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Directed Information, Causal Estimation, and
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Abstract—A notion of directed information between two contin-
uous-time processes is proposed. A key component in the defini-
tion is taking an infimum over all possible partitions of the time
interval, which plays a role no less significant than the supremum
over “space” partitions inherent in the definition of mutual infor-
mation. Properties and operational interpretations in estimation
and communication are then established for the proposed notion
of directed information. For the continuous-time additive white
Gaussian noise channel, it is shown that Duncan’s classical rela-
tionship between causal estimation error and mutual information
continues to hold in the presence of feedback upon replacing mu-
tual information by directed information. A parallel result is es-
tablished for the Poisson channel. The utility of this relationship
is demonstrated in computing the directed information rate be-
tween the input and output processes of a continuous-time Poisson
channel with feedback, where the channel input process is con-
strained to be constant between events at the channel output. Fi-
nally, the capacity of a wide class of continuous-time channels with
feedback is established via directed information, characterizing
the fundamental limit on reliable communication.

Index Terms—Causal estimation, conditional mutual informa-
tion, continuous time, directed information, Duncan’s theorem,
feedback capacity, Gaussian channel, Poisson channel, time
partition.

I. INTRODUCTION

T HE directed information between
two random -sequences and

is a natural generalization of Shannon’s
mutual information to random objects obeying causal relations.
Introduced by Massey [1], this notion has been shown to arise
as the canonical answer to a variety of problems with causally
dependent components. For example, it plays a pivotal role in
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characterizing the capacity of a communication channel
with feedback. Massey [1] showed that the feedback capacity
is upper bounded as

(1)

where
(2)

and
(3)

(see also Kramer [2] that streamlines the notion of directed
information by causal conditioning). The upper bound in (1)
is tight for certain classes of ergodic channels, such as general
nonanticipatory channels satisfying certain regularity condi-
tions [3], channels with finite input memory and ergodic noise
[4], and indecomposable finite-state channels [5], paving the
road to a computable characterization of feedback capacity (see
[6]–[8] for examples).
Directed information and its variants also characterize (via

multiletter expressions) the capacity for two-way channels [2],
multiple access channels with feedback [2], [9], broadcast chan-
nels with feedback [10], and compound channels with feedback
[11], as well as the rate-distortion function with feedforward
[12], [13]. In another context, directed information captures the
difference in growth rates of wealth in horse race gambling due
to causal side information [14]. This provides a natural inter-
pretation of as the amount of information about

causally provided by on the fly. Similar interpretations
for directed information can be drawn for other problems in sci-
ence and engineering [15].
This paper is dedicated to extending the mathematical notion

of directed information to continuous-time random processes
and to establishing results that demonstrate the operational sig-
nificance of this notion in estimation and communication. Our
contributions include the following.
1) We introduce the notion of directed information in contin-
uous time. Given a pair of continuous-time processes in
a time interval and its partition consisting of subinter-
vals, we first consider the (discrete time) directed informa-
tion for the two sequences of length whose components
are the sample paths on the respective subintervals. The
resulting quantity depends on the specific partition of the
time interval.We define directed information in continuous
time by taking the infimum over all finite time partitions.
Thus, in contrast to mutual information in continuous time
which can be defined as a supremum of mutual informa-
tion over finite “space” partitions [16, Ch. 2.5], [17, Ch.
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3.5], inherent to our notion of directed information is a
similar supremum followed by an infimum over time parti-
tions. We explain why this definition is natural by showing
that the continuous-time directed information inherits key
properties of its discrete-time origin and by establishing
new properties that are meaningful in continuous time.

2) We show that this notion of directed information arises in
extending classical relationships between information and
estimation in continuous time—Duncan’s theorem [18]
that relates the minimum mean squared error (MMSE) in
causal estimation of a target signal based on an observa-
tion through an additive white Gaussian noise (AWGN)
channel to the mutual information between the target
signal and the observation, and its counterpart for the
Poisson channel—to the scenarios in which the channel
input process can causally depend on the channel output
process, whereby corresponding relationships now hold
between directed information and estimation.

3) We illustrate these relationships between directed informa-
tion and estimation by characterizing the directed informa-
tion rate and the feedback capacity of a continuous-time
Poisson channel with inputs constrained to be constant be-
tween events at the channel output.

4) We establish the fundamental role of continuous-time di-
rected information in characterizing the feedback capacity
of a large class of continuous-time channels. In particular,
we show that for channels where the output is a function
of the input and some stationary ergodic “noise” process,
the continuous-time directed information characterizes the
feedback capacity of the channel.

The remainder of this paper is organized as follows. Section II
is devoted to the definition of directed information and related
quantities in continuous time, which is followed by a presenta-
tion of key properties of continuous-time directed information
in Section III. In Section IV, we establish the generalizations
of Duncan’s theorem and its Poisson counterpart that accom-
modates the presence of feedback. In Section V, we apply the
relationship between the causal estimation error and directed in-
formation for the Poisson channel to compute the directed in-
formation rate between the input and the output of this channel
in a scenario that involves feedback. In Section VI, we study a
general feedback communication problem in which our notion
of directed information in continuous time emerges naturally in
the characterization of the feedback capacity. Section VII con-
cludes this paper with a few remarks.

II. DEFINITION AND REPRESENTATION OF DIRECTED
INFORMATION IN CONTINUOUS TIME

Let and be two probability measures on the same space
and be the Radon–Nikodym derivative of with re-
spect to . The relative entropy between and is defined as

if exists
otherwise.

(4)

For jointly distributed random objects and , the mutual in-
formation between them is defined as

(5)

where denotes the product distribution under which
and are independent but maintain their respective marginal

distributions. As an alternative, the mutual information is de-
fined [16, Ch. 2.5], as

(6)

where the supremum is over all finite quantizations of and .
That the two notions coincide has been established in, e.g., [17,
Ch. 3.5] and [19]. We write instead of when
we wish to emphasize the dependence on the joint distribution

.
For a jointly distributed random triple with compo-

nents in arbitrary measurable spaces, we define the conditional
mutual information between and given as

(7)

where the supremum is over all finite quantizations of and .
This quantity, due toWyner [20], is always well defined and sat-
isfies all the basic properties of conditional mutual information
for discrete and continuous random variables, in particular:
1) Nonnegativity: with equality iff

form a Markov chain (that is, and are con-
ditionally independent given ).

2) Chain rule:

(8)

3) Data processing inequality: If form
a Markov chain, then with
equality iff .

The definition in (7) coincides with Dobrushin’s more restrictive
definition [17, p. 29]

(9)

where is a regular version of the conditional proba-
bility law of given (cf. [21, Ch. 6]) if it exists.
Let be a pair of random -sequences. The directed

information from to is defined as

(10)

Note that, unlike mutual information, directed information is
asymmetric in its arguments, i.e.,

in general.
Let us now develop the notion of directed information

between two continuous-time stochastic processes on the
time interval . For a continuous-time process , let

denote the process in the time interval
. Let denote a vector with components

satisfying

(11)
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Let denote the sequence of length resulting from “chop-
ping up” the continuous-time signal into consecutive seg-
ments as

(12)

Note that each component of the sequence is a continuous-time
stochastic process. For a pair of jointly distributed stochastic
processes , define

(13)

(14)

where on the right side of (15) is the directed information be-
tween two sequences of length defined in (10); and in (16), we
note that the conditional mutual information terms, defined as in
(7), are between two continuous-time processes, conditioned on
a third. We extend this definition to , where
is a random object jointly distributed with , in the

obvious way, namely

(15)

(16)

We define to be the set of all finite partitions of the
time interval . The quantity is monotone
in in the following sense.

Proposition 1: Let and be partitions in . If is
a refinement of , i.e., , then

.
Proof: It suffices to prove the claim assuming as in (11)

and that is the -dimensional vector with components

(17)

For such and , we have from (16)

(18)

(19)

(20)

(21)

(22)

where the last inequality follows since directed information (be-
tween two sequences of length 2 in this case) is upper bounded
by the mutual information [1, Th. 2].

The following definition is now natural.

Definition 1: Let be a pair of stochastic processes.
The directed information from to is defined as

(23)

If is another random object jointly distributed with
, we define the conditional directed information

as

(24)

Note that the definitions and conventions preceding Defi-
nition 1 imply that the directed information
is a nonnegative extended real number (i.e., as an element of

). It is also worth noting, by recalling (6), that each of
the conditional mutual information terms in (16), and hence the
sum, is a supremum over “space” partitions of the stochastic
process in the corresponding time intervals. Thus, the directed
information in (23) is an infimum over time partitions of a
supremum over space partitions.
Also note that

(25)

where the infimum is over all partitions in with
subinterval lengths uniformly bounded by . Indeed,
for any and any partition , we have

, since a
refinement of the time interval does not increase the directed
information as seen in Proposition 1. By the arbitrariness of

, this implies

(26)

(27)

which in turn implies

(28)

by the arbitrariness of . Since the reverse inequality

(29)

is immediate from the definition of , we have
(25).
As is clear from its definition in (10), the discrete-time di-

rected information satisfies

(30)
A continuous-time analogue would be that, for small

(31)
Thus, if our proposed notion of directed information in contin-
uous time is to be a natural extension of that in discrete time,
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one might expect the approximate relation (31) to hold in some
sense. Toward a precise statement, denote

(32)

whenever the limit exists. Assuming exists, let

(33)

and note that (32) is equivalent to

(34)

Proposition 2: Fix . Suppose that is continuous
at and that the convergence in (34) is uniform in the interval

for some . Then

(35)

Note that Proposition 2 formalizes (31) by implying that the
left- and right-hand sides of (31), when normalized by , coin-
cide in the limit of small .

Proof of Proposition 2: Note first that the stipulated uni-
form convergence in (34) implies the existence of and a
monotone function such that

(36)

and

(37)

Fix now and consider

(38)

(39)

(40)

(41)

(42)

(43)

where the equality in (40) follows since the infimum over all
partitions does not change by restricting to partitions that have
an interval up to time and from time and the last equality
follows by the definition of the function in (33). Now

(44)

(45)

where the inequality in (44) is due to (36) and the monotonicity
of , which implies , as is the
length of a subinterval in . Bounding the terms in
(44) from the other direction, we similarly obtain

(46)

Combining (43), (45), and (46) yields

(47)

(48)

The continuity of at implies
, and thus, taking the limit

in (48) and applying (37) finally yields

(49)

which completes the proof of Proposition 2.

Beyond the intuitive appeal of Proposition 2 in formalizing
(31), it also provides a useful formula for computing directed
information. Indeed, the integral version of (35) is

(50)

As the following example illustrates, evaluating the right-hand
side of (50) [via the definition of in (32)] can be simpler than
tackling the left-hand side directly via Definition 1.

Example 1: Let be a standard Brownian motion and
be independent of . Let for all and

. Letting
denote the mutual information between a Gaussian random vari-
able of variance and its corrupted version by an independent
Gaussian noise of variance , we have for every

(51)

(52)
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With such an explicit expression for , can
be obtained directly from its definition:

(53)

We can now compute the directed information by applying
Proposition 2:

(54)
Note that in this example
, and thus, by (54), we have

(55)

This equality betweenmutual information and directed informa-
tion holds in more general situations, as elaborated in the next
section.
The directed information we have just defined is between

two processes on . We extend this definition to processes
of different durations by zero-padding at the beginning of the
shorter process. For instance

(56)

where denotes a process on formed by con-
catenating a process that is equal to the constant 0 for the time
interval and then the process .
Define now

(57)

and

(58)

Finally, define the directed information by

(59)

when the limit exists, or equivalently, when
. As we shall see below (in the last part of

Proposition 3), is guaranteed to exist whenever
.

III. PROPERTIES OF DIRECTED INFORMATION IN

CONTINUOUS TIME

The following proposition collects some properties of di-
rected information in continuous time.

Proposition 3: Let be a pair of jointly distributed
stochastic processes. Then:
1) Monotonicity: is monotone nondecreasing in

.
2) Invariance to time dilation: For , if and

, then .

More generally, if is monotone strictly increasing and
continuous, and , then

(60)

3) Coincidence of directed information and mutual informa-
tion: If the Markov relation holds for all

, then

(61)

4) Equivalence between discrete time and piecewise con-
stancy in continuous time: Let be a pair of
jointly distributed -tuples and suppose
satisfy (11). Let the pair be defined as the
piecewise-constant process satisfying

if (62)

for . Then

(63)

5) Conservation law: For any , we have

(64)

Further, if , then exists
and

(65)

Remarks:
1) The first, second, and fourth parts in the proposition
present properties that are known to hold for mutual in-
formation (when all the directed information expressions
in those items are replaced by the corresponding mutual
information), which follow immediately from the data
processing inequality and the invariance of mutual infor-
mation to one-to-one transformations of its arguments.
That these properties hold also for directed information is
not as obvious in view of the fact that directed information
is, in general, not invariant to one-to-one transformations
nor does it satisfy the data processing inequality in its
second argument.

2) The third part of the proposition is a natural analogue of
the fact that whenever

form a Markov chain for all
. It covers, in particular, any scenario where and
are the input and output of any channel of the form

, where the process (which can be
thought of as the internal channel noise) is independent of
the channel input process . To see this, note that in this
case, we have for all ,
implying since is determined by the
pair .

3) Particularizing even further, we obtain
whenever is the outcome of corrupting
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with additive noise, i.e., , where
and are independent.

4) The fifth part of the proposition can be considered the con-
tinuous-time analogue of the discrete-time conservation
law [22]

(66)

It is consistent with, and in fact generalizes, the third part.
Indeed, if the Markov relation holds for
all , then our definition of directed information
is readily seen to imply that for all

and therefore that exists and equals
zero. Thus, (65) in this case reduces to (61).
Proof of Proposition 3: The first part of the proposition

follows immediately from the definition of directed information
in continuous time (see Definition 1) and from the fact that, in
discrete time, for .
The second part follows from Definition 1 upon noting that,
under a dilation as stipulated, due to the invariance of mutual
information to one-to-one transformations of its arguments, for
any partition of

(67)

where is shorthand for . Thus

(68)

(69)

(70)

(71)

where (68) and (71) follow from Definition 1, (69) follows from
(67), and (70) is due to the strict monotonicity and continuity of
which implies that

(72)

Moving to the proof of the third part, assume that the Markov
relation holds for all and fix

as in (11). Then

(73)

(74)

(75)

(76)

where (75) follows since for each
, and (76) is due to the chain rule for mutual information. The

proof of the third part of the proposition now follows from the
arbitrariness of .

To prove the fourth part, consider first the case . In this
case, and for all . It is an imme-
diate consequence of the definition of directed information that

and, therefore,
that

(77)

for all . Consequently, , which
establishes the case . For the general case , note
first that it is immediate from the definition of
and from the construction of based on in
(62) that for consisting of the time epochs in
(62), we have . Thus,

. We now argue that

(78)

for any partition . By Proposition 1, it suffices to establish (78)
with equality assuming is a refinement of the particular just
discussed, that is, is of the form

(79)
Then

(80)

(81)

(82)

(83)

where (82) follows by applying a similar argument as in the case
.

Moving to the proof of the fifth part of the proposition, fix
as in (11) with . Applying the

discrete-time conservation law (66), we have

(84)

and consequently, for any

(85)

(86)

(87)

where
(88)

and
(89)
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The equality in (85) follows since due to its definition in (56),
does not decrease by refining the time in-

terval in the interval; the equality in (86) follows from
the refinement property in Proposition 1, which implies that for
arbitrary processes , , , and partitions and ,
there exists a third partition (which will be a refinement of
both) such that

(90)

and the equality in (87) follows since (84) holds for any
with . Hence

(91)

(92)

(93)

(94)

(95)

where the equality in (91) follows by taking the limit
from both sides of (87); the equality in (93) follows by writing
out explicitly for with and using (25)
to equate the second limit in (92) with ; and
the equality in (95) follows by applying (25) on the conditional
distribution of the pair given . We have thus
proven (64) or, equivalently, the identity

(96)

Toward the proof of (65), for and , let
denote the refinement of obtained by adding an additional

point at . Then

(97)

(98)

(99)

where the first inequality follows since is a refinement of
, the equality by writing out the sum that defines

and isolating its first term, and the second inequality by the
infimum over partitions inherent in the definition of

. The arbitrariness of in (99) implies

(100)

which, by the arbitrariness of , implies

(101)
On the other hand, for any , we clearly have

(102)

as the right-hand side, by its definition, is an infimum over all
partitions in , while the left-hand side corresponds to an
infimum over the subset consisting only of those partitions with

. By the arbitrariness of in (102), we obtain

(103)
which, when combined with (101), finally implies

(104)
Existence of the limit in (104), when combined with (64) and
the added assumption , implies existence of
the limit and
that

(105)

thus completing the proof.

IV. DIRECTED INFORMATION, FEEDBACK, AND
CAUSAL ESTIMATION

A. Gaussian Channel

In [18], Duncan discovered the following fundamental rela-
tionship between the MMSE in causal estimation of a target
signal corrupted by an AWGN in continuous time and the mu-
tual information between the clean and noise-corrupted signals.

Theorem 1 [18]: Let be a signal of finite average power
, independent of a standard Brownian motion

. Let satisfy . Then

(106)

A remarkable aspect of Duncan’s theorem is that the relation-
ship (106) holds regardless of the distribution of . Among its
ramifications is the invariance of the causal MMSE to the flow
of time, or more generally, to any reordering of time [23], [24].
It should also be mentioned that, although this exact relation-
ship holds in continuous-time, approximate versions that hold
in discrete time can be derived from it, as is done in [24, Th. 9].
A key stipulation in Duncan’s theorem is the independence

between the noise-free signal and the channel noise ,
which excludes scenarios in which the evolution of is af-
fected by the channel noise, as is often the case in signal pro-
cessing (e.g., target tracking) and communication (e.g., in the
presence of feedback). Indeed, the identity (106) does not hold
in the absence of such a stipulation.
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As an extreme example, consider the case where the channel
input is simply the channel output with some delay, i.e.,

(107)

for some (and for ). In this case, the
causal MMSE on the left side of (106) is clearly 0, while the mu-
tual information on its right side is infinite. On the other hand,
in this case, the directed information , as can
be seen by noting that for all satisfying

(since for such , is determined by
for all ).

The third remark following Proposition 3 implies that The-
orem 1 could be equivalently stated with on the
right side of (106) replaced by . Furthermore,
such a modified identity would be valid in the extreme example
in (107). This is no coincidence and is a consequence of the
result that follows, which generalizes Duncan’s theorem. To
state it formally, we assume a probability space with
an associated filtration satisfying the “usual conditions”
(right-continuous and contains all the -negligible events
in , cf., e.g., [25, Definition 2.25]). Recall also that when the
standard Brownian motion is adapted to , by definition, it
is implied that, for any , is independent of
(rather than merely of ; cf., e.g., [25, Definition 1.1]).

Theorem 2: Let be adapted to the filtra-
tion , where is a signal of finite average power

and is a standard Brownian motion. Let
be the output of the AWGN channel whose input is

and whose noise is driven by , i.e.,

(108)

Suppose that the regularity assumptions of Proposition 2 are
satisfied for all . Then

(109)

Note that unlike in Theorem 1, where the channel input
process is independent of the channel noise process, in The-
orem 2 no such stipulation exists, and thus, the setting in the
latter accommodates the presence of feedback. Furthermore,
since is not invariant to the direction of the flow
of time in general, Theorem 2 implies, as should be expected,
that neither is the causal MMSE for processes evolving in the
generality afforded by the theorem.
That Theorem 1 can be extended to accommodate the pres-

ence of feedback has been established for a communication the-

oretic framework by Kadota, Zakai, and Ziv [26]. Indeed, in
communication over the AWGN channel where
is the waveform associated with message , in the absence
of feedback, the Markov relation implies
that on the right-hand side of (106), when applying
Theorem 1 in this restricted communication framework, can be
equivalently written as . The main result of [26] is
that this relationship between the causal estimation error and

persists in the presence of feedback, i.e., that

(110)

with or without feedback, even though, in the presence of feed-
back, one no longer has and there-
fore (106) is no longer true. The combination of Theorem 2
with the main result of [26] [namely, with (114)] thus implies
that in communication over the AWGN channel, with or without
feedback, we have . This equality
holds well beyond the Gaussian channel, as is elaborated in
Section VI. Evidently, Theorem 2 can be considered an exten-
sion of the Kadota–Zakai–Ziv result as it holds in settings more
general than communication, where there is no message but
merely a signal observed through AWGN, adapted to a general
filtration.
Theorem 2 is a direct consequence of Proposition 2 and the

following lemma.

Lemma 1 [27]: Let and be two probability laws gov-
erning , under which (113) and the stipulations of
Theorem 2 are satisfied. Then

(111)

Lemma 1 was implicit in [27]. It follows from the second part
of [27, Th. 2], put together with the exposition in [27, Subsection
IV-D] (cf., in particular, (148)–(161) therein).

Proof of Theorem 2: Consider (112)–(115) at the bottom of
the page. Here, the equality in (114) follows by applying (111)
to the integrand in (113) as follows: replacing the time interval

by , substituting by the law of
conditioned on (note that is deterministic
at under this law), and substituting by the law of

conditioned on . The last step is obtained by
switching between the integral and and then using

(112)

(113)

(114)

(115)
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the definition of conditional expectation. The switch between
the integrals is possible due to Fubini’s theorem and the fact
that the signal has finite average power . It
follows that defined in (32) exists and is given by

(116)

which completes the proof by an appeal to Proposition 2.

B. Poisson Channel

Consider the function given by

(117)

That this function is natural for quantifying the loss when esti-
mating nonnegative quantities is implied in [28, Sec. 2], where
some of its basic properties are exposed. Among them is that
conditional expectation is the optimal estimator not only under
the squared error loss but also under , i.e., for any nonnegative
random variable jointly distributed with

(118)

where the minimum is over all (measurable) maps from the do-
main of into . With this loss function, the analogue
of Duncan’s theorem for the case of doubly stochastic Poisson
process (i.e., the intensity is a random process) can be stated as

Theorem 3 [28], [29]: Let be a doubly stochastic Poisson
process and be its intensity process (i.e., conditioned on

, is a nonhomogenous Poisson process with rate function
) satisfying . Then

(119)

We remark that for , one has

(120)

and thus (119) can equivalently be expressed as

(121)

as was done in [29] and other classical references. But it was not
until [28] that the left-hand side was established as the minimum
mean causal estimation error under an explicitly identified loss
function, thus completing the analogy with Duncan’s theorem.
The condition stipulated in the third item of Proposition 3

is readily seen to hold when is a doubly stochastic Poisson
process and is its intensity process. Thus, the above theorem

could equivalently be stated with directed information rather
than mutual information on the right-hand side of (119). Indeed,
with continuous-time directed information replacing mutual in-
formation, this relationship remains true in much wider gener-
ality, as the next theorem shows. In the statement of the theorem,
we use the notions of a point process and its predictable inten-
sity, as developed in detail in, e.g., [30, Ch. II].

Theorem 4: Let be a point process and be its -pre-
dictable intensity, where is the -field generated by
. Suppose that , and that the as-

sumptions of Proposition 2 are satisfied for all . Then

(122)

Paralleling the proof of Theorem 2, the proof of Theorem 4
is a direct application of Proposition 2 and the following.

Lemma 2 [28]: Let and be two probability laws gov-
erning under the setting and stipulations of Theorem
4. Then

(123)

Lemma 2 is implicit in [28], following directly from [28, Th.
4.4], and the discussion in [28, Subsection 7.5]. Equipped with
it, the proof of Theorem 4 follows similarly as that of Theorem
2, the role of (115) being played here by (123).

V. EXAMPLE: POISSON CHANNEL WITH FEEDBACK

The Poisson channel (see, e.g., [31]–[38]) is a channel where
the input at time , , determines the intensity of the doubly
stochastic Poisson process occurring at the output of the
channel. A Poisson channel with feedback refers to the case
where the input signal may depend on the previous obser-
vation of the output .
In this section, we consider a special case of Poisson channel

with feedback. Let and be the input and
output processes of the continuous-time Poisson channel with
feedback, where each time an event occurs at the channel output,
the channel input changes to a new value, drawn according to
the distribution of a positive random variable , independently
of the channel input and output up to that point in time. The
channel input remains fixed at that value until the occurrence
of the next event at the channel output, and so on. Throughout
this section, the shorthand “Poisson channel with feedback” will
refer to this scenario, with its implied channel input process.
The Poisson channel we use here is similar to the well-known

Poisson channel model (see, e.g., [31]–[38]) with one difference
that the intensity of the Poisson channel changes according to
the input only when there is an event at the output of the
channel. Note that the channel description given here uniquely
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determines the joint distribution of the channel input and output
processes.
In the first part of this section, we derive, using Theorem 4, a

formula for the directed information rate of this Poisson channel
with feedback. In the second part, we demonstrate the use of this
formula by computing and plotting the directed information rate
for a special case in which the intensity alphabet is of size 2.

A. Characterization of the Directed Information Rate

For jointly distributed processes , define the directed
information rate by

(124)

when the limit exists.

Proposition 4: Assume that is finite-valued with proba-
bility mass function (pmf) . The directed information rate
between the input and output processes of the Poisson channel
with feedback exists and is given by

(125)

where, in on the right-hand side,
, i.e., the conditional density of given is

.
The key component in the proof of the proposition is the use

of Theorem 4 for directed information in continuous time as a
causal mean estimation error. An intuition for the expression in
(125) can be obtained by considering rate per unit cost [39], i.e.,

, where is the cost of the input. In
our case, the “cost” of is proportional to the average duration
of time until the channel can be used again, i.e., .
Finally, we remark that the assumption of discreteness of in
Proposition 4 is made for simplicity of the proof, though the
result carries over to more generally distributed .
To prove Proposition 4, let us first collect the following

observations.

Lemma 3: Let and .
Define

(126)

Then, the following statement holds.
1) The marginal distribution of is

(127)

and consequently

(128)

2) Let denote the time of occurrence of the last
(most recent) event at the channel output prior to time 0
and define . The density of is

(129)

3) For distributed as in (129)

(130)

Proof: For the first part of the lemma, note that is an
ergodic continuous-time Markov chain, and thus,
is equal to the fraction of time that spends in state which
is proportional to , accounting for (127), which, in
turn, yields

(131)

accounting for (128).
To prove the second part of the lemma, observe that
(a) the interarrival times of the process are independent

and identically distributed (i.i.d.) copies of a random vari-
able ;

(b) has a density

(132)

(c) the probability density of the length of the interarrival in-
terval of the process around 0 is proportional to
; and

(d) given the length of the interarrival interval around 0 is ,
its left point is uniformly distributed on .

Letting denote the density of a random variable
uniformly distributed on ; it follows that the density of is

(133)

(134)

(135)

(136)

(137)
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where (133) follows by combining observations (c) and (d), and
(135) follows by substituting from (132). We have thus proven
the second part of the lemma.
To establish the third part, let denote the cumulative

distribution function of and consider

(138)

(139)

(140)

(141)

(142)

(143)

(144)

where (139) follows by substituting from the second part of the
lemma and (141) follows by substituting from (132) and noting
that

(145)

(146)

(147)

(148)

(149)

We have thus established the third and last part of the lemma.

Proof of Proposition 4: We have

(150)

(151)

(152)

(153)

where (151) follows from the relation between directed infor-
mation and causal estimation in (122); (152) follows from the

stationarity and martingale convergence. Specifically, by mar-
tingale convergence as
a.s. and thus , which
is equal to by sta-
tionarity, converges to

(154)

by the bounded convergence theorem (recall that is finite
valued); and (153) follows from the first part of Lemma 3. Now,
recalling the definition of the function in (126), we note that

(155)

Thus

(156)

(157)

(158)

(159)

where (156) follows from the Markov relation
, (157) follows from (155), and (159) from the

last part of Lemma 3. Thus

(160)

(161)

(162)

where (160) follows by combining (153) with (159), and (161)
follows by noting that

(163)

(164)

(165)

This completes the proof of Proposition 4.

B. Evaluation of the Directed Information Rate

Fig. 1 depicts the directed information rate for
the case where takes only two values and . We have
used numerical evaluation of in the right-hand side
of (125) to compute the directed information rate. The figure
shows the influence of on the directed in-
formation rate where and . As expected, the
maximum is achieved when there is higher probability that the
encoder output will be the higher rate , which would imply
more channel uses per unit time, but not much higher as other-
wise the input value will be close to deterministic.
Fig. 2 depicts the maximal value (optimized w.r.t.
) of the directed information rate when is fixed and is

equal to 1 and varies. This value is the capacity of the Poisson
channel with feedback, when the inputs are restricted to one of
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Fig. 1. Directed information rate between the input and output processes for
the continuous-time Poisson channel with feedback, as a function of , the
pmf of the input to the channel. The input to the channel is one of two possible
values and , and it is the intensity of the Poisson process at the
output of the channel until the next event.

Fig. 2. Capacity of the Poisson channel with feedback, in case where channel
input is constrained to the binary set , when is fixed and is equal to
1 and varies.

the two values or . When , the capacity is obviously
zero since any use of as input will cause the channel not
to change any further. It is also obviously zero at since
in this case , so there is only one possible input to the
channel. As increases, the capacity of the channel increases
without bound since, for , the channel effectively op-
erates as a noise-free binary channel, where one symbol “costs”
an average duration of 1 while the other a vanishing average du-
ration. Thus, the limiting capacity with increasing is equal to

.
One can consider a discrete-time memoryless channel, where

the input is discrete ( or ) and the output is distributed
according to . Consider now a random cost ,
where is the output of the channel. Using the result from
[39], we obtain that the capacity per unit cost of the discreet
memoryless channel is

(166)

where the equality follows since
. Finally, we note that the capacity of the Poisson

channel in the example above is the capacity per unit cost of
the discrete memoryless channel. Thus, by Proposition 4, we
can conclude that the continuous-time directed information

Fig. 3. Continuous-time communication with delay and channel of the form
, where is a block-ergodic process.

rate characterizes the capacity of the Poisson channel with
feedback. In Section VI, we will see that the continuous-time
directed information rate characterizes the capacity of a large
family of continuous-time channels.

VI. COMMUNICATION OVER CONTINUOUS-TIME CHANNELS
WITH FEEDBACK

We first review the definition of a block-ergodic process as
given by Berger [40]. Let denote a continuous-time
process drawn from a space according to the prob-
ability measure . For , let be a -shift transformation,
i.e., . A measurable set is -invariant if it does
not change under the -shift transformation, i.e., . A
continuous-time process is -ergodic if every mea-
surable -invariant set of processes has either probability 1 or 0,
i.e., for any -invariant set , in other words, .
The definition of -ergodicity means that if we take the process

and slice it into time blocks of length , then the new
discrete-time process is ergodic. A contin-
uous-time process is block-ergodic if it is -ergodic
for every . Berger [40] showed that weak mixing (there-
fore also strong mixing) implies block ergodicity.
Now let us describe the communication model of our interest

(see Fig. 3) and show that the continuous-time directed infor-
mation characterizes the capacity. Consider a continuous-time
channel that is specified by
1) the channel input and output alphabets and , respec-
tively, that are not necessarily finite, and

2) the channel output at time

(167)

corresponding to the channel input at time , where
is a stationary ergodic noise process on an alphabet

and is a given measurable function.
A code with delay for the channel consists
of

3) a message set ,
4) an encoder that assigns a symbol

(168)

to each message and past received
output signal for , where

is measurable, and
5) a decoder that assigns a message estimate

to each received output signal
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, where is
measurable.

We assume that the message is uniformly distributed on
and independent of the noise process .

By the definition of the channel in (167), the definition of
the encoding function in (168), and the independence of and

, it follows that for any and any

(169)

form aMarkov chain. This is analogous to the assumption in the
discrete case that ;
the analogy is exact when we convert a discrete-time channel
to a continuous-time channel with constant piecewise process
between the time samples. Furthermore, for any , ,
and ,

(170)

form aMarkov chain. This is analogous to the assumption in the
discrete case that whenever there is feedback of delay ,

.
Similar communication settings with feedback in continuous

time were studied by Kadota, Zakai, and Ziv [41] for contin-
uous-time memoryless channels, where it is shown that feed-
back does not increase the capacity, and by Ihara [42], [43] for
the Gaussian case. Our main result in this section is showing that
the operational capacity, defined below, can be characterized by
the information capacity, which is the maximum of directed in-
formation from the channel input process to the output process.
Next we define an achievable rate, the operational feedback ca-
pacity, and the information feedback capacity for our setting.

Definition 2: A rate is said to be achievable with feedback
delay if for each , there exists a family of codes
such that

(171)

Definition 3: Let

(172)
be the (operational) feedback capacity with delay , and let the
(operational) feedback capacity be

(173)

From the monotonicity of in , we have

(174)

This definition coincides with the feedback capacity definition
of continuous-time channels given in [41], where there also was
assumed a positive but arbitrary small delay in the feedback
capacity.

Definition 4: Let be the information feedback ca-
pacity defined as

(175)

where the supremum in (175) is over , which is the set of all
channel input processes of the form

(176)

some family ofmeasurable functions , and some process
which is independent of the channel noise process [ap-

pearing in (167)] and has a finite cardinality that may depend on
.
The limit in (175) is shown to exist in Lemma 4 using the

superadditivity property. We now characterize in terms
of for the class of channels defined in (167).

Theorem 5: For the channel defined in (167)

(177)

for all (178)

Since is a decreasing function in , (178) may
be written as , and the limit exists
because of the monotonicity. Since the function is monotonic,
then with a possible exception of
the points of of a set of measure zero [44, p. 5]. There-
fore, for any except of a set of
points of measure zero. Furthermore, (177) and (178) imply
that ; hence, we also have

.
Before proving the theorem, we show that the limits in (175)

exist.

Lemma 4: The term is superadditive,
namely,

(179)

and therefore, the limit in (175) exists and is equal to

(180)
To prove Lemma 4, we use the following result.

Lemma 5: Let be a pair of discrete-time
processes such that Markov relation

holds for . Then

(181)
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Proof: The result is a consequence of the identity [4, Eq.
(11)]

(182)

Consider

(183)

(184)

(185)

(186)

where (183) follows from the identity given in (182), and (185)
follows from the Markov chain assumption in the lemma.

Proof of Lemma 4: First note that we do not increase the
term by restricting the time parti-
tion to have an interval starting at point . Now fix three time
partitions: in , in , and in
such that is a concatenation and . For and ,
fix the input functions of the form of (176) and fix the arguments

and which corresponds to and , re-
spectively. The construction is such that the random processes

and are independent of each other. Let
be a concatenation of and . Applying Lemma 5
on the discrete-time process , where

for , we obtain that for
any fixed , , , , , and as described
above, we have

(187)

Note that the Markov condition
indeed holds because of the construction of

. Furthermore, because of the stationarity of the noise
(187) implies (179). Finally, using Fekete’s lemma [45, Ch.
2.6], and the superadditivity in (179) implies the existence of
the limit in (180).

The proof of Theorem 5 consists of two parts: the proof of the
converse, i.e., (177), and the proof of achievability, i.e., (178).

Proof of the Converse for Theorem 5: Fix an encoding
scheme with rate and probability of decoding error,

. In addition, fix a partition of
length such that for any and
let . Consider

(188)

(189)

(190)

(191)

(192)

(193)

(194)

(195)

(196)

(197)

(198)

where the equality in (188) follows since the message is dis-
tributed uniformly, the inequality in (190) follows from Fano’s
inequality, where , the equality in (193) fol-
lows from the fact that is a deterministic function of
and , the equality in (194) follows from the assump-

tion that , the equality in (196) follows from
(169), and the equality in (197) follows from (170). Hence, we
obtained that for every

(199)

Since the number of codewords is finite, we may consider the
input signal of the form with , where
the cardinality of is bounded, i.e., for any given
(the bound may depend on ), independently of the partition
. Furthermore

(200)

(201)

Finally, for any that is achievable, there exists a sequence of
codes such that ; hence, and we have
established (178).
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Note that as a byproduct of the sequence of equalities
(190)–(198), we conclude that for the communication system
depicted in Fig. 3

(202)

(203)

The only assumptions that we used to prove (190)–(198) are that
the encoders uses a strictly causal feedback of the form given in
(176) and that the channel satisfies the benign assumption given
in (169). This might be a valuable result by itself that provides
a good intuition why directed information characterizes the ca-
pacity of a continuous-time channel. Furthermore, the interpre-
tations of the measure , for instance, as given in [26],
should also hold for directed information and vice versa.
For the proof of achievability, we will use the following result

for discrete-time channels.

Lemma 6: Consider the discrete-time channel, where the
input at time has a finite alphabet, i.e., , and the
output at time has an arbitrary alphabet . We assume that
the relation between the input and the output is given by

(204)

where the noise process is stationary and ergodic with
an arbitrary alphabet . Then, any rate is achievable for this
channel if

(205)

where the joint distribution of is induced by the input
distribution , the stationary distribution of , and (204).

Proof: Fix the pmf that attains the maximum in (205).
Since can be approximated arbitrarily close by a finite
partition of [16], assume without loss of generality that is
finite. The proof uses the random codebook generation and joint
typicality decoding in [46, Ch. 3]. Randomly and independently
generate codewords , , each ac-
cording to . The decoder finds the unique such
that is jointly typical. (For the definition and prop-
erties of joint typicality, refer to [46, Ch. 2] and [47].) Now, as-
suming that is sent, the decoder makes an error only if

is not typical or is typical for some
. By the packing lemma (see [46, Ch. 3]), the probability

of the second event tends to zero as if .
To bound the probability of the first event, recall from [48, Th.
10.3.1], that if is i.i.d. and is stationary ergodic, inde-
pendent of , then the pair is jointly stationary er-
godic. Consequently, from the definition of the channel in (204),

is jointly stationary ergodic. Thus, by Birkhoff’s er-
godic theorem, the probability that is not typical
tends to zero as . Therefore, any rate is
achievable.

The proof of achievability is based on the lemma above and
the definition of directed information for continuous time. It is

essential to divide into small time interval as well as increasing
the feedback delay by a small but positive value .

Proof of Achievability for Theorem 5: Let ,
where . In addition, let be
such that for all . Let be of
the form

(206)

where the cardinality of is bounded. Then, we show that any
rate

(207)

is achievable.
Assume that the communication is over the time interval

, where is fixed and may be chosen to be as large as
needed. Partition the time interval into subintervals
of length and in each subinterval , which we
index by , fix the relation

.
(208)

Note that this coding scheme is possible with feedback delay
since . This follows from the assumption that

and . Now, let us define a discrete-time
channel where the input at time is (which
has an alphabet ), the output at time is the
vector and the

noise at time is . Note that since
is a stationary and block-ergodic, the noise process
is stationary and ergodic. Furthermore, the relation

holds and the alphabet of is finite. Hence,
by Lemma 6, any rate

(209)

is achievable. Now using the definition of the discrete-time
channel and the properties of directed information, we obtain

(210)

(211)

(212)

where the equality in (210) follows from the definition of the
discrete-time channel and the equality in (212) follows from the
same sequence of equalities as in (190)–(198). Since (212) holds
for any such that , we conclude that

(213)

Finally, by the definition of directed information and by the fact
that (213) holds for any , we have established (178).

VII. CONCLUDING REMARKS

We have introduced and developed a notion of directed
information between continuous-time stochastic processes. It
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emerges naturally in the characterization of the fundamental
limit on reliable communication for a wide class of contin-
uous-time channels with feedback, quite analogously to the
discrete-time setting. It also arises in estimation-theoretic
relations as the replacement for mutual information when
extending the scope to the presence of feedback. In particular,
with continuous-time directed information replacing mutual
information, Duncan’s theorem generalizes to estimation prob-
lems in which the evolution of the target signal is affected by
the past channel noise. An analogous relationship based on the
directed information holds for the Poisson channel. We have
illustrated the use of the latter in an explicit computation of
the directed information rate between the input and output of a
Poisson channel where the input intensity changes only when
there is an event at the channel output. One important direction
for future exploration is to use the “multiletter” characteriza-
tion of capacity developed here to compute or approximate the
feedback capacity of interesting continuous-time channels.
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