theorem recovers

the unconstrained channel capacity

that was established by Shannon [26]. At the other extreme
point, the optimal distortion for causal state communication is

where the minimum is over all conditional pmfs
and functions and such that

Moreover, the condition for zero Hamming distortion can be
shown to be

which was proved in [17]. Note that by setting in the
theorem, we recover the capacity–distortion function
for strictly causal communication in Theorem 2.
To prove achievability for Theorem 3, we use the Shannon

strategy [26] (see also [11, Sec. 7.5]) and perform encoding
over the set of all functions indexed by
as the input alphabet. This induces a DMC with DM state

with the state information
strictly causally available at the encoder and we can immedi-
ately apply Theorem 2 to prove achievability of .
For the converse, we identify the auxiliary random variables

and , . Note that
form a Markov chain, that is

independent of , and that is a function of as de-
sired. The rest of the proof utilizes Lemma 1 and the concavity
of , and follows similar steps to that for the strictly causal
case in Appendix B.
In the following sections, we illustrate Theorem 3 through

simple examples.

A. Gaussian Channel With Additive Gaussian State

We revisit the Gaussian channel (see Example 1 and
Section III-B)

While the complete characterization of is not known
even for the unconstrained case ( ), the optimal distortion
can be characterized as
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Achievability follows by setting , ,
and . The converse follows from the fact that is
also the optimal distortion when the state information is known
noncausally at the encoder (see [29]). It is evident that knowing
channel state causally helps the encoder choose the channel
codeword coherently to amplify the channel state , unlike
the strictly causal case where and are independent of each
other.

B. Binary Symmetric Channel With Additive Bernoulli State

We revisit the binary symmetric channel (see Section III-C)

where and are independent of each
other.
We note the following extreme cases of the capacity–distor-

tion function:
1) If , then and .
2) If , then and .
3) If , then and .
4) If , then , which
is achieved by canceling the state at the encoder (

).
In general, the capacity–distortion function is given by the

following proposition.
Proposition 4: The capacity–distortion function of the binary

symmetric channel with additive Bernoulli state when the state
information is causally available at the encoder is

Proof: For the proof of achievability, observe that if we
cancel the state at the encoder and split the unconstrained ca-
pacity into information transmission and lossy source coding
of the past state sequence (without side information since
and are independent of ), then

is achievable. This corresponds to
evaluating Theorem 2 with , , and

, where and
are independent of . (Note the similarity to rate splitting for the
strictly causal case discussed in Remark 4.)
For the proof of the converse, consider

where follows since is a function of and
form a Markov chain, and follows since is a

function of . This completes the proof of the proposi-
tion.

Fig. 2. Capacity–distortion function of the binary symmetric channel with ad-
ditive Bernoulli state ( ) when the state information is available
strictly causally ( ) or causally ( ) at the encoder.

Fig. 2 compares the capacity–distortion function with causal
state information in Proposition 4 to that with strictly causal
state information in Proposition 3 when .

C. Five-Card Trick

We next consider the classical five-card trick. Two informa-
tion theorists, Alice and Bob, perform a “magic” trick with a
shuffled deck of cards, numbered from 0 to . Alice asks
a member of the audience to select cards at random from the
deck. The audience member passes the cards to Alice, who
examines them and hands one back. Alice then arranges the re-
maining cards in some order and places them face down
in a neat pile. Bob, who has not witnessed these proceedings,
then enters the room, looks at the cards, and determines
the missing th card, held by the audience member. There are
two key questions:
1) Given , find the maximum number of cards for which
this trick could be performed?

2) How is this trick performed?
This trick (discussed in [7] and [23]) can be formulated as state
communication at zero Hamming distortion with causal state
knowledge at the encoder.
Proposition 5: The maximum number of cards for which

the trick could be performed is .
Proof: To show that the maximum cannot be larger than

, that is, to prove the converse, we suppose that
multiple rounds of the trick were to be performed. In the frame-
work of causal state communication, the state corresponds to
an unordered tuple of cards selected by the audience member,
which is uniformly distributed over all possible choices of
cards. The channel input (as well as the channel output )
corresponds to the ordered tuple of cards placed and re-
ceived, respectively, by Alice and Bob. Since Bob has to recover
the missing card losslessly, the problem is equivalent to repro-
ducing the state itself with zero Hamming distortion (by com-
bining the remaining card with the received cards).
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Now by Theorem 3, the necessary condition for zero Ham-
ming distortion is given by

or equivalently

(12)

Since is uniform and the maximum is attained by the (condi-
tionally) uniform , the condition in (12) simplifies to

or equivalently

We now show that we only need one round of communica-
tion to achieve this upper bound on causal state communica-
tion. Without loss of generality, assume that the selected cards

are ordered with .
Alice selects card to hand back to the audience where

. Observe that

(13)

for some integer . The remaining cards
( is the deleted card) are summed and decomposed, i.e.,

(14)

for some integer . Since all the cards sum to ,
the missing card must be congruent to

. Thus

(15)

Therefore, if we renumber the cards from 0 to
(by removing the retained cards), the hidden card’s new
number is congruent to since there are cards

before card , and hence, the hidden card’s new
number is equal to . There are exactly

possibilities remaining for the hidden card’s number,
which can be conveyed by a predetermined permutation of the

retained cards. This completes the achievability proof.

V. CONCLUDING REMARKS

The problem of joint information transmission and channel
state estimation over a DMC with DM state was studied in [31]
(no state information at the encoder) and [28], [29] (full state
information at the encoder). In this paper, we bridged the gap
between these two results by studying the case in which the
encoder has strictly causal or causal knowledge of the channel
state information.
The resulting capacity–distortion function permits a sys-

tematic investigation of the tradeoff between information

transmission and state estimation. We showed the use of block
Markov coding coupled with channel state estimation by
treating the codeword estimate and the received channel output
as side information at the decoder is optimal for communicating
the state. Additional information transmission requires a simple
rate-splitting strategy. We also showed that the capacity–dis-
tortion function when the encoder is oblivious of the state
information (see [31]) can be recovered from our result.
Finally, we recall an important open problem of finding the

capacity–distortion function for a general DMC with
DM state with an arbitrary distortion measure, when the state se-
quence is noncausally at the encoder. The problem was studied
in [28], which established a lower bound on as

(16)

where the maximum is over all conditional pmfs and
functions and such that . While
it is believed that this lower bound is tight in general (see, for
example, [29] for the case of Gaussian channels with additive
Gaussian states with quadratic distortion measure), the proof
of the converse seems beyond our current techniques of identi-
fying auxiliary random variables and using estimation-theoretic
inequalities such as Lemma 1.

APPENDIX A
PROOF OF LEMMA 1

Using the law of iterated expectations, we have

(17)

Now, for each ,

(18)

where attains the minimum in (18) for a given . Define
. Then, (17) becomes

which completes the proof.
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APPENDIX B
PROOF OF THEOREM 2

Before proving the Theorem 2, we summarize a few useful
properties of in Lemma 2. In [31], they also discussed
similar properties of the capacity–distortion function for the
case in which the channel state information is not available.

Lemma 2: The capacity–distortion function in
Theorem 2 has the following properties.
1) is a nondecreasing concave function of for all

.
2) is a continuous function of for all .
3) if and if .
The monotonicity is trivial. The concavity can be shown by

using the standard time sharing argument. The continuity is a
direct consequence of the concavity. The last property follows
from Section IV. With these properties in hand, let us prove
Theorem 2.

1) Proof of Achievability: We use transmission blocks,
each consisting of symbols. The encoder uses the rate-splitting
technique, whereby in block , it appropriately allocates its rate
between transmitting independent information and a description
of the state sequence in block .

Codebook Generation: Fix a conditional pmf
and function that attain
, where is the desired distortion, and let

. For each , randomly and
independently generate sequences ,

, each according to
. For each ,

randomly and conditionally independently generate
sequences , , each
according to . Partition the
set of indices into equal-size bins

,
. This defines the codebook

with . The
codebook is revealed to the both encoder and the decoder.

Encoding: By convention, let . At the end of block
, the encoder finds an index such that

If there is more than one such index, it selects one of them uni-
formly at random. If there is no such index, it selects an index
from uniformly at random. In block the encoder
transmits , where is the new message index
to be sent in block and is the bin index of .

Decoding: Let . At the end of block , the decoder
finds the unique index such that

. The decoder thus decodes the message index
in block . It then finds the unique index
such that .
Finally, it computes the reconstruction sequence as

for .
Following the analysis of minimum distortion in Section II,

it can be readily shown that the scheme can achieve any rate up
to the capacity–distortion function given in Theorem 2.

2) Proof of the Converse: We need to show that given
any sequence of code with and

, we must have . We iden-
tify the auxiliary random variables ,

with . Note that, as desired,
form a Markov chain for .

Consider

(19)

where follows by Fano’s inequality [8, Th. 7.7.1], which
states that for some as for
any code satisfying , follows since is
a function of , follows by the Csiszár sum identity
[9], [11], [13, Sec. 2.3], and follows since is
independent of . So now we have

(20)

where follows from the definition of the capacity–distortion
function, follows by the concavity of (see Property
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1 in Lemma 2), and follows from Lemmas 1 and 2. This
completes the proof of Theorem 2.
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