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Abstract—Four estimators of the directed information rate be-
tween a pair of jointly stationary ergodic finite-alphabet processes
are proposed, based on universal probability assignments. The first
one is a Shannon–McMillan–Breiman-type estimator, similar to
those used by Verdú in 2005 and Cai et al. in 2006 for estimation of
other information measures. We show the almost sure and con-
vergence properties of the estimator for any underlying universal
probability assignment. The other three estimators map universal
probability assignments to different functionals, each exhibiting
relative merits such as smoothness, nonnegativity, and bounded-
ness.We establish the consistency of these estimators in almost sure
and senses, and derive near-optimal rates of convergence in the
minimax sense under mild conditions. These estimators carry over
directly to estimating other information measures of stationary er-
godic finite-alphabet processes, such as entropy rate andmutual in-
formation rate, with near-optimal performance and provide alter-
natives to classical approaches in the existing literature. Guided by
these theoretical results, the proposed estimators are implemented
using the context-tree weighting algorithm as the universal proba-
bility assignment. Experiments on synthetic and real data are pre-
sented, demonstrating the potential of the proposed schemes in
practice and the utility of directed information estimation in de-
tecting and measuring causal influence and delay.

Index Terms—Causal influence, context-tree weighting (CTW),
directed information, rate of convergence, universal probability
assignment.

I. INTRODUCTION

F IRST introduced by Marko [1] and Massey [2], directed
information arises as a natural counterpart of mutual in-

formation for channel capacity when causal feedback from the
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receiver to the sender is present. In [3] and [4], Kramer ex-
tended the use of directed information to discrete memoryless
networks with feedback, including the two-way channel and the
multiple access channel. Tatikonda and Mitter [5] used directed
information spectrum to establish a general feedback channel
coding theorem for channels with memory. For a class of sta-
tionary channels with feedback, where the output is a function
of the current and past inputs and channel noise, Kim [6]
proved that the feedback capacity is equal to the limit of the
maximum normalized directed information from the input to the
output. Permuter et al. [7] considered the capacity of discrete-
time finite-state channels with feedback where the feedback is
a time-invariant function of the output. Under mild conditions,
they showed that the capacity is again the limit of the max-
imum normalized directed information. Recently, Permuter et
al. [8] showed that directed information plays an important role
in portfolio theory, data compression, and hypothesis testing
under causality constraints.
Beyond information theory, directed information is a valu-

able tool in biology, for it provides an alternative to the notion of
Granger causality[9], which has been perhaps the most widely
used means of identifying causal influence between two random
processes. For example, Mathai et al. [10] used directed infor-
mation to identify pairwise influence in gene networks. Simi-
larly, Rao et al. [11] used directed information to test the direc-
tion of influence in gene networks.
Since directed information has significance in various fields,

it is of both theoretical and practical importance to develop
efficient methods of estimating it. The problem of estimating
information measures, such as entropy, relative entropy, and
mutual information, has been extensively studied in the liter-
ature. Verdú [12] gave an overview of universal estimation of
information measures. Wyner and Ziv [13] applied the idea of
Lempel–Ziv parsing to estimate entropy rate, which converges
in probability for all stationary ergodic processes. Ziv and
Merhav [14] used Lempel–Ziv parsing to estimate relative
entropy (Kullback–Leibler divergence) and established consis-
tency under the assumption that the observations are generated
by independent Markov sources. Cai et al. [15] proposed two
universal relative entropy estimators for finite-alphabet sources,
one based on the Burrows–Wheeler transform (BWT) [16] and
the other based on the context-tree weighting (CTW) algorithm
[17]. The BWT-based estimator was applied in universal en-
tropy estimation by Cai et al.[18], while the CTW-based one
was applied in universal erasure entropy estimation by Yu and
Verdú [19].
For the problem of estimating directed information, Quinn et

al. [20] developed an estimator to infer causality in an ensemble
of neural spike train recordings. Assuming a parametric gener-
alized linear model and stationary ergodic Markov processes,
they established strong consistency results. Compared to [20],
Zhao et al. [21] focused on universal methods for arbitrary sta-
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tionary ergodic processes with finite alphabet and showed their
consistencies.
As an improvement and extension of [21], the main con-

tribution of this paper is a general framework for estimating
information measures of stationary ergodic finite-alphabet pro-
cesses, using “single-letter” information-theoretic functionals.
Although our methods can be applied in estimating a number
of information measures, for concreteness and relevance to
emerging applications we focus on estimating the directed
information rate between a pair of jointly stationary ergodic
finite-alphabet processes.
The first proposed estimator is adapted from the universal rel-

ative entropy estimator in [15] using the CTW algorithm, and
we provide a refined analysis yielding strong consistency re-
sults. We further propose three additional estimators in a unified
framework, present both weak and strong consistency results,
and establish near-optimal rates of convergence under mild con-
ditions. We then employ our estimators on both simulated and
real data, showing their effectiveness in measuring channel de-
lays and causal influences between different processes. In par-
ticular, we use these estimators on the daily stock market data
from 1990 to 2011 to observe a significant level of causal influ-
ence from the Dow Jones Industrial Average to the Hang Seng
Index, but relatively low causal influence in the reverse direc-
tion.
The rest of the paper is organized as follows. Section II re-

views preliminaries on directed information, universal proba-
bility assignments, and the CTW algorithm. Section III presents
our proposed estimators and their basic properties. Section IV
is dedicated to performance guarantees of the proposed estima-
tors, including their consistencies and miminax-optimal rates of
convergence. Section V shows experimental results in which
we apply the proposed estimators to simulated and real data.
Section VI concludes the paper. The proofs of the main results
are given in the Appendixes.

II. PRELIMINARIES

We begin with mathematical definitions of directed informa-
tion and causally conditional entropy. We also define universal
and pointwise universal probability assignments. We then in-
troduce the CTW algorithm used in our implementations of the
universal estimators that are introduced in the next section.
Throughout the paper, we use uppercase letters to

denote random variables and lowercase letters to de-
note values they assume. By convention, means that
is a degenerate random variable (unspecified constant) regard-
less of its support. We denote the -tuple as

and as . Calligraphic letters
denote alphabets of , and denotes the cardinality of
. Boldface letters denote stochastic processes, and

throughout this paper, they are finite-alphabet.
Given a probability law , denotes

the probability mass function (pmf) of and
denotes the conditional pmf of given , i.e.,
with slight abuse of notation, here is a dummy variable and

is an element of , the probability simplex
on , representing the said conditional pmf. Accordingly,

denotes the conditional pmf evaluated
for the random sequence , which is an -valued
random vector, while is the random variable
denoting the th component of . Throughout this
paper, is base 2 and is base .

A. Directed Information
Given a pair of random sequences and , the directed

information from to is defined as

(1)

(2)

where is the causally conditional entropy [3], de-
fined as

(3)

Compared to mutual information

(4)

directed information in (2) has the causally conditional entropy
in place of the conditional entropy. Thus, unlike mutual infor-
mation, directed information is not symmetric, i.e.,

, in general.
The following notation of causally conditional pmfs will be

used throughout

(5)

(6)

It can be easily verified that

(7)

and that we have the conservation laws

(8)

(9)

where

(10)

(11)

denotes the reverse directed information. Other interesting
properties of directed information can be found in [3], [22], and
[23].
The directed information rate [3] between a pair of jointly

stationary finite-alphabet processes and is defined as

(12)
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The existence of the limit can be checked [3] as

(13)

(14)

(15)

(16)

where the last equality is obtained via the property of Cesáro
mean and standard martingale arguments; see [24, Chs. 4 and
16]. Note that the entropy rate of the process is equal to

. In a similar vein, the causally conditional entropy
rate is defined as

(17)

(18)

Thus,
(19)

This identity shows that if we estimate and
separately and if both estimates converge, we have a convergent
estimate of the directed information rate.

B. Universal Probability Assignment
A probability assignment consists of a set of conditional

pmfs for every and
Note that induces a probability measure on a random process
and the pmf on
for each .
Definition 1 (Universal Probability Assignment): Let be

a class of probability measures. A probability assignment is
said to be universal for the class if the normalized relative
entropy satisfies

(20)

for every probability measure in . A probability assignment
is said to be universal (without a qualifier) if it is universal

for the class of stationary probability measures.
Definition 2 (Pointwise Universal Probability Assignment):

A probability assignment is said to be pointwise universal
for if

(21)

for every . A probability assignment is said to be
pointwise universal if it is pointwise universal for the class of
stationary ergodic probability measures.
It is well known that there exist universal and pointwise

universal probability assignments. Ornstein[25] constructed
a pointwise universal probability assignment, which was
generalized to Polish spaces by Algoet[26]. Morvai et al.
[27] used universal source codes to induce a probability as-
signment and established its universality. Since the quantity

is generally unbounded, a pointwise
universal probability assignment is not necessarily universal.
However, if we have a pointwise universal probability as-
signment, it is easy to construct a probability assignment that
is both pointwise universal and universal. Let be a
pointwise universal probability assignment and be the
i.i.d. uniform distribution, then it is easy to verify that

(22)

is both universal and pointwise universal provided that de-
cays subexponentially, for example, . For more dis-
cussions on universal probability assignments, see, for example,
[28] and the references therein.

C. Context-Tree Weighting
The sequential probability assignment we use in the imple-

mentations of our directed information estimators is the cele-
brated CTW algorithm by Willems et al. [17]. One of the main
advantages of the CTW algorithm is that its computational com-
plexity is linear in the block length , and the algorithm pro-
vides the probability assignments directly; see [17] and [29].
Note that while the original CTW algorithm was tuned for bi-
nary processes, it has been extended for larger alphabets in [30],
an extension that we use in this paper. In our experiments with
simulated data, we assume that the depth of the context tree is
larger than the memory of the source. This assumption can be
alleviated by the algorithm introduced by Willems [31], which
we will not implement in this paper.
An example of a context tree of input sequence with

a binary alphabet is shown in Fig. 1. In general, each node in
the tree corresponds to a context, which is a string of symbols
preceding the symbol that follows. For concreteness, assume
the alphabet is . With a slight abuse of no-
tation, we use to represent both a node in the context tree
and a specific context. At every node , we use a length-
array to count the numbers of different
values emitted with context in sequence . In Fig. 1, the
counts are marked near each node , and they are
simply numbers of zeros and ones emitted from node .
Take any sequence whose alphabet is .

If contains zeros, ones, twos, and so on, the
Krichevsky–Trofimov probability estimate of [32], i.e.,

can be computed sequen-
tially. We let , and for

, we have

(23)

We denote the Krichevsky–Trofimov probability estimate of
the -array counts at node of sequence as . The
weighted probability at node of sequence in the CTW
algorithm is calculated as

(24)
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Fig. 1. Illustration of the CTW algorithm when and
. The count starts at . For

example, there are 3 zeros and 1 one with context 1, represented by count
at the node of context 1 in the upper right.

where the node is the th child of node and is the depth
of node . When we build the context tree from sequence ,
we add symbols one by one. In adding symbol
, we have to update the counts , the
estimated probability , and the weighted probability for
each context of . The order of updates is from the context
of the longest depth (a leaf node) to the root.
Let denote the root node of the context tree, then

is the universal probability assignment in the CTW algorithm,
which will be denoted as in Section III. We compute the
sequential probability assignments as

(25)

In [29, Ch. 5], Willems and Tjalkens introduced a factor
at every node to simplify the calculation of the

sequential probability assignment, which could also help un-
derstand how the weighted probabilities are updated when the
input sequence grows to . For each node , we define
factor as

(26)

Assuming is a context of , where . Obvi-
ously, any other node cannot be a context of . We

express in (33) given
at the bottom of this page, which shows that the sequential prob-
ability assignment is a weighted summation of the
Krichevsky–Trofimov sequential probability assignments, i.e.,

at all nodes of the context tree.
By (23), for any node ,

(27)

Thus, , or more precisely,

(28)

The probability assignment in the CTW algorithm is both
universal and pointwise universal for the class of stationary ir-
reducible aperiodic finite-alphabet Markov processes. For the
proof of universality, see [17]. The pointwise universality is
proved in Lemma 2 in Appendix A.

III. FOUR ESTIMATORS
In this section, we introduce four estimators of the directed

information rate of a pair of jointly sta-
tionary ergodic processes with finite alphabets. Let
be the set of all probability distributions on . Define to
be the function that maps a joint pmf of a random pair

to the corresponding conditional entropy , i.e.,

(29)

where is the conditional pmf induced by . Take
as a universal probability assignment, either on processes

with -valued components, or with -valued compo-
nents, as will be clear from the context. See (30) and (33), at the
bottom of the page.
Recall the definition of the directed information from to
:

(34)

(30)

(31)

(32)

(33)
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we define the four estimators as follows:

(35)
(36)

(37)

(38)

where

(39)

(40)

(41)
(42)

Recall that denotes the conditional pmf
evaluated for the random sequence ,

and denotes the causally conditional pmf
evaluated for . Thus, an entropy esti-

mate such as is a random variable (since it is a
function of ), as opposed to the entropy terms such
as , which are deterministic and depend on the
distribution of .
Note that in (37) and (38) the universal probability as-

signments conditioned on different data are calculated
separately. For example, is not computed
from , but from running the uni-
versal probability assignment algorithm again on dataset

. In the case of , which is inherent
in the computation of , the estimate is com-
puted from pmf via

.
We can express in another form which might be enlight-

ening

(43)

where is

(44)
It is also worthwhile to note that involves an average of
in the relative entropy term for each , which makes it

analytically different from .
Here is the big picture of the general ideas behind these

estimators. The first estimator is calculated through the
difference of two terms, each of which takes the form of

(39). Since the Shannon–McMillan–Breiman theorem guaran-
tees the asymptotic equipartition property (AEP) of entropy
rate[24] as well as directed information rate[33], it is natural
to believe that would converge to the directed information
rate. This is indeed the case, which is proved in Appendix B.
The Shannon–McMillan–Breiman-type estimators have been
widely applied in the literature of information-theoretic mea-
sure estimation, for example, relative entropy estimation by
Cai et al. [15], and erasure entropy estimation by Yu and Verdú
[19].
Equation (39) can be rewritten in the Cesáro mean form, i.e.,

(45)

and estimators through are derived by changing every term
in the Cesáro mean to other functionals of probability assign-
ments . For concreteness, estimator uses conditional en-
tropy as the functional, and estimators and use relative
entropy.
One disadvantage of is that it has a nonzero probability of

being very large, since it only averages over logarithms of esti-
mated conditional probabilities, while the directed information
rate that it estimates is always bounded by .
The estimator is the universal directed information esti-

mator introduced in [21]. Thanks to the use of information-the-
oretic functionals to “smooth” the estimate, the absolute value
of is upper bounded by on any realiza-
tion, a clear advantage over .
The common disadvantage of and is that they are com-

puted by subtraction of two nonnegative quantities. When there
is insufficient data, or the stationarity assumption is violated,
and may generate negative outputs, which is clearly undesir-
able. In order to overcome this, and are introduced, which
take the form of a (random) relative entropy and are always non-
negative. Section V-D gives an example where and give
negative estimates, which might be caused by the fact that the
underlying process (stock market) is not stationary, at least in a
short term.

IV. PERFORMANCE GUARANTEES

In this section, we establish the consistency of the proposed
estimators, mainly in the almost sure and senses. Under some
mild conditions, we derive near-optimal rates of convergence in
the minimax sense. The proofs of the stated results are given in
the Appendixes.
Theorem 1: Let be a universal probability assignment and

be a pair of jointly stationary ergodic finite-alphabet
processes. Then,

(46)

Furthermore, if is also a pointwise universal probability as-
signment, then the limit in (46) holds almost surely as well.
The proof of Theorem 1 is in Appendix B-A. If is a

stationary irreducible aperiodic finite-alphabet Markov process,
we can say more about the performance of using the proba-
bility assignment in the CTW algorithm.
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Proposition 1: Let be the CTW probability assignment
and let be a jointly stationary irreducible aperiodic fi-
nite-alphabet Markov process whose order is bounded by the
prescribed tree depth in the CTW algorithm, and let be a
stationary irreducible aperiodic finite-alphabet Markov process
with the same order as . Then, there exists a constant
such that

(47)

and , -a.s.

(48)
The proof of Proposition 1 is given in Appendix B-B.
We can establish similar consistency results for the second

estimator in (36).
Theorem 2: Let be a universal probability assignment,

and finite-alphabet process be jointly stationary ergodic.
Then,

(49)

The proof of Theorem 2 is given in Appendix B-C. As was
the case for , if the process is a jointly stationary ir-
reducible aperiodic finite-alphabet Markov process, we can say
more about the performance of using the CTW algorithm as
follows:
Proposition 2: Let be the probability assignment in the

CTW algorithm. If is a jointly stationary irreducible
aperiodic finite-alphabet Markov process whose order does not
exceed the prescribed tree depth in the CTW algorithm, and
is also a stationary irreducible aperiodic finite-alphabet Markov
process with the same order as , then

(50)

and there exists a constant such that

(51)
The proof of Proposition 2 is given in Appendix B-D.
We also investigate the minimax lower bound of estimating

directed information rate, and show the rates of convergence for
the first two estimators are optimal within a logarithmic factor.
Note that entropy rate is a special case of directed information
rate if we take process , so the minimax lower bound
also applies in the universal entropy estimation situation. Actu-
ally in the proof of proposition 3, we indeed reduce the general
problem to entropy estimation problem to show the minimax
lower bound.
Proposition 3: Let be any class of processes that

include the class of i.i.d. processes. Then, there exists a positive
constant such that

(52)

where the infimum is over all estimators of the directed infor-
mation rate based on .
The proof of Proposition 3 is given in Appendix B-E. Evi-

dently, convergence rates better than is not attainable
even with respect to the class of i.i.d. sources and thus, a for-
tiori, in our setting of a much larger uncertainty set.
For the third and fourth estimators, we establish the following

consistency results using the CTW algorithm.
Theorem 3: Let be the probability assignment in the CTW

algorithm. If is a jointly stationary irreducible aperiodic
finite-alphabetMarkov process whose order does not exceed the
prescribed tree depth in the CTW algorithm, and is also a
stationary irreducible aperiodic finite-alphabet Markov process
with the same order as , then

(53)

Theorem 4: Let be the probability assignment in the CTW
algorithm. If is a jointly stationary irreducible aperiodic
finite-alphabetMarkov process whose order does not exceed the
prescribed tree depth in the CTW algorithm, and is also a
stationary irreducible aperiodic finite-alphabet Markov process
with the same order as , then

(54)

The proofs of Theorems 3 and 4 are given in Appendixes B-F
and B-G.
Remark 1: The properties of the CTWprobability assignment

we use in the proofs of Theorems 3 and 4 are not only univer-
sality and pointwise universality, but also lower boundedness
(recall Section II-C).
Remark 2: Note that the assumption that is a jointly

stationary irreducible aperiodic finite-alphabet Markov process
does not imply also has these properties. Suppose that is
a Markov process of order , is a hidden Markov process
whose internal process is , then it is obvious that joint process

is Markov with order , but is not a Markov process.
In applications, it is sensible to assume that a process can
be approximated by Markov processes better and better as the
Markov order increases, i.e., there exists constants

, such that

(55)

It deserves mentioning that the exponentially fast convergence
in (55) can be satisfied under mild conditions. For example, as
shown in Birch [34], let be a Markov process with strictly
positive transition probabilities, and , then (55)
holds. Formore on this “exponential forgetting” property, please
refer to Gland and Mevel [35] and Hochwald and Jelenkovic
[36].
The properties established for the proposed estimators are

summarized in Table I.

V. ALGORITHMS AND NUMERICAL EXAMPLES

In this section, we use the CTW algorithm as the universal
probability assignment to describe the corresponding directed
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TABLE I
PROPERTIES OF THE PROPOSED ESTIMATORS

information estimation algorithms and perform experiments on
simulated as well as real data. The CTW algorithm [17] has a
linear computational complexity in the block length , and it
provides the probability assignment directly. A brief intro-
duction on how the CTW works can be found in Section II-C.
For simplicity and concreteness, we explicitly describe the

algorithm for computing . The algorithms for the other esti-
mators are identical, except for the update rule, which is given,
respectively, by (35) to (38).

Algorithm 1Universal Estimator Based on the CTW
Algorithm

Fix block length and context tree depth .

for do

Make a super symbol with alphabet size

end for

for do

Gather the context for the symbol .

Update the context tree for every possible value of .

The estimated pmf is obtained along the way.

Gather the context for the symbol .

Update the context tree for every possible value of .

The estimated pmf is obtained along the way.

Update as
where is defined in (29).

end for

We now present the performance of the estimators on syn-
thetic and real data. The synthetic data are generated using
Markov processes that are passed through simple channels
such as discrete memory channels (DMC), or channels with
intersymbol interference. We compare the performances of the
estimators to each other, as well as the ground truth, which we
are able to analytically compute. We also extend the proposed
methods to estimation of directed information with delay, and
to estimation of mutual information. Further, we show how one
can use the directed information estimator to detect delay of a

Fig. 2. Section V-A setup: is a binary first order Markov process with tran-
sition probability , and is the output of a binary symmetric channel with
crossover probability corresponding to the input .

Fig. 3. Estimation of : The straight line is the analytical value.

channel, and to detect the “causal influence” of one sequence
on another. Finally, we apply our estimators on real stock
market data to detect the causal influence that exists between
the Chinese and the US stock markets.

A. Stationary Hidden Markov Processes
Let be a binary symmetric first-order Markov process with

transition probability , i.e., . Let
be the output of a binary symmetric channel with crossover

probability , corresponding to the input process , as depicted
in Fig. 2.
We use the four algorithms presented to estimate the directed

information rate for the case where and
. The depth of the context tree is set to be 3. The simulation

was performed three times. The results are shown in Fig. 3. As
the data length grows, the estimated value approaches the true
value for all four algorithms.
The true value can be simply computed analytically as

(56)

(57)

(58)

(59)
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Fig. 4. Using the shifted directed information estimation to find the delay .

where (58) follows from the Markov property of the input
process and the memorylessness of the channel and in (59), and
denotes .
One can note from Fig. 3 that the sample paths of and

indeed appear to be smoother, as one might expect from that
fact that they use the entropy and relative entropy functionals
on the pmf estimate . The first estimator
is apparently the least smooth, since it uses the probability as-
signments evaluated on the sample path, and is highly sensitive
to its idiosyncrasies.

B. Channel Delay Estimation via Shifted Directed Information

Assume a setting similar to that in Section V-A, a stationary
process that passes through a channel, but now there exists a
delay in the entrance of the input to the channel, as depicted in
Fig. 4.
Our goal is to find the delay .We use the shifted directed in-

formation to estimate , where
is defined as

(60)
To illustrate the idea, suppose is a binary stationary

process, and we define the binary process as follows:

(61)

where and in addition (61) is modulo 2.
The goal is to find the delay from the observations of the
processes and . Note that the mutual information rate

is not influenced by . However, the
shifted directed information rate
is highly influenced by . Assuming that there is no feedback,
for we have the Markov chain
due to (61), and therefore . However, for

, For instance, in the channel
example (61), if with probability 1 then for ,

. Therefore, we can use the
shifted directed information to estimate .
Fig. 5 depicts where for the

setting in Fig. 4, where the input is a binary stationary Markov
process of order one and the channel is given by (61). The delay
of the channel is equal to 2. We use to estimate the shifted
directed information (all algorithms perform similarly for this
case) where the tree depth of the CTW algorithm is set to be 6.
The result in Fig. 5 shows that for ,
is very close to zero and for , is
significantly larger than zero.

Fig. 5. Value of where for the setting depicted
in Fig. 4 with . When , is very close to zero
and for , is significantly larger than zero.

C. Causal Influence Measurement
There is an extensive literature on detecting and measuring

causal influence. See, for example, [37] for a recent survey of
some of the common tools and approaches in biomedical infor-
matics. One particularly celebrated tool, in both the life sciences
and economics, for assessing whether and to what extent one
time series influences another is the Granger causality test [9].
The idea is to model first as a univariate autoregressive time
series with error correction term

(62)

and then model it again using as causal side information

(63)

with as the new error correction term. The Granger causality
is defined as

(64)

and the bigger it is, the more inclined the practitioner is to assert
that is causally influencing . It is a simple exercise to verify
that when the process pair is jointly Gauss–Markov with evo-
lution that obeys both (62) and (63) with , the Granger
causality coincides with the directed information rate (up to a
multiplicative constant) [23].
In this section, we implement our universal estimators of di-

rected information to infer causal influences in more general
scenarios, where the Gauss–Markov modeling assumption in-
herent in Granger causality fails to adequately capture the na-
ture of the data.
One philosophical basis for causal analysis is that when

we measure causal influence between two processes, and
, there is an underlying assumption that happens earlier

than for every . Under this assumption, we say two
jointly distributed processes and induce a forward channel

and a backward channel , as
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Fig. 6. Modeling any two processes using forward channel
and backward channel .

depicted in Fig. 6, where is the input process. In this section,
we present the use of directed information, reverse directed
information, and mutual information to measure the causal
influence between two processes.
Definition 3 (Existence of a Channel): We say that the for-

ward channel does not exist if
for and similarly the backward channel does not exist if

for .
We interpret the existence of the forward link as that the se-

quence is “influenced” or “caused” by the process . Simi-
larly, the existence of the backward link is interpreted as that
is “influenced” or “caused” by the sequence . We would like
to answer the following two questions:
1) Does the forward channel exist?
2) Does the backward channel exist?
Directed information can naturally answer these questions.

It is straightforward to note from the definition of directed in-
formation that the forward link exists if and only if

and the backward link exists if and only if
More generally, the directed information

quantifies how much influences , while the directed
information in the reverse direction quantifies
how much influences . The mutual information, which is
the sum of those two directed informations, [see (8)], quantifies
the mutual influence of the two sequences. Therefore, using the
directed informationmeasures, it is natural to adopt terminology
as follows:
1) Case A: , we say that

causes .
2) Case B: , we say that

causes .
3) Case C: , we say
that the processes are mutually causing each other.

4) Case D: , we say that the processes are
independent of each other.

To illustrate this idea, consider processes and gener-
ated by the system that is depicted in Fig. 7, where the forward
channel is a BSC( ) and the backward channel is a BSC( )
where and Intuitively, if is much less
than , then the process is influencing , and if is much
larger than , the process is influencing . If and have
similar values then the processes mutually influence each other,
and finally if they are both equal to , then the processes are
independent of each other. Note that the information-theoretic
measures can be analytically calculated as in (65)–(67), and in-
deed if , then and vice

Fig. 7. Simulation of a sequence of random variables ac-
cording to the relation shown in the scheme. Namely, is the output of a binary
symmetric channel with parameter and input and is the output of a bi-
nary symmetric channel with parameter and input . The initial random
variable is assumed to be distributed Bernoulli .

versa. Hence, the intuition regarding which process influences
the other is consistent with cases A through D presented above

(65)

where the terms and denote and , respectively.
Similarly, we have

(66)

and

(67)

Since the normalized reverse directed information is nothing
but the normalized directed information between another pair
of processes, where one is shifted, the estimators to can
be easily adapted to this situation, and the convergence theo-
rems (Theorem 1 through Theorem 4) apply also (with the ap-
propriate translations) to the reverse directed information. Fi-
nally, the normalized mutual information can be estimated once
we have the normalized directed information and the normal-
ized reverse directed information simply by summing them.
Fig. 8 depicts the estimated and analytical information-the-

oretic measures , , and
for the case and . One can note

that with just a few hundreds of samples, directed information
and reverse directed information start strongly indicating that

, in other words, influences more than the other
way around.

D. Causal Influence in Stock Markets
Here, we use the historic data of the Hang Seng Index (HSI)

and the Dow Jones Index (DJIA) between 1990 and 2011 to
compute the directed information rate between these two in-
dexes. The data of those two indexes are presented in Fig. 9
on a daily time scale.
There is no time overlap between the stock market in Hong

Kong and in New York, that is, when the stock market in Hong
Kong is open, the stock market in New York is closed, and vice
versa. Therefore, the causal influence between the markets is
well defined. Since the value of the stock market is continuous,
we discretize it into three values: , 0, and 1. Value means
that the stock market went down in one day by more than 0.8%,
value 1 means that the stock market went up in one day by more
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Fig. 8. Information-theoretic measures ,
, and evaluated using the four algorithms. The data was

generated according to the setting in Fig. 7 where and . The
straight black line is the analytical value given by (65)–(67) and the blue lines
are the estimated values.

Fig. 9. Hang Seng Index (HSI) and the Dow Jones Industrial Average (DJIA)
between 1990 and 2011. The goal is to determine which index is causally influ-
encing the other.

than 0.8%, and value 0 means that the absolute change is less
than 0.8%.
We denote by and the (quantized ternary valued)

change in the HSI and the DJIA in day , respectively, and
estimate the normalized mutual information ,
the normalized directed information , and the
normalized reverse directed information ,
using all four algorithms. Fig. 10 plots our estimates of these
information-theoretic measures.
Evidently, the reverse directed information is much higher

than the directed information; hence there is a significant causal
influence by the DJIA on the HSI, and a low influence in the
reverse direction. In other words, between 1990 and 2011, it was
the Chinese market that was influenced by the US market rather
than the other way around.
It is also worth noting that estimators and do generate

negative outputs as shown in Fig. 10. It may be caused by var-
ious reasons, such as data insufficiency and nonstationarity of
process . In such cases of insufficient data, we would

Fig. 10. Estimates of information-theoretic measures between HSI denoted by
, and DJI denoted by . It is clear that the reverse directed information is

much higher than the directed information, hence it is DJI that causally influ-
ences HSI rather than the other way around.

prefer estimators and , since they are always nonnegative,
which can be sensibly interpreted in practice.

VI. CONCLUDING REMARKS

We have presented four approaches to estimating the directed
information rate between a pair of jointly stationary ergodic fi-
nite-alphabet processes. Weak and strong consistency results
have been established for all four estimators, in precise senses
of varying strengths. For two of these estimators, we established
convergence rates that are optimal to within logarithmic factors.
The other two have their own merits, such as nonnegativity on
every sample path. Experiments on simulated and real data sub-
stantiate the potential of the proposed approaches in practice
and the efficacy of directed information estimation as a tool for
detecting and quantifying causality and delay.

APPENDIX A
SOME KEY LEMMAS

Here is the roadmap of the Appendixes. In Appendix A,
we list some key lemmas without proofs, and in Appendix B
we prove the main theorems and propositions in Section IV.
Appendix C provides the proofs of the lemmas in Appendix A.
The first lemma is on the asymptotic equipartition property

(AEP) for causally conditional entropy rate. It was proved in
[33] that the AEP for causally conditional entropy rate holds in
the almost sure sense. Here we prove that it holds in the sense
as well. We also show convergence rates for jointly stationary
irreducible aperiodic Markov processes.

Lemma 1: Let be a jointly stationary ergodic finite-
alphabet process. Then,

(68)
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In addition, if is irreducible aperiodic Markov, then

(69)

and for every ,

(70)

The next lemma shows that the conditional probability in-
duced by the CTW algorithm converges to the true probability
of a Markov process if the dataset is sufficiently large.
Lemma 2: Let be the CTW probability assignment and let
be a stationary irreducible aperiodic finite-alphabet Markov

process whose order is bounded by the prescribed tree depth of
the CTW algorithm. Then,

(71)

Lemma 3 ([21, Lemma 1]): For any , there exists
such that for all and in :

(72)

where is the norm (viewing and as -dimen-
sional simplex vectors), and is defined in (29).
Lemma 4: Let be two probability mass functions in

, denote . If , we have

(73)

where is defined in (29).
Lemma 5: Let be a stationary irreducible aperiodic

finite-alphabet Markov process. For fixed , let random
variable be a deterministic function of random
vector , where is the Markov order. Let be uni-
formly bounded by a constant for any , and .
Then, there exists a constant such that

(74)

Lemma 6 (Breiman’s Generalized Ergodic The-
orem [38]): Let be a stationary ergodic process. If

and , then

(75)

where is the shift operator which increases the index by 1,
and increases the index by k.
Here, we paraphrase a result from [30] on the redundancy

bounds of the CTW probability assignment.
Lemma 7 ([30]): Let be the CTW probability assign-

ment and let be a stationary finite-alphabet Markov process
whose order is bounded by the prescribed tree depth of the

CTW algorithm. Then, there exist constants such that
the pointwise redundancy is bounded as

(76)

where depend on nothing but the parameters spec-
ifying the process . In particular, taking expectation over the
inequality with respect to , the redundancy is bounded as

(77)

Remark 3: The constants can be specified once the
parameters of process are given. For example, see [30], where

(78)

(79)

Here is the size of alphabet, in this case . is the
number of states in the Markov process, given Markov order ,

.

APPENDIX B
PROOFS OF THEOREMS AND PROPOSITIONS

For brevity, in the sequel we denote by ,
by , by .

A) Proof of Theorem 1: Briefly speaking, we need to show
estimator converges to the corresponding directed informa-
tion rate for any jointly stationary ergodic process

. Since is defined in (35) as ,
if we can show the corresponding convergence properties of

, then we have the desired convergence properties
of since .
Given is a universal probability assignment, first we show
converges in . Then, we show given is a pointwise uni-

versal probability assignment, also converges almost surely.
Convergence: We decompose

(80)

where

(81)

(82)

According to Lemma 1 shown in Appendix A, we know
converges to zero in . Now we deal with . Pinsker[39]
proved the existence of a universal constant such that

(83)
Barron[40] simplified Pinsker’s argument and proved that the
constant is best possible when natural logarithms are
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used in the definition of . Here, we follow Barron’s
arguments to bound with defined in (81).
Denote the set as ,

we have

(84)

(85)

Define ,

, we bound

(86)

(87)

(88)

(89)

Then, , define
. We bound from (112) to (120), where

1) equation (113) follows by the log-sum inequality [24, Th.
2.7.1],

2) equation (114) follows since
,

3) equation (115) follows since ,
4) equation (116) follows by Scheffé’s theorem [42, Lemma
2.1],

5) equation (117) follows by Pinsker’s inequality [42, Lemma
2.5],

6) equation (118) follows by the concavity of ,
7) equation (119) follows by data-processing inequality [24,
Th. 2.8.1],

8) equation (120) follows by the chain rule for relative en-
tropy, the concavity of , and data-processing inequality.

Combining (89) and (120), we have

(90)

by definition of universal probability assignment, we show
converges to zero in . Since

(91)

we know converges to in .
Almost sure convergence: Consider the probability of the

following event:

(92)

we have

(93)

(94)

(95)

(96)

(97)

where the first inequality is because of the definition of even
, and the last step follows from the fact that for any two con-

ditional distributions of the form and ,
we have where is a
joint distribution. As

(98)

by the Borel–Cantelli Lemma, we have

(99)

In order to get an inequality with the reverse direction, write
explicitly as

(100)

(101)

by the definition of pointwise universality (2), we know

(102)

with a similar argument used for showing (99), we show

(103)

then we have

(104)

Combining (104) with (99),

(105)
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By Lemma 1 shown in Appendix A,

(106)

which implies the convergence of to also holds
almost surely.

B) Proof of Proposition 1: For similar reasons as shown
in the proof of Theorem 1, here it suffices to show the con-
vergence properties of . For convenience, we restate some
arguments shown in the proof of Theorem 1. We decompose

as
(107)

where
(108)

(109)

and we restate (90)

(110)

convergence rates: We apply Lemma 7 in Appendix A.
Plugging (77) of Lemma 7 in (110), we have

(111)

See (112)–(120) given at the bottom of the page.
Combining (111) with the convergence rates of shown

in Lemma 1 in Appendix A, we have

(121)
(122)

then we know the convergence rates in Proposition 1 hold as
follows:

(123)

Almost sure convergence rates: We look at the almost sure
convergence rates of (108) at first. We know the probability
of event defined in (92) is bounded as

(124)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)
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For any fixed , taking in (92), we see
is equal to the set

(125)
Note that

(126)

By the Borel–Cantelli lemma, since goes to zero as
, we proved that

(127)

In order to get an inequality of the reverse direction, dividing
(101) by , we have

(128)

(129)

By the pointwise redundancy of the CTW algorithm restated
in Lemma 7 in Appendix A, we know

(130)

then we have

(131)

For the second term on the right-hand side of (129), following
similar argument applied to show (127), we know

(132)

From (131) and (132), we obtain

(133)
Combining (127) and (133) together, we know ,

(134)

Putting (134) and the almost sure convergence rates of
shown in Lemma 1 in Appendix A together, we know ,

C) Proof of Theorem 2: It suffices to show the convergence
properties of . We decompose

(135)

where

(136)

(137)

Define for a jointly
stationary and ergodic process . Note that, by martin-
gale convergence [41], where

. Noting further that
and are bounded, we can apply

Lemma 6 in Appendix A and obtain the following result:

(138)

Then, we deal with defined in (137) from (155) to (162),
where fixing an arbitrary :
1) equation (157) follows by Lemma 3 in Appendix A,
2) equation (158) follow by Pinsker’s inequality,
3) equations (159) and (161) follow by the concavity of ,
4) equation (162) follows by the chain rule for relative en-
tropy.

We continue to bound

(139)

(140)

(141)

(142)
(143)

where (141) follows by (138), (142) follows by (162), (143)
follows by Definition 1. Now we can use the arbitrariness of
to complete the proof.
D) Proof of Proposition 2: It suffices to show the conver-

gence properties of .
Almost Sure Convergence: For stationary ergodic process
, let

(144)
(145)

by Lemma 2 in Appendix A,

(146)

Since , by Lemma 6 in Appendix A,

(147)

which justifies the almost sure convergence of .
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Convergence Rates: For convenience, we restate the
definitions of and as follows:

(148)

(149)

Letting be , be
, and applying Lemma 5 in Appendix A, we know

(150)

Then, we bound from (178) to (183).
1) Equation (180) is an application of Lemmas 2 and
4 in Appendix A. Indeed, Lemma 2 guarantees that
when , the norm of the difference of

and
will be small enough so that Lemma 4 can be applied.

2) Equation (181) follows by Pinsker’s inequality and the fact
that function is increasing for small .

3) Equations (182) and (183) are by the concavity of
and the chain rule for relative entropy.

Because of the monotonicity of when ,
we can plug in the redundancy bounds of the CTW algorithm in
Lemma 7 in Appendix A, i.e., (77) into (183), then have

(151)

Combining (151) with (150), we proved Proposition 2.
E) Proof of Proposition 3: We rephrase a general lemma

showing minimax lower bounds.
Lemma 8 [42, Th. 2.2]: Let be a class of models, and

suppose we have observations distributed according to ,
. Let be the performance measure of the esti-

mator relative to the true model . Assume also is
a semidistance, i.e., it satisfies
1)
2) ,
3) .
Let satisfy , where is fixed.

Then,

(152)

(153)

In this proof, in Lemma 8 is taken to be . Denote
the binary entropy as
and the class of i.i.d. processes as . Since

(154)

and is decreasing in interval , we know (155)
and (162), at the bottom of the page.

Lemma 9: , we have

(163)

(155)

(156)

(157)

(158)

(159)

(160)

(161)

(162)
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We also show a lemma bounding the divergence between two
Bernoulli pmfs.

Lemma 10: Let and be Bernoulli pmfs with pa-
rameters, respectively, 1/2- and 1/2- . If , then

.
Lemma 10 can be verified as follows:

(164)

(165)

(166)

(167)

(168)

where the first inequality holds because
, and the second inequality holds because

.
Taking the observations model as , ,

then we have . Assuming under model
, under model , , and

. Let be an arbitrary estimator of based
on , , we have

(169)
Then, we take to satisfy the assumption
of Lemma 8. For brevity, here we denote as . By
Lemma 8,

(170)

(171)

Then, we bound :

(172)

(173)
(174)

Thus, we have
(175)

Using Markov’s inequality,

(176)

(177)

See (178)–(183) given at the bottom of the page.

(178)

(179)

(180)

(181)

(182)

(183)
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F) Proof of Theorem 3: We decompose

(184)

Following the proof of almost sure and convergence of in
that of Proposition 2, we can show that the second term on the
right-hand side of (184) converges to almost surely
and in under the conditions of Theorem 3. Denote the first
term on the right-hand side of (184) as

(185)

Then, it suffices to show the almost sure and convergence of
to . Decompose as

where

(186)

(187)

Almost sure convergence: Express as ,
where

(188)

According to Lemma 2 in Appendix A, the CTW probability
assignments, and both converge
almost surely to the true probability and

. Therefore,

(189)

Then, we know the Cesáro mean of also converges to
zero almost surely, i.e.,

(190)

Now we show converges to zero almost surely, which is
implied by Birkhoff’s ergodic theorem.

Convergence: We express in another form in (205),
and bound from (206) to (212), where
1) the first part of (209) is derived by (83), and the second part
of (209) is implied by the fact that the CTW probability
assignment is lower bounded (27);

2) equation (210) follows by Pinsker’s inequality,
3) equation (211) follows by data-processing inequality,
4) equation (212) follows by the chain rule of relative entropy
and concavity of .

After applying Lemma 7 in Appendix A, we know con-
verges to zero in . By Birkhoff’s ergodic theorem, we know
the convergence of is also in , which completes the proof
of convergence.

G) Proof of Theorem 4: We decompose

(191)

where is the estimator for in , is defined as

(192)
Since is in similar form as , we can follow corre-

sponding steps in the proof of Theorem 3 to establish Theorem
4 analogously.

APPENDIX C
PROOFS OF TECHNICAL LEMMAS

A) Proof of Lemma 1:

General stationary ergodic processes: The convergence
holds almost surely by the Shannon–McMillan–Breiman the-
orem for causally conditional entropy rate (see, for example,
[33]). We now prove the AEP also holds in .
Denote

(193)

(194)

(195)

where .
Our goal is to show that converges to zero
when .
Note that

(196)

(197)

By stationarity of and conditioning reduces entropy,
we know is a nonnegative, nonincreasing se-
quence in , and further, it converges to . Since is
the Cesáro mean of sequence , it follows
that converges to as . Thus,

(198)

We have
(199)
(200)
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By Birkhoff’s ergodic theorem, converges to zero
when . It now suffices to show that .
Denote the CDF of random variable as , then we have

(201)

(202)

where the second step follows by integration by parts and the
fact that . Let

, we have (235), then
by Markov’s inequality, we have

(203)

for arbitrary positive .
Taking , we have

(204)

See (205) and (212) given at the bottom of the page.

(205)

(206)

(207)

(208)

(209)

(210)

(211)

(212)
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Equivalently,
(213)

Plugging (213) into (202), we have

(214)

(215)

By (198), we know
(216)

By (200), we know the AEP for causally conditional entropy
holds in .

Irreducible aperiodic Markov processes: We express
as

(217)

where

(218)

and is the order of the Markov process . Let

(219)
and denote by . Here, does not depend on since the
Markov process is stationary.
We decompose as

(220)

where , , , and
. We expand

(221)

and bound the three terms on the right-hand side of (221)
separately.
For the first term, by Lemma 5 in Appendix A with

, , and , we have

(222)

For the second term, consider

(223)

Define

(224)
we have

(225)

(226)

(227)

(228)

where the last inequality is an inequality developed by
McMillan [43], and the last step could be intuitively understood
since the terms decay rapidly, the sum is dominated by the
largest term, hence the order. Now we have

(229)

See (230) and (235) given at the bottom of the page.

(230)

(231)

(232)

(233)

(234)

(235)
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For the third term, we apply the Cauchy–Schwarz inequality

(236)

(237)

(238)

Summing the three terms together and taking ,
we have

(239)

and thus

(240)

(241)

(242)

Now we deal with the almost sure convergence rates of AEP
of causally conditional entropy rate.We restate the Gál–Koksma
theorem[44] as follows.

Lemma 11 (Gál–Koksma Theorem): Let be a
probability space and let be a sequence of random vari-
ables belonging to , , such that

(243)

uniformly in , where is a nondecreasing sequence.
Then, for every ,

(244)

The bound in (239) indicates that if we take
and in the Gál–Koksma theorem, then for

every ,

(245)
(246)

B) Proof of Lemma 2: Denote the alphabet size as .
We examine the updating computation of ,

. For an internal node in the updating path,
if is in the updating path, we have (33). For the leaf node
in the updating path,

(247)

The computation of starts from a leaf and is
repeated recursively along the updating path, until we reach the
root node and obtain . Thus,

is a weighted sum of , where is any
node in the updating path.
Let denote the set of nodes in the path from to .

The weight associated with is

(248)

where is an internal node in the updating path. The weight
associated with , where is the leaf node in
the updating path, is

(249)

The convergence properties of depends
on the limiting behavior of at every node along the
updating path. If is an internal node in the tree representation
of the source, we actually have almost
surely. This fact was stated in [15, Lemma 4]. Here, we restate
this fact and give a proof for stationary irreducible aperiodic
finite-alphabet Markov processes.

Lemma 12: Let be an internal node in the tree represen-
tation of the source. Then,

(250)

Proof: It suffices to show

(251)

We have

(252)

(253)

(254)

(255)

(256)

where denotes the number of symbols in with context
, and the inequalities follow from applying (24) repeatedly.
Here, since is an internal node of the tree, without loss of
generality, we can assume offsprings of do not have all the
same conditional distribution. If it were violated, we can simply
iterate the inequalities obtain above till we reach the leaf nodes
of the tree, after which we can apply the same arguments that
will be shown later.
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It was shown in [32] that the Krichevsky–Trofimov proba-
bility estimate of sequence , i.e., , satisfies the fol-
lowing bound:

(257)

where denotes the number of symbol in the se-
quence , and is a constant depending only on the alphabet
size .
Under the assumption of Lemma 2, Markov process is er-

godic, hence
(258)

where is the stationary distribution of . Equation (258)
implies that

(259)

Applying the same argument to , we have

(260)

where is the stationary conditional distribution conditioned
on context . Analogously, for node , we have

(261)

thus

(262)

where . It is obvious that

(263)

By the strict concavity of entropy functional and the fact that
the offsprings of do not all have the same conditional distri-
bution, we know

(264)

which implies

(265)

hence
(266)

holds.

We know can be expressed
as a weighted sum of for in the updating
path

(267)

where are given in (248) and (249). Lemma 12 implies that
for an internal node of the tree representation of , .
Hence,

(268)
For leaf node, by the property of Krichevsky–Trofimov prob-
ability estimate, we know

(269)

where is the true conditional probability. Thus, we
have

(270)
(271)

C) Proof of Lemma 3: Fix . Since is
bounded and closed, is uniformly continuous. Thus, there
exists such that if . Further-
more, is bounded by . Therefore,
we have

(272)

(273)

(274)

where .
D) Proof of Lemma 4: Since

(275)

we can bound as

(276)

(277)

Now, by [45, Lemma 2.7], we have

(278)

(279)
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where and . Since

(280)

(281)

(282)

(283)

(284)

we have

(285)

E) Proof of Lemma 5: We first define the -mixing coeffi-
cient of a stationary process.

Definition 4 ( -Mixing Coefficient): For a stationary
process adapted to the filtration , the -mixing
coefficient is defined as

(286)

where the supremum is over all and .
According to [46], if is a stationary irreducible aperiodic

Markov process, tends to zero exponentially fast in , i.e.,
there exist and such that

(287)

We bound as follows:

(288)

(289)

where (289) holds because is uniformly bounded by con-
stant .
By Billingsley’s inequality[47, Corollary 1.1], taking into ac-

count that , we know the following bound holds:

(290)

Plugging (290) into (289), we have

(291)

(292)

(293)

Thus, we show Lemma 5 holds with
.
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