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Abstract— Hybrid analog–digital coding has been used for
several communication scenarios, such as joint source–channel
coding of Gaussian sources over Gaussian channels and relay
communication over Gaussian networks. In this paper, a gener-
alized hybrid coding technique is proposed for communication
over discrete memoryless and Gaussian systems, and its utility
is demonstrated via three examples—lossy joint source–channel
coding over multiple access channels, channel coding over
two-way relay channels, and channel coding over diamond
networks. The corresponding coding schemes recover and extend
several existing results in the literature.

Index Terms— Analog–digital coding, hybrid coding, joint
source–channel coding, network information theory, relay
networks.

I. INTRODUCTION

THE fundamental architecture of most of today’s
communication systems is inspired by Shannon’s source–

channel separation theorem [1]–[4]. This fundamental theorem
states that a source can be optimally communicated over a
point-to-point channel by concatenating an optimal source
coder that compresses the source into “bits” at the rate of its
entropy (or rate–distortion function) with an optimal channel
coder that communicates those “bits” reliably over the channel
at the rate of its capacity. The appeal of Shannon’s separa-
tion theorem is twofold. First, it suggests a simple system
architecture in which source coding and channel coding are
separated by a universal digital interface. Second, it guarantees
that this separation architecture does not incur any asymptotic
performance loss.

The optimality of the source–channel separation architec-
ture, however, does not extend to communication systems with
multiple users. Except for a few special network models in
which sources and channels are suitably “matched” [5]–[10],
the problem of lossy communication over a general multiuser
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network requires joint optimization of the source coding and
channel coding operations. Consequently, there is a vast body
of literature on joint source–channel coding schemes for mul-
tiple access channels [11]–[15], broadcast channels [16]–[26],
interference channels [27], [28], and other multiuser channels
[29]–[31].

Hybrid analog–digital coding has been recently shown to be
an efficient joint source–channel coding technique for commu-
nicating analog Gaussian sources over memoryless Gaussian
channels under a mean-square-error fidelity criterion. In the
point-to-point setting, Mittal and Phamdo [32] showed that a
graceful degradation of performance can be achieved at low
signal-to-noise ratios by transmitting a linear combination of
the source sequence and the result of its quantization using a
high-dimensional Gaussian vector quantizer. Similar schemes
have been proposed [33]–[36] for point-to-point channels with
state and source side information at the receiver. In the multi-
user setting, Lapidoth and Tinguely [37], [38] showed that
hybrid analog–digital coding is asymptotically optimal in the
limiting regime of high signal-to-noise ratios for the problem
of sending a bivariate Gaussian source over a Gaussian multi-
ple access channel, where each transmitter has access to only
one source component, while Tian, Diggavi, and Shamai [24]
showed that hybrid analog–digital coding is optimal for the
dual problem of sending a bivariate Gaussian source over a
Gaussian broadcast channel, where each receiver is interested
in only one component of the source.

Hybrid analog–digital coding has also been applied to
channel coding over Gaussian relay networks. Yao and
Skoglund [39] considered a Gaussian relay channel with
flat fading and no channel state information at the trans-
mitter and used hybrid analog–digital coding as a technique
to increase the robustness against the unknown fading
in the transmission from the relay to the destination.
Khormuji and Skoglund [40] considered the Gaussian two-way
relay channel and proposed three hybrid analog–digital
coding schemes that outperform several existing relaying
schemes. Kochman, Khina, Erez, and Zamir [41] considered
a Gaussian parallel relay network with colored noise wherein
the source-to-relay and relay-to-destination links have mis-
matched bandwidths, and used hybrid analog–digital coding
techniques to compress the received signal at the relay and
forward it to the destination.

In this paper, we propose a generalized hybrid coding
technique as a basic building block in joint source–channel
coding and channel coding for discrete memoryless systems.
When adapted to the corresponding Gaussian settings, it
includes several existing results as special cases and sometimes
leads to strictly better performances via more flexibility in
generating the digital part and in combining the analog and
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Fig. 1. A joint source–channel coding system architecture based on hybrid coding.

digital parts. The proposed hybrid coding technique employs
the architecture depicted in Fig. 1 and is characterized by the
following features:

1) An encoder generates a (digital) codeword from the
(analog) source and selects the channel input as a
symbol-by-symbol function of the codeword and the
source.

2) A decoder recovers the (digital) codeword from the
(analog) channel output and selects the source estimate
as a symbol-by-symbol function of the codeword and
the channel output.

The basic components in this architecture are not new.
The idea of using a symbol-by-symbol function traces back
to the Shannon strategy [42] for channels with states.
The encoder structure is similar to the coding scheme by
Gel’fand and Pinsker [43] for channels with state. The decoder
structure is again similar to the Wyner–Ziv coding scheme [44]
for lossy source coding with side information.

The main contribution of this paper lies in combining all
these known techniques into a unifying framework that can be
used to construct efficient coding schemes for various network
communication scenarios, the performances of which can be
characterized in computable (i.e., single-letter) expressions.
One of the most appealing features of the resulting hybrid
coding schemes is that the first-order performance analysis
can be done by separately studying the conditions for source
coding and for channel coding, exactly as in the source–
channel separation theorem.

We illustrate the advantages of our hybrid coding framework
by focusing on two specific problems:

1) Joint Source–Channel Coding Over Multiple Access
Channels: We construct a joint source–channel
coding scheme for lossy communications over
discrete memoryless multiple access channels
whereby each encoder/decoder in the network operates
according to the hybrid coding architecture in Fig. 1.
In Section II, we establish a sufficient condition for
lossy communication that recovers and generalizes
several existing results on joint source–channel coding
over this channel model. In particular, when specialized
to the Gaussian communication problem studied in [37],
our result recovers the hybrid analog–digital scheme
derived by Lapidoth and Tinguely.

2) Relay Networks: Following [39], we propose a channel
coding scheme for noisy relay networks based on
hybrid coding in Section III. This coding scheme oper-
ates in a similar manner to the noisy network coding
scheme proposed in [45], [46], except that each relay
node uses the hybrid coding interface to transmit a
symbol-by-symbol function of the received sequence
and its compressed version. This coding scheme unifies

Fig. 2. Communication of a 2-DMS over a DM-MAC.

both amplify–forward [47] and compress–forward [48],
and can strictly outperform both. The potential of the
hybrid coding interface for relaying is demonstrated
through two specific examples—communication over
two-way relay channels [49] and over diamond relay
networks [47].

Throughout we closely follow the notation in [50].
In particular, for a discrete random variable X ∼ p(x) on
an alphabet X and ε ∈ (0, 1), we define the set of ε-typical
n-sequences xn (or the typical set in short) [51] as T (n)

ε (X) =
{xn : |#{i : xi = x}/n− p(x)| ≤ εp(x) for all x ∈ X }. We use
δ(ε) > 0 to denote a generic function of ε > 0 that tends to
zero as ε → 0. Similarly, we use εn ≥ 0 to denote a generic
sequence in n that tends to zero as n→∞.

II. JOINT SOURCE–CHANNEL CODING OVER

MULTIPLE ACCESS CHANNELS

Consider the problem of communicating a pair of correlated
discrete memoryless sources (2-DMS) (S1, S2) ∼ p(s1, s2)
over a discrete memoryless multiple access channel
(DM-MAC) p(y|x1, x2), as depicted in Fig. 2. Here each
sender j = 1, 2 wishes to communicate in n transmissions
its source Sj to a common receiver so the sources can be
reconstructed within desired distortions.

An (|S1|n, |S2|n, n) joint source–channel code consists of

• two encoders, where encoder j = 1, 2 assigns a sequence
xn

j (s
n
j ) ∈ X n

j to each sequence sn
j ∈ Sn

j , and

• a decoder that assigns an estimate (ŝn
1 , ŝn

2 ) ∈ Ŝn
1 × Ŝn

2 to
each sequence yn ∈ Yn .

Let d1(s1, ŝ1) and d2(s2, ŝ2) be two distortion measures.
A distortion pair (D1, D2) is said to be achievable for commu-
nication of the 2-DMS (S1, S2) over the DM-MAC p(y|x1, x2)
if there exists a sequence of (|S1|n, |S2|n, n) joint source–
channel codes such that

lim sup
n→∞

1

n

n∑

i=1

E(d j (Sj i , Ŝ j i ) ≤ D j , j = 1, 2.

The optimal distortion region is the closure of the set of all
achievable distortion pairs (D1, D2). A computable characteri-
zation of the optimal distortion region is not known in general.

We prove the following inner bound on the optimal distor-
tion region.
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Fig. 3. The joint source–channel coding system architecture for communicating a 2-DMS over a DM-MAC.

Theorem 1: A distortion pair (D1, D2) is achievable for
communication of the 2-DMS (S1, S2) over the DM-MAC
p(y|x1, x2) if

I (U1; S1|U2, Q) < I (U1; Y |U2, Q),

I (U2; S2|U1, Q) < I (U2; Y |U1, Q),

I (U1, U2; S1, S2|Q) < I (U1, U2; Y |Q)

for some conditional pmf p(q)p(u1|s1, q)p(u2|s2, q) and
functions x1(q, u1, s1), x2(q, u2, s2), ŝ1(q, u1, u2, y), and
ŝ2(q, u1, u2, y) such that E(d j (Sj , Ŝ j )) ≤ D j , j = 1, 2.

The complete proof of the theorem is given in Appendix A,
but in the next subsection we describe the gist of the proof.
Here we digress a little and apply Theorem 1 to obtain the
following results as special cases:

a) Lossless Communication: When specialized to the case
in which d1 and d2 are Hamming distortion measures
and D1 = D2 = 0, Theorem 1 recovers the following
sufficient condition for lossless communication of a
2-DMS over a DM-MAC.
Corollary 1 (Cover, El Gamal, and Salehi [11]):
A 2-DMS (S1, S2) can be communicated losslessly
over the DM-MAC p(y|x1, x2) if

H (S1|S2) < I (X1; Y |X2, S2, Q),

H (S2|S1) < I (X2; Y |X1, S1, Q),

H (S1, S2) < I (X1, X2; Y |Q)

for some conditional pmf p(q)p(x1|s1, q)p(x2|s2, q).
Proof: In Theorem 1, set U j = (X j , Sj ),

x j (q, u j , s j ) = x j , and ŝ j (q, u1, u2, y) = s j ,
j = 1, 2, under a conditional pmf of the form
p(q)p(x1|s1, q)p(x2|s2, q).

b) Distributed Lossy Source Coding: When specialized to
the case of a noiseless DM-MAC Y = (X1, X2) with
H (X1) = R1, H (X2) = R2, and (X1, X2) independent
of the sources, Theorem 1 recovers the Berger–Tung
inner bound on the rate–distortion region for distributed
lossy source coding.
Corollary 2 (Berger [52] and Tung [53]): A distortion
pair (D1, D2) with rate pair (R1, R2) is achievable for
distributed lossy source coding of a 2-DMS (S1, S2) if

R1 > I (S1;U1|U2, Q),

R2 > I (S2;U2|U1, Q),

R1 + R2 > I (S1, S2;U1, U2|Q)

for some conditional pmf p(q)p(u1|s1, q)p(u2|s2, q)
and functions ŝ1(q, u1, u2) and ŝ2(q, u1, u2) such that
E(d j (Sj , Ŝ j )) ≤ D j , j = 1, 2.

Proof: In Theorem 1, set U j = (X j , Ũ j ),
x j (q, u j , s j ) = x j , and ŝ j (q, u1, u2, y) = ŝ j (q, ũ1, ũ2),
j = 1, 2, under a conditional pmf of the form
p(q)p(ũ1|s1, q)p(ũ2|s2, q), and relabel the random
variables with tilde.

c) Bivariate Gaussian Source Over a Gaussian MAC:
Suppose that the source is a bivariate Gaussian pair
with equal variance σ 2 and that each source component
has to be reconstructed by the decoder under quadratic
(i.e., mean-square-error) distortion measures
d j (s j , ŝ j ) = (s j − ŝ j )

2, j = 1, 2. In addition,
assume that the channel is the Gaussian MAC
Y = X1+ X2+ Z , where Z is Gaussian and the channel
inputs X1 and X2 are subject to average power
constraints. Theorem 1 can be adapted to this
case via the standard discretization method
[50, Secs. 3.4 and 3.8]. Suppose that in Theorem 1 we
choose (U1, U2) as jointly Gaussian random variables
conditionally independent given (S1, S2), the encoding
function x j (u j , s j ), j = 1, 2, as a linear function of
u j and s j , and the decoding functions ŝ j (u1, u2, y) as
the minimum mean-square error (MMSE) estimate of
Sj given U1, U2, and Y . Then, Theorem 1 recovers
the sufficient condition for lossy communication
established by Lapidoth and Tinguely [37, Th. IV.6] via
a hybrid analog–digital scheme that combines uncoded
transmission and vector quantization. We remark
that the encoders used in the proof of Theorem 1
are the same as the ones described in [37], but the
exact operation of the decoder is somewhat different.
Lapidoth and Tinguely developed a Gaussian-specific
minimum-distance decoding technique to go around the
issue of dependency between message and codebook.
As shown in Appendix A, we develop a joint typicality
decoding technique that resolves the dependency issue
in general.

A. Hybrid Coding Architecture

The joint source–channel coding scheme used in the proof
of Theorem 1 is based on the architecture depicted in Fig. 3.

Here the source sequence Sn
j is mapped by source encoder

j = 1, 2 into a sequence Un
j (M j ) from a randomly generated

codebook C j = {Un
j (m j ) : m j ∈ [1 : 2nR j ]} of independently

distributed codewords. The selected sequence and the
source Sn

j are then mapped symbol-by-symbol through an
encoding function x j (s j , u j ) to a sequence Xn

j , which is trans-
mitted over the MAC. Upon receiving Y n , the decoder finds the
estimates Un

1 (M̂1) and Un
2 (M̂2) of Un

1 (M1) and Un
2 (M2),
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respectively, and reconstructs Ŝn
1 and Ŝn

2 from Un
1 (M̂1),

Un
2 (M̂2), and Y n by symbol-by-symbol mappings

ŝ j (u1, u2, y), j = 1, 2.
The conditions under which a distortion pair (D1, D2) is

achievable can be obtained by studying the conditions for
source coding and channel coding separately. By the cover-
ing lemma [50, Sec. 3.7], the source encoding operation is
successful if

R1 > I (U1; S1),

R2 > I (U2; S2),

while by the packing lemma [50, Sec. 3.2], suitably modified
to account for the dependence between the indices and the
codebook, the channel decoding operation is successful if

R1 < I (U1; Y, U2),

R2 < I (U2; Y, U1),

R1 + R2 < I (U1, U2; Y )+ I (U1;U2).

Then, the sufficient condition in Theorem 1 (with Q = ∅)
is established by combining the above inequalities and
eliminating the intermediate rate pair (R1, R2). The sufficient
condition with a general Q can be proved by introducing
a time sharing random variable Q and using coded time
sharing [50, Sec. 4.5.3].

B. Remarks

The proposed joint source–channel coding scheme is
conceptually similar to separate source and channel coding
and, loosely speaking, is obtained by concatenating the source
coding scheme in [51] and [52] for distributed lossy source
coding with a channel code for multiple access commu-
nication, except that the same codeword is used by both
the source encoder and the channel encoder. Similar to the
coding scheme by Cover, El Gamal, and Salehi in [11] for
lossless communication over a DM-MAC, the coding scheme
in Theorem 1 enables coherent communication over the MAC
by preserving the correlation between the sources at the
channel inputs chosen by the two senders.

The achievable distortion region in Theorem 1 can be
increased when the 2-DMS (S1, S2) has a nontrivial common
part in the sense of Gács–Körner [54] and Witsenhausen [55].
In this case, the encoders can jointly compress the common
part and use it to establish coherent communication over
the MAC. This extension is considered elsewhere [56], where
a hybrid coding scheme is proposed by combining the dis-
tributed lossy source coding scheme in [57] for sources with
a nonempty common part and the channel coding scheme
in [58] for multiple access communication with a common
message shared by the two encoders. The result in Theorem 1
can also be generalized to the setting in which the source
consists of a random triple (S, S1, S2), the distortion measures
are d j : S × S1 × S2 → Ŝ j , j = 1, 2, but encoder j can
only observe the source component Sj , j = 1, 2. This setting
includes as special cases the CEO problem [59]–[62] and the
Gaussian sensor network [63].

The modular approach presented here for lossy com-
munication over multiple access channels can be adapted

to construct joint source–channel coding schemes for other
channel models. In [56], extensions to several canonical
channel models studied in the literature are presented—the
broadcast channel and the interference channel as well as
channels with state or noiseless output feedback. In all these
examples, we can systematically establish sufficient conditions
for lossy communication based on hybrid coding. The basic
design principle lies with combining a source coding scheme
with a suitably “matched” channel coding scheme.

Finally, it should be remarked that the proposed architecture
can also be extended to the case of source–channel bandwidth
mismatch, whereby k samples of a source are transmitted
per n channel uses. This can be accomplished by replacing
the source and channel symbols in Fig. 3 by supersymbols
of lengths k and n (or their co-prime factors), respectively.
It should be noted, however, that the computation complex-
ity of characterizing the performances grows accordingly in
co-prime k and n.

III. RELAY NETWORKS

In this section we explore applications of hybrid coding in
the context of relay networks, wherein a source node wishes
to send a message to a destination node with the help of
intermediate relay nodes. Over the past decades, three domi-
nant paradigms have been proposed for relay communication:
decode–forward, compress–forward, and amplify–forward.

• In decode–forward, each relay recovers the transmit-
ted message by the source either fully or partially
and forwards it to the receiver (digital-to-digital inter-
face) while coherently cooperating with the source
node. Decode–forward was originally proposed in [48]
for the relay channel and has been generalized to
multiple relay networks, for example, in [63] and [64]
and further improved by combining it with structured
coding [66], [67].
• In amplify–forward, each relay sends a scaled version

of its received sequence and forwards it to the receiver
(analog-to-analog interface). Amplify–forward was
proposed in [47] for the Gaussian two-relay diamond
network and subsequently studied for the Gaussian
relay channel in [68]. Generalizations of amply–
forward to general nonlinear analog mappings for relay
communication have been proposed in [69].
• In compress–forward, each relay vector-quantizes its

received sequence and forwards the compression index
to the receiver (analog-to-digital interface). Compress–
forward was proposed in [48] for the relay channel
and has been generalized to arbitrary noisy networks
in [45], [46] as noisy network coding.

In this section, we consider hybrid analog–digital coding
at the relay nodes. This idea is originally due to
Yao and Skoglund [39] in the context of Gaussian fading
relay channels. Here we fully develop this idea for general
discrete memoryless relay networks. The proposed scheme
naturally extends both amplify–forward and compress–forward
since each relay node uses the hybrid coding architecture
introduced in Section II to transmit a symbol-by-symbol
function of the received sequence and its quantized version
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Fig. 4. The two-way relay channel.

(analog-to-analog/digital interface). More important than this
conceptual unification is the performance improvement of
hybrid coding. We demonstrate through two specific examples,
the two-way relay channel (Section III-A) and the two-relay
diamond network (Section III-B), that hybrid coding can
strictly outperform the existing coding schemes.

A. Two-Way Relay Channel

Consider the relay network depicted in Fig. 4, where
two source/destination nodes communication with the help
of one relay. Node 1 wishes to send the message
M1 ∈ [1 : 2nR1] to node 2 and node 2 wishes to send
the message M2 ∈ [1 : 2nR2 ] to node 1 with the help of
the relay node 3. Nodes 1 and 2 are connected to the relay
through the MAC p(y3|x1, x2), while the relay is connected
to nodes 1 and 2 via the broadcast channel p(y1, y2|x3).

This network is modeled by a 3-node discrete memoryless
two-way relay channel (DM-TWRC) p(y1, y2|x3)p(y3|x1, x2).
A (2nR1 , 2nR2 , n) code for the DM-TWRC consists of
• two message sets [1 : 2nR1 ] × [1 : 2nR2 ],
• two encoders, where at time i ∈ [1 : n] encoder j = 1, 2

assigns a symbol x j i(m j , yi−1
j ) ∈ X j to each message

m j ∈ [1 : 2nR j ] and past received output sequence
yi−1

j ∈ Y i−1
j ,

• a relay encoder that assigns a symbol x3i(yi−1
3 ) to each

past received output sequence yi−1
3 ∈ Y i−1

3 , and
• two decoders, where decoder 1 assigns an estimate m̂2 or

an error message to each m1 and each received sequence
yn

1 ∈ Yn
1 and decoder 2 assigns an estimate m̂1 or an

error message to each m2 and each received sequence
yn

2 ∈ Yn
2 .

We assume that the message pair (M1, M2) is uniformly dis-
tributed over [1 : 2nR1] × [1 : 2nR2 ]. The average probability
of error is defined as P(n)

e = P{(M̂1, M̂2) 	= (M1, M2)}.
A rate pair (R1, R2) is said to be achievable for the
DM-TWRC if there exists a sequence of (2nR1, 2nR2 , n)

codes such that limn→∞ P(n)
e = 0. The capacity region of

the DM-TWRC is the closure of the set of achievable rate
pairs (R1, R2) and the sum-capacity is the supremum of the
achievable sum rates R1 + R2.

The capacity region of the DM-TWRC is not known in
general. Rankov and Wittneben [49] characterized inner
bounds on the capacity region based on decode–forward,
compress–forward, and amplify–forward. Another inner bound
based on noisy network coding is given in [45]. In the

Fig. 5. The hybrid coding system architecture for the two-way relay channel.

special case of a Gaussian TWRC, Nam, Chung, and Lee [67]
proposed a coding scheme based on nested lattice codes and
structured binning that achieves within 1/2 bit per dimension
from the capacity region for all underlying channel parameters.

Hybrid coding yields the following inner bound on the
capacity region, the proof of which is given in Appendix B.

Theorem 2: A rate pair (R1, R2) is achievable for the
DM-TWRC p(y1, y2|x3)p(y3|x1, x2) if

R1 < min
(
I (X1; Y2, U3|X2),

I (X1, U3; X2, Y2)− I (Y3;U3|X1)
)
,

R2 < min
(
I (X2; Y1, U3|X1),

I (X2, U3; X1, Y1)− I (Y3;U3|X2)
)

(1)

for some pmf p(x1)p(x2)p(u3|y3) and function x3(u3, y3).
Remark 1: Theorem 2 includes both the noisy network

coding inner bound, which is recovered by letting
U3 = (Ŷ3, X3) under a pmf p(ŷ3, x3|y3) = p(ŷ3|y3)p(x3),
and the amplify–forward inner bound, which is obtained
by setting U3 = ∅, and the inclusion can be strict in
general.

1) Gaussian Two-Way Relay Channel: As an application of
Theorem 2, consider the special case of the Gaussian TWRC,
where the channel outputs corresponding to the inputs
X1, X2, and X3 are

Y1 = g13 X3 + Z1,

Y2 = g23 X3 + Z2,

Y3 = g31 X1 + g32 X2 + Z3,

and the noise components Zk , k = 1, 2, 3, are i.i.d. N(0, 1).
The channel gains gkj from node j to node k are assumed
to be real, constant over time, and known throughout the net-
work. Each sender is subject to expected power constraint P .
We denote the received SNR Sjk = g2

j k P .
Theorem 2 yields the following inner bound on the capacity

region.
Corollary 3: A rate pair (R1, R2) is achievable for the

Gaussian TWRC if

R1 <
1

2
log

(
αS23(S31+1)
S31+S32+1 + βS23 + 1

)
(S31 + 1+ σ 2)− S23a2

1(
αS23

S31+S32+1 + βS23 + 1
)

(1+ σ 2)− S23b2
,

R1 <
1

2
log

(
αS23(S31+1)
S31+S32+1 + (1− α)S23 + 1

)
σ 2

(
αS23

S31+S32+1 + βS23 + 1
)

(1+ σ 2)− S23b2
,

R2 <
1

2
log

(
αS13(S32+1)
S31+S32+1 + βS13 + 1

)
(S32 + 1+ σ 2)− S13a2

2(
αS13

S31+S32+1 + βS13 + 1
)

(1+ σ 2)− S13b2
,

R2 <
1

2
log

(
αS13(S32+1)
S31+S32+1 + (1− α)S13 + 1

)
σ 2

(
αS13

S31+S32+1 + βS13 + 1
)

(1+ σ 2)− S13b2
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for some α, β ∈ [0, 1] such that α+β ≤ 1 and σ 2 > 0, where

ak =
√

α(S3k+1)
S31+S32+1 +

√
βσ 2 and b =

√
α

S31+S32+1 +
√

βσ 2.

Proof: In Theorem 2, set X1 and X2 as i.i.d. ∼ N(0, P),
U3 = (V3, Ŷ3), where Ŷ3 = Y3 + Ẑ3, Ẑ3 and V3 are i.i.d.
zero-mean Gaussian independent of (X1, X2, Y3) with
variance σ 2 and 1, respectively, and

x3(u3, y3) =
√

αP

S31 + S32 + 1
y3 +

√
β P

σ 2 (y3 − ŷ3)

+√
(1− α − β)P v3, (2)

for some α, β ∈ [0, 1] such that α + β ≤ 1.
Note from (2) that the channel input sequence produced

by the relay node is a linear combination of the (analog)
sequence Y3, the (digital) quantized sequence Ŷ3 = Y3 + Ẑ3,
whose resolution is determined by σ 2

j , and the (digital)
sequence V3. Hence by varying α and β, we can vary the
amount of power allocated to the digital and analog parts in
order to optimize the achievable rate region. In particular,
by letting α = β = 0, the hybrid coding inner bound
in Corollary 3 reduces to the noisy network coding inner
bound [45] that consists of all rate pairs (R1, R2) such that

R1 < min

(
C

(
S31

1+ σ 2

)
, C(S23)− C(1/σ 2)

)
,

R2 < min

(
C

(
S32

1+ σ 2

)
, C(S13)− C(1/σ 2)

)
(3)

for some σ 2 > 0. If instead we let α = 1, β = 0, and
σ 2 → ∞, then the hybrid coding inner bound reduces to
the amplify–forward inner bound [49] that consists of all rate
pairs (R1, R2) such that

R1 < C

(
S23S31

1+ S23 + S31 + S32

)
,

R2 < C

(
S13S32

1+ S13 + S31 + S32

)
. (4)

Similarly, by letting α = 0 and β = 1, then the hybrid coding
inner bound in Corollary 3 reduces to the set of rate pairs
(R1, R2) such that

R1 < min

(
C

(
S31(1+ S23)

1+ σ 2 + S23

)
,

C

(
S23σ

2

1+ σ 2 + S23

)
− C(1/σ 2)

)
,

R2 < min

(
C

(
S32(1+ S13)

1+ σ 2 + S13

)
,

C

(
S13σ

2

1+ σ 2 + S13

)
− C(1/σ 2)

)
(5)

for some σ 2 > 0. Finally, by setting β = 0, Corollary 3
includes as a special case a hybrid coding scheme recently
proposed in [40].

Fig. 6 compares the cutset bound [50] on the sum-capacity
with the inner bound achieved by decode–forward [49], noisy
network coding (3), amplify–forward (4), hybrid coding (5),
the compute–forward–based scheme in [67], and the hybrid
coding scheme in [40]. The plots in the figure assume that

Fig. 6. Comparison of the cutset bound, the decode–forward lower
bound (DF), the amplify–forward lower bound (AF), the noisy network
coding lower bound (NNC), the hybrid coding lower bound (HC), the
compute–forward lower bound (CF), and the hybrid coding lower bound
in [40] on the sum-capacity for the Gaussian TWRC as a function of the
distance r between nodes 1 and 3.

nodes 1 and 2 are unit distance apart and node 3 is at distance
r ∈ [0, 1] from node 1 along the line between nodes 1 and 2;
the channel gains are of the form g jk = r−3/2

j k , where r jk is
the distance between nodes j and k, hence g13 = g31 = r−3/2,
g23 = g32 = (1 − r)−3/2, and the power P = 2. Note that
the hybrid coding bound in (5) strictly outperforms amplify–
forward, noisy network coding, and the hybrid scheme in [40]
for every r ∈ (0, 1/2).

2) Hybrid Coding Architecture: The proposed relay coding
scheme can be described as follows. A channel encoder
at source node j = 1, 2 maps the message M j into one
of 2nR j sequences Xn

j (M j ) generated i.i.d. according to∏n
i=1 pX j (x j i). The relay node uses the hybrid coding

architecture depicted in Fig. 5. Specifically, at the relay
node, the “source” sequence Y n

3 is mapped to one of 2nR3

independently generated sequences Un
3 (L3) via joint typicality

encoding and then the pair (Y n
3 , Un

3 (L3)) is mapped to Xn
3 via

the symbol-by-symbol map x3(u3, y3). Decoding at node 1
is performed by searching for the unique message
M̂2 ∈ [1 : 2nR2 ] such that the tuple (Xn

1 (M1),

Un
3 (L3), Xn

2 (M̂2), Y n
4 ) is jointly typical for some

L3 ∈ [1 : 2nR3 ]. In other words, node 1 nonuniquely
decodes the sequence Un

3 (L3) selected by the relay node.
The conditions under which a rate pair (R1, R2) is

achievable can be obtained by studying the conditions for
channel decoding at the destinations and for hybrid encoding
at the relay separately. By the covering lemma, the encoding
operation at the relay node is successful if

R3 > I (Y3;U3).

On the other hand, by the packing lemma, suitably modified
to account for the dependence between the index and the
codebook at the relay node, the channel decoding operation at
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Fig. 7. The two-relay diamond network.

node 1 is successful if

R2 < I (X2; Y1, U3|X1),

R2 + R3 < I (X2, U3; X1, Y1)+ I (X2;U3).

Similar conditions hold for the case of decoder 2. The lower
bound (1) is then established by combining the above inequal-
ities and eliminating the intermediate rate R3.

B. Diamond Relay Network

A canonical channel model used to feature the benefits of
node cooperation in relay networks is the diamond network
introduced in [47]; see Fig. 7. This two-hop network consists
of a source node (node 1) that wishes to send a message
M ∈ [1 : 2nR] to a destination (node 4) with the help of two
relay nodes (nodes 2 and 3). The source node is connected
through the broadcast channel p(y2, y3|x1) to the two relay
nodes that are in turn connected to the destination node
through the multiple access channel p(y4|x2, x3). A diamond
network (X1×X2×X3, p(y2, y3|x1)p(y4|x2, x3),Y2×Y3×Y4)
consists of six alphabet sets and a collection of conditional
pmfs on Y2 × Y3 × Y4. A (2nR, n) code for the diamond
network consists of

• a message set [1 : 2nR],
• an encoder that assigns a codeword xn

1 (m) to each
message m ∈ [1 : 2nR],
• two relay encoders, where relay encoder j = 2, 3 assigns

a symbol x j i(yi−1
j ) to each past received output sequence

yi−1
j ∈ Y i−1

j , and
• a decoder that assigns an estimate m̂ or an error message

to each received sequence yn
4 ∈ Yn

4 .

We assume that the message M is uniformly distributed over
[1 : 2nR]. The average probability of error is defined as P(n)

e =
P{M̂ 	= M}. A rate R is said to be achievable for the diamond
network if there exists a sequence of (2nR, n) codes such that
limn→∞ P(n)

e = 0. The capacity C of the diamond network is
the supremum of the achievable rates R.

The capacity of the diamond network is not known in gen-
eral. Schein and Gallager [47] characterized lower bounds on
the capacity based on decode–forward and amplify–forward.

Hybrid coding yields the following lower bound on the
capacity, the proof of which is given in Appendix C.

Theorem 3: The capacity of the diamond network
p(y2, y3|x1)p(y4|x2, x3) is lower bounded as

C ≥max min
{

I (X1;U2, U3, Y4),

I (X1, U2;U3, Y4)− I (U2; Y2|X1),

I (X1, U3;U2, Y4)− I (U3; Y3|X1),

I (X1, U2, U3; Y4)− I (U2, U3; Y2, Y3|X1)
}
,

(6)

where the maximum is over all conditional pmfs
p(x1)p(u2|y2)p(u3|y3) and functions x2(u2, y2), x3(u3, y3).

Remark 2: Theorem 3 includes both the noisy network
coding lower bound, which is recovered by setting
U j = (X j , Ŷ j ) with p(x j )p(ŷ j |y j ), j = 2, 3, and the
amplify–forward lower bound, which is obtained by setting
U j = ∅ for j = 2, 3, and it can be shown that the inclusion
is strict in general.

1) Deterministic Diamond Network: Consider the special
case where the multiple access channel p(y2, y3|x1) and
the broadcast channel p(y4|x2, x3) are deterministic, i.e., the
channel outputs are functions of the corresponding inputs.
In this case, Theorem 3 simplifies to the following.

Corollary 4: The capacity of the deterministic diamond
network is lower bounded as

C ≥ max
p(x1)p(x2|y2)p(x3|y3)

R(Y2, Y3, Y4|X2, X3), (7)

where

R(Y2, Y3, Y4|X2, X3)

= min{H (Y2, Y3), H (Y2)+ H (Y4|X2, Y2),

H (Y3)+ H (Y4|X3, Y3), H (Y4)}.
Proof: In Theorem 3, set U2 = (Y2, X2), U3 = (Y3, X3),

x2(u2, y2) = x2, and x3(u3, y3) = x3 under a conditional pmf
p(x2|y2)p(x3|y3).

We can compare the result in Corollary 4 with the existing
upper and lower bounds for this channel model. An upper
bound on the capacity is given by the cutset bound [70], which
in this case simplifies to

C ≤ max
p(x1)p(x2,x3)

R(Y2, Y3, Y4|X2, X3) (8)

On the other hand, specializing the scheme in [71] for deter-
ministic relay networks, we obtain the lower bound

C ≥ max
p(x1)p(x2)p(x3)

R(Y2, Y3, Y4|X2, X3). (9)

Note that (7), (8), and (9) differ only in the set of allowed
maximizing input pmfs. In particular, (7) improves upon
the lower bound (9) by allowing X2 and X3 to depend on
Y2 and Y3 and thereby enlarging the set of distributions on
them.

2) Hybrid Coding Architecture: The proof of Theorem 3
is based on a hybrid coding architecture similar to the one
used in the proof of Theorem 1 and can be described as
follows. At the source node, the message M is mapped to one
of 2nR1 sequences Xn

1 (M) i.i.d. according to
∏n

i=1 pX1(x1i)
as in point-to-point communication. At the relay nodes, the
“source” sequence Y n

j , j = 2, 3, is separately mapped into one
of 2nR j independently generated sequences Un

j (M j ). Then, the
pair (Y n

j , Un
j (M j )) is mapped by node j to Xn

j via a symbol-
by-symbol map. By the covering lemma, the source encoding
operation at the relays is successful if

R2 > I (U2; Y2),

R3 > I (U3; Y3).

At the destination node, decoding is performed by joint
typicality and indirect decoding of the sequences (Un

2 , Un
3 ),
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that is, by searching for the unique message M̂ ∈ [1 : 2nR ]
such that the tuple (Xn

1 (M̂), Un
2 (M2), Un

3 (M3), Y n
4 ) is jointly

typical for some M2 ∈ [1 : 2nR2 ] and M3 ∈ [1 : 2nR3 ]. By the
packing lemma, combined with the technique introduced in
Section II, the channel decoding operation at the destination
node is successful if

R < I (X1;U2, U3, Y4),

R + R2 < I (X1, U2;U3, Y4)+ I (X1;U2),

R + R3 < I (X1, U3;U2, Y4)+ I (X1;U3),

R + R2 + R3 < I (X1, U2, U3; Y4)+ I (X1;U2, U3)

+ I (U2;U3).

Hence, the lower bound (6) is obtained by combining the
conditions for source coding at the relay nodes with those
for channel decoding at the destination and by eliminating
the auxiliary rates R2 and R3 from the resulting system of
inequalities.

IV. CONCLUDING REMARKS

In this paper we first studied the problem of lossy communi-
cations over multiple access channels, for which we presented
a joint source–channel coding scheme based on hybrid coding
that unifies and generalizes several existing results in the liter-
ature. The proposed scheme is conceptually similar to separate
source and channel coding and is obtained by concatenating
the source coding scheme in [51] and [52] for distributed lossy
source coding with the channel coding scheme for multiple
access communication, except that the same codeword is used
for source coding as well as for channel coding. The same
design principle can be readily adapted to other joint source–
channel coding problems for which separate source coding and
channel coding have matching index structures [56].

Next, we explored applications of hybrid coding in the
context of relay networks. We introduced a general coding
technique for DM relay networks based on hybrid cod-
ing, whereby each relay uses the hybrid coding interface
to transmit a symbol-by-symbol function of the received
sequence and its quantized version (analog-to-analog/digital
interface). We demonstrated via two specific examples, the
two-relay diamond network and the two-way relay channel,
that the proposed hybrid coding can strictly outperform both
amplify–forward (analog-to-analog interface) and compress–
forward/noisy network coding (analog-to-digital interfaces).
For simplicity, we assumed that the relay nodes do not attempt
to decode the message transmitted by the source, but the
presented results can be further improved by combining hybrid
coding with other coding techniques such as decode–forward
and structured coding [66]. In this case, hybrid coding provides
a general analog/digital-to-analog/digital interface for relay
communication. While we focused on two specific examples,
similar ideas can be applied to general layered network model,
provided that the proposed hybrid coding scheme is repeated
at each layer in the network [56], [72]. In principle, hybrid
coding can also be applied to the full-duplex relay channel
and other nonlayered relay networks. However, in this case
hybrid coding (or even amplify–forward) would not yield inner

bounds on the capacity region in a single-letter form, due to
the dependency between the channel input at each relay node
and the previously received analog channel outputs.

APPENDIX A
PROOF OF THEOREM 1

For simplicity, we consider the case Q = ∅. Achievability
for an arbitrary Q can be proved using coded time sharing
[50, Sec. 4.5.3].

Codebook Generation: Let ε > ε′ > 0. Fix a conditional
pmf p(u1|s1)p(u2|s2), channel encoding functions x1(u1, s1)
and x2(u2, s2), and source decoding functions ŝ1(u1, u2, y)
and ŝ2(u1, u2, y) such that E(d j (Sj , Ŝ j )) ≤ D j /(1 + ε),
j = 1, 2. For each j = 1, 2, randomly and independently gen-
erate 2nR j sequences un

j (m j ), m j ∈ [1 : 2nR j ], each according
to

∏n
i=1 pU j (u j i). The codebook C = {(un

1(m1), un
2(m2)) :

m1 ∈ [1 : 2nR1 ] × [1 : 2nR2 ]} is revealed to both the encoders
and the decoder.

Encoding: Upon observing a sequence sn
j , encoder j = 1, 2

finds an index m j ∈ [1 : 2nR j ] such that (sn
j , un

j (m j )) ∈ T (n)
ε′ .

If there is more than one such index, it chooses one of
them at random. If there is no such index, it chooses an
index at random from [1 : 2nR j ]. Encoder j then transmits
x j i = x j (u j i (m j ), s j i ) for i ∈ [1 : n].

Decoding: Upon receiving yn , the decoder finds the unique
index pair (m̂1, m̂2) such that (un

1(m̂1), un
2(m̂2), yn) ∈ T (n)

ε

and sets the estimates as ŝ j i = ŝ j (u1i (m1), u2i (m2), yi ),
i ∈ [1 : n], for j = 1, 2.

Analysis of the Expected Distortion: We bound the distor-
tion averaged over (Sn

1 , Sn
2 ), the random choice of the code-

book C, and the random index assignments at the encoders.
Let M1 and M2 be the random indices chosen at encoder 1
and at encoder 2, respectively. Define the “error” event

E = {
(Sn

1 , Sn
2 , Un

1 (M̂1), Un
2 (M̂2), Y n) 	∈ T (n)

ε

}

such that the desired distortion pair is achieved if P(E) tends
to zero as n→∞. Partition E into the events

E j =
{
(Sn

j , Un
j (m j )) 	∈ T (n)

ε′ for all m j
}
, j = 1, 2,

E3 =
{
(Sn

1 , Sn
2 , Un

1 (M1), Un
2 (M2), Y n) 	∈ T (n)

ε

}
,

E4 =
{
(Un

1 (m1), Un
2 (m2), Y n) ∈ T (n)

ε

for some m1 	= M1, m2 	= M2
}
,

E5 =
{
(Un

1 (m1), Un
2 (M2), Y n) ∈ T (n)

ε for some m1 	= M1
}
,

E6 =
{
(Un

1 (M1), Un
2 (m2), Y n) ∈ T (n)

ε for some m2 	= M2
}
.

Then by the union of events bound,

P(E) ≤ P(E1)+ P(E2)+ P(E3 ∩ Ec
1 ∩ Ec

2 )

+P(E4)+ P(E5)+ P(E6).

By the covering lemma, P(E1) and P(E2) tend to zero as
n→∞, if

R1 > I (U1; S1)+ δ(ε′), (10)

R2 > I (U2; S2)+ δ(ε′). (11)

By the Markov lemma [50, Sec. 12.1.1], the third term tends
to zero as n →∞. By the symmetry of the random codebook
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generation and encoding, we analyze the remaining probability
terms conditioned on the event M = {M1 = 1, M2 = 1}. First,
by the union of events bound,

P(E4|M) ≤
2nR1∑

m1=2

2nR2∑

m2=2

∑

(un
1,un

2,yn)∈T (n)
ε

P
{
Un

1 (m1) = un
1, Un

2 (m2) = un
2, Y n = yn |M}

.

(12)

Let Ũn = (Un
1 (1), Un

2 (1), Sn
1 , Sn

2 ) and ũn = (ũn
1, ũn

2, sn
1 , sn

2 ) in
short. Then, by the law of total probability, for m1 	= 1 and
m2 	= 1,

P
{
Un

1 (m1) = un
1, Un

2 (m2) = un
2, Y n = yn|M}

=
∑

ũn

P
{
Un

1 (m1) = un
1, Un

2 (m2) = un
2,

Y n = yn, Ũn = ũn|M}

(a)=
∑

ũn

P
{
Un

1 (m1) = un
1 |M, Ũn = ũn}

×P
{
Un

2 (m2) = un
2|M, Un

1 (m1) = un
1, Ũn = ũn}

×P{Ũn = ũn |M, Y n = yn}P{Y n = yn|M}
(b)=

∑

ũn

P
{
Un

1 (m1) = un
1 |M1 = 1, Un

1 (1) = ũn
1, Sn

1 = sn
1

}

×P
{
Un

2 (m2) = un
2|M2 = 1, Un

2 (1) = ũn
2, Sn

2 = sn
2

}

×P{Ũn = ũn |M, Y n = yn}P{Y n = yn|M}
(c)≤ (1+ ε)

∑

ũn

( n∏

i=1

pU1(u1i )pU2(u2i )

)

×P{Ũn = ũn |M, Y n = yn}P{Y n = yn|M}
= (1+ ε)

( n∏

i=1

pU1(u1i )pU2(u2i )

)
P{Y n = yn|M} (13)

for n sufficiently large. Here, (a) follows since given M,

(Un
1 (m1), Un

2 (m2))

→ (Sn
1 , Sn

2 , Un
1 (M1), Un

2 (M2))→ Y n (14)

form a Markov chain for all m1 	= 1 and m2 	= 1, while
(b) follows from the independence of the sequences and the
encoding procedure. For step (c), we apply Lemma 1 at
the end of this section twice (first with U ← U1, S ←
S1, M ← M1 and second with U ← U2, S ← S2, M ← M2).
Combining (12) and (13), it follows that for n sufficiently large

P(E4|M) ≤ (1+ ε)

2nR1∑

m1=2

2nR2∑

m2=2

∑

(un
1,un

2,yn)∈T (n)
ε

p(un
1)

× p(un
2) P{Y n = yn|M}

≤ (1+ ε) 2n(R1+R2)
∑

yn∈T (n)
ε

P{Y n = yn|M}

× 2−n(I (U1,U2;Y )+I (U1;U2)−δ(ε))

≤ (1+ ε) 2n(R1+R2−I (U1,U2;Y )−I (U1;U2)+δ(ε)).

Hence, P(E4) tends to zero as n→∞ if

R1 + R2 < I (U1, U2; Y )+ I (U1;U2)− δ(ε). (15)

Following similar steps, P(E5) is upper bounded by

P
{
(Un

1 (m1), Un
2 (1), Y n) ∈ T (n)

ε for some m1 	= 1|M}

≤
2nR1∑

m1=2

P
{
(Un

1 (m1), Un
2 (1), Y n) ∈ T (n)

ε |M
}

=
2nR1∑

m1=2

∑

(un
1,un

2,yn)∈T (n)
ε

P
{
Un

1 (m1) = un
1, Un

2 (1) = un
2,

Y n = yn|M}

(a)≤ (1+ ε)

2nR1∑

m1=2

∑

(un
1,un

2,yn)∈T (n)
ε

p(un
1)

×P
{
Y n = yn, Un

2 (1) = un
2|M

}

≤ (1+ ε)2nR1
∑

(un
2,yn)∈T (n)

ε

P
{
Un

2 (1) = un
2, Y n = yn|M}

× 2−n(I (U1;Y,U2)−δ(ε))

≤ (1+ ε)2n(R1−I (U1;Y,U2)+δ(ε))

for n sufficiently large, which implies that P(E5) tends to zero
as n→∞ if

R1 < I (U1; Y, U2)− δ(ε). (16)

In the above chain of inequalities step (a) is justified as
follows. Let Ũn = (Un

1 (1), Sn
1 , Sn

2 ) and ũn = (ũn
1, sn

1 , sn
2 ) in

short. Then, by the law of total probability, for m1 	= 1,

P
{
Un

1 (m1) = un
1, Un

2 (1) = un
2, Y n = yn |M}

=
∑

ũn

P
{
Un

1 (m1) = un
1, Un

2 (1) = un
2, Y n = yn,

Ũn = ũn |M}

(b)=
∑

ũn

P
{
Un

1 (m1) = un
1 |M, Un

2 (1) = un
2, Ũn = ũn}

×P
{
Ũn = ũn |M, Un

2 (1) = un
2, Y n = yn}

×P
{
Un

2 (1) = un
2, Y n = yn|M}

(c)=
∑

ũn

P
{
Un

1 (m1) = un
1 |M1 = 1, Un

1 (1) = ũn
1, Sn

1 = sn
1

}

×P
{
Ũn = ũn |M, Un

2 (1) = un
2, Y n = yn}

×P
{
Un

2 (1) = un
2, Y n = yn|M}

(d)≤ (1+ ε)
∑

ũn

( n∏

i=1

pU1(u1i )

)

×P
{
Ũn = ũn |M, Un

2 (1) = un
2, Y n = yn}

×P
{
Un

2 (1) = un
2, Y n = yn|M}

= (1+ ε)

( n∏

i=1

pU1(u1i)

)
P

{
Un

2 (1) = un
2, Y n = yn|M}

for n sufficiently large. Here, (b) follows from the Markov
chain (14) for all m1 	= 1, (c) follows from the independence
of the sequences and the encoding procedure, while (d)
follows by Lemma 1 at the end of this section. Finally,
P(E6) can be bounded in a similar manner, provided that
the subscripts 1 and 2 are interchanged in the upper bound
for P(E5). It follows that P(E6) tends to zero as n→∞ if

R2 < I (U2; Y, U1)− δ(ε). (17)
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Therefore, if (10), (11), (15), (16), and (17) hold, the
probability of “error” tends to zero as n→∞ and the average
distortions over the random codebooks is bounded as desired.
Thus, there exists at least one sequence of codes achieving
the desired distortions. By letting ε → 0 and eliminating
the intermediate rate pair (R1, R2), the sufficient condition
in Theorem 1 (with Q = ∅) for lossy communication over a
DM-MAC via hybrid coding is established.

Lemma 1: Let (U, S) ∼ p(u, s) and ε > ε′ > 0. Let
Sn ∼ ∏n

i=1 pS(si ) and Un(m), m ∈ [1 : 2nR ], be
independently generated sequences, each drawn according to∏n

i=1 pU (ui ), independent of Sn . Let I = {m ∈ [1 : 2nR] :
(Un(m), Sn) ∈ T (n)

ε′ (U, S)} be a set of random indices and let
M ∼ Unif(I), if |I| > 0, and M ∼ Unif([1 : 2nR]), otherwise.
Then, for every (un, ũn, sn),

P{Un(2) = un |Un(1) = ũn, Sn = sn, M = 1}
≤ (1+ ε) ·

n∏

i=1

pU (ui )

for n sufficiently large.
Proof: Given ũn and sn , let A = {Un(1) = ũn, Sn = sn}

in short. Let C ′ = {Un(m) : m ∈ [3 : 2nR]}. Then, by the law
of total probability and the Bayes rule, for every un ,

P{Un(2) = un |M = 1,A}
=

∑

C′
P{C ′ = C′, Un(2) = un |M = 1,A}

=
∑

C′
P{C ′ = C′ |M = 1,A} P{Un(2) = un |A, C ′ = C′}

×P{M = 1 |A, Un(2) = un, C ′ = C′}
P{M = 1 |A, C ′ = C′}

=
∑

C′
P{C ′ = C′ |M = 1,A}

( n∏

i=1

pU (ui )

)

×P{M = 1 |A, Un(2) = un, C ′ = C′}
P{M = 1 |A, C ′ = C′} . (18)

For each (ũn, sn, un, C′) such that P{C ′ = C′|M = 1,A} > 0,
let

n(ũn, sn, un, C′) = n(sn, C′)
= |{u′n ∈ C′ : (u′n, sn) ∈ T (n)

ε′ }|
denote the number of unique sequences in C′ that are jointly
typical with sn and let

i(ũn, sn, un, C′) = i(ũn, sn, C′)

=
{

1, (ũn, sn) 	∈ T (n)
ε′ and n(sn, C′) = 0,

0, otherwise,

be the indicator function for the case that neither ũn nor any
codeword in C′ is jointly typical with sn . Then, by the way the
random index M is generated, it can be easily verified that

P{M = 1 |A, Un(2) = un, C ′ = C′}
≤ 1

2nR
i(ũn, sn, C′)+ 1

n(sn, C′)+ 1
(1− i(ũn, sn, C′)).

Similarly, since Un(2) ∼∏n
i=1 pU (ui ), independent of Sn and

Un(m), m 	= 2,

P{M = 1 |A, C ′ = C}
≥ P{M = 1 |A, C ′ = C′, 2 	∈ I} · P{2 	∈ I |A, C ′ = C′}
≥ P{M = 1 |A, C ′ = C′, 2 	∈ I}

(
1− 2−n(I (U ;S)−δ(ε′))

)

=
(

1

2nR
i(ũn, sn, C′)+ 1

n(sn, C′)+ 1
(1− i(ũn, sn , C′))

)

×(
1− 2−n(I (U ;S)−δ(ε′))).

It follows that

P{M = 1|Un(2) = un, E, C ′ = C′}
P{M = 1|E, C ′ = C′} ≤ 1

1− 2−n(I (U ;S)−δ(ε′))
≤ 1+ ε (19)

for n sufficiently large. By combining (18) and (19), the claim
follows.

APPENDIX B
PROOF OF THEOREM 2

We use b transmission blocks, each consisting of n trans-
missions, as in the proof of the multihop lower bound for the
relay channel [50, Sec. 16.4.1]. A sequence of (b−1) message
pairs (M1 j , M2 j ) ∈ [1 : 2nR1 ] × [1 : 2nR2 ], j ∈ [1 : b − 1],
each selected independently and uniformly over [1 : 2nR1 ] ×
[1 : 2nR2 ] is sent over b blocks. Note that the average rate pair
over the b blocks is ((b − 1)/b)(R1, R2), which can be made
arbitrarily close to (R1, R2) by letting b→∞.

Codebook Generation: Let ε > ε′ > 0. Fix a conditional
pmf p(x1)p(x2)p(u3|y3) and an encoding function x3(u3, y3).
We randomly and independently generate a codebook for
each block. For j ∈ [1 : b], randomly and independently
generate 2nR3 sequences un

3(l3 j ), l3 j ∈ [1 : 2nR3 ], each
according to

∏n
i=1 pU3(u3i). For each k = 1, 2, randomly

and independently generate 2nRk sequences xn
k (mkj ),

mkj ∈ [1 : 2nRk ], each according to
∏n

i=1 pXk (xki ). This
defines the codebook

C j =
{
(xn

1 (m1 j ), xn
2 (m2 j ), un

3(l3 j )) :
m1 ∈ [1 : 2nR1], m2 ∈ [1 : 2nR2 ], l3 ∈ [1 : 2nR3 ]}

for j ∈ [1 : b].
Encoding: Let mkj ∈ [1 : 2nRk ] be the message to be sent

in block j ∈ [1 : b − 1] by node k = 1, 2. Then, node k
transmits xn

k (mkj ) from codebook C j .
Relay Encoding: Upon receiving yn

3 ( j) in block
j ∈ [1 : b − 1], relay node 3 finds an index l3 j such
that (un

3(l3 j ), yn
3 ( j)) ∈ T (n)

ε′ . If there is more than one index,
it chooses one of them at random. If there is no such index, it
chooses an index at random from [1 : 2nR3 ]. In block j + 1,
relay 3 transmits x3i = x3(u3i (l3 j ), y3i ( j)) for i ∈ [1 : n].

Decoding: Upon receiving yn
1 ( j), j ∈ [2 : b], decoder 1

finds the unique message m̂2, j−1 such that

(xn
1 (m1, j−1), un

3(l3, j−1), xn
2 (m̂2, j−1), yn

1 ( j)) ∈ T (n)
ε

for some l3, j−1 ∈ [1 : 2nR3 ]. Decoding at node 2 is performed
in a similar manner.

Analysis of the Probability of Error: We analyze the
probability of decoding error at node 1 in block j = 2, . . . , b,
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averaged over the random codebooks and index assignment in
the encoding procedure at the relay. Let L3, j−1 be the random
index chosen in block j − 1 at relay 3. Decoder 1 makes an
error only if one or more of the following events occur:

E1 =
{
(Y n

3 ( j − 1), Un
3 (l)) 	∈ T (n)

ε′ for all l
}
,

E2 =
{
(Xn

1 (M1, j−1), Un
3 (L3, j−1),

Xn
2 (M2, j−1), Y n

1 ( j)) 	∈ T (n)
ε

}
,

E3 =
{
(Xn

1 (M1, j−1), Un
3 (L3, j−1), Xn

2 (m), Y n
1 ( j)) ∈ T (n)

ε

for some m 	= M2, j−1
}
,

E4 =
{
(Xn

1 (M1, j−1), Un
3 (l), Xn

2 (m), Y n
1 ( j)) ∈ T (n)

ε

for some m 	= M2, j−1, l 	= L3, j−1
}
.

Then, by the union of events bound the probability of decoding
error is upper bounded as

P(M̂2, j−1 	= M2, j−1) ≤ P(E1)+ P(E2 ∩ Ec
1)

+P(E3)+ P(E4).

By the covering lemma, P(E1) tends to zero as n →∞, if

R3 > I (U3; Y3)+ δ(ε′).

By the Markov lemma, P(E2 ∩ Ec
1) tends to zero as n →∞.

By the symmetry of the random codebook generation and the
random index assignment at the relays, it suffices to consider
the conditional probabilities of the remaining error events
conditioned on the event that

M = {M1, j−1 = 1, M2, j−1 = 1, L3, j−1 = 1}. (20)

Then, by the packing lemma, P(E3) tends to zero as n→∞
if

R2 < I (X2; Y1, U3|X1)− δ(ε).

Next, for n sufficiently large, P(E4) is upper bounded by

P
{
(Xn

1 (1), Un
3 (l), Xn

2 (m), Y n
1 ( j)) ∈ T (n)

ε

for some l 	= 1, m 	= 1|M}

≤
2nR2∑

m=2

2nR3∑

l=2

∑

(xn
1 ,un

3,xn
2 ,yn

1 )∈T (n)
ε

P
{

Xn
1 (1)= xn

1 , Un
3 (l)=un

3, Xn
2 (m) = xn

2 , Y n
1 ( j) = yn

1 |M
}

(a)≤ (1+ ε)

2nR2∑

m=2

2nR3∑

l=2

∑

(xn
1 ,un

3,xn
2 ,yn

1 )∈T (n)
ε

p(un
3)

×P
{

Xn
1 (1) = xn

1 , Xn
2 (m) = xn

2 , Y n
1 ( j) = yn

1 |M
}

= (1+ ε)

2nR2∑

m=2

2nR2∑

l2=2

∑

(xn
1 ,un

3,xn
2 ,yn

1 )∈T (n)
ε

p(un
3) · p(xn

2 )

×P
{

Xn
1 (1) = xn

1 , Y n
1 ( j) = yn

1 |M
}

≤ (1+ ε)2n(R2+R3)

·
∑

(xn
1 ,yn

1 )∈T (n)
ε

P
{

Xn
1 (1) = xn

1 , Y n
1 ( j) = yn

1 |M
}

× 2−n(I (X2,U3;Y1,X1)+I (X2;U3)−δ(ε))

≤ (1+ ε)2n(R2+R3−I (X2,U3;Y1,X1)−I (X2;U3)+δ(ε)).

Here, step (a) is justified as follows. Let Ũn = (Un
3 (1),

Y n
3 ( j − 1)) and ũn = (ũn

3, ỹn
3 ) in short. Then, by the law

of total probability, for l 	= 1 and m 	= 1,

P
{

Xn
1 (1) = xn

1 , Un
3 (l) = un

3, Xn
2 (m) = xn

2 , Y n
1 ( j) = yn

1 |M
}

=
∑

ũn

P
{

Xn
1 (1) = xn

1 , Un
3 (l) = un

3, Xn
2 (m) = xn

2 ,

Y n
1 ( j) = yn

1 , Ũn = ũn|M}

(b)=
∑

ũn

P
{
Un

3 (l) = un
3 |M, Xn

1 (1) = xn
1 , Xn

2 (m) = xn
2 ,

Ũn = ũn}

×P
{
Ũn= ũn |M, Xn

1 (1)= xn
1 , Xn

2 (m) = xn
2 , Y n

1 ( j) = yn
1

}

×P
{

Xn
1 (1) = xn

1 , Xn
2 (m) = xn

2 , Y n
1 ( j) = yn

1 |M
}

(c)=
∑

ũn

P
{
Un

3 (l) = un
3 |L3, j−1 = 1, Un

3 (1) = ũn
3,

Y n
3 ( j − 1) = ỹn

3

}

×P
{
Ũn= ũn |M, Xn

1 (1)= xn
1 , Xn

2 (m) = xn
2 , Y n

1 ( j) = yn
1

}

×P
{

Xn
1 (1) = xn

1 , Xn
2 (m) = xn

2 , Y n
1 ( j) = yn

1 |M
}

(d)≤ (1+ ε)
∑

ũn

( n∏

i=1

pU3(u3i )

)

×P
{
Ũn= ũn |M, Xn

1 (1)= xn
1 , Xn

2 (m) = xn
2 , Y n

1 ( j) = yn
1

}

×P
{

Xn
1 (1) = xn

1 , Xn
2 (m) = xn

2 , Y n
1 ( j) = yn

1 |M
}

= (1+ ε)

( n∏

i=1

pU1(u1i )

)

×P
{

Xn
1 (1) = xn

1 , Xn
2 (m) = xn

2 , Y n
1 ( j) = yn

1 |M
}

for n sufficiently large, where (b) follows since given M,
Un

3 (l) → (Xn
1 (1), Xn

2 (m), Un
3 (L3, j−1), Y n

3 ( j − 1)) → Y n
1 ( j)

form a Markov chain for all l 	= 1 and m 	= 1, step (c) follows
from the independence of the sequences and the encoding
procedure, while (d) follows by Lemma 1. It follows that
P(E4) tends to zero as n→∞ if

R2 + R3 < I (X2, U3; X1, Y1)+ I (X2;U3)− δ(ε).

By similar steps, the decoding error probability at node 2 tends
to zero as n→∞ if R1 < I (X1, U3; Y2|X2)− δ(ε) and

R1 + R3 < I (X1, U3; X2, Y2)+ I (X1;U3)− δ(ε).

Finally, by eliminating R3 from the above inequalities, the
probability of error tends to zero as n →∞ if the conditions
in Theorem 2 are satisfied.

APPENDIX C
PROOF OF THEOREM 3

As in the previous section, we use block Markov coding
with b transmission blocks and communicate a sequence of
(b − 1) messages M j ∈ [1 : 2nR], j ∈ [1 : b − 1].

Codebook Generation: Let ε > ε′ > 0. Fix a condi-
tional pmf p(x1)p(u2|y2)p(u3|y3) and two encoding functions
x2(u2, y2) and x3(u3, y3). We randomly and independently
generate a codebook for each block. For j ∈ [1 : b],
randomly and independently generate 2nR sequences xn

1 (m j ),
M j ∈ [1 : 2nR], each according to

∏n
i=1 pX1(x1i ). For

each k = 2, 3, randomly and independently generate 2nRk

sequences un
k (lkj ), lkj ∈ [1 : 2nRk ], each according to∏n

i=1 pUk (uki ).
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Encoding: Let m j ∈ [1 : 2nR] be the message to be sent in
block j ∈ [1 : b−1]. Then, the source node transmits xn

1 (m j ).
Relay Encoding: Upon receiving yn

k ( j) in block
j ∈ [1 : b − 1], relay node k = 2, 3 finds an index lkj

such that (un
k (lkj ), yn

k ( j)) ∈ T (n)
ε′ . If there is more than one

index, it chooses one of them at random. If there is no
such index, it chooses an index at random from [1 : 2nRk ].
In block j + 1, relay k transmits xki = xk(uki (lkj ), yki ( j))
for i ∈ [1 : n].

Decoding: Upon receiving yn
4 ( j), j ∈ [2 : b], the decoder

finds the unique message m̂ j−1 such that

(xn
1 (m̂ j−1), un

2(l2, j−1), un
3(l3, j−1), yn

4 ( j)) ∈ T (n)
ε ,

for some l2, j−1 ∈ [1 : 2nR2 ] and l3, j−1 ∈ [1 : 2nR3 ].
Analysis of the Probability of Error: We analyze the prob-

ability of decoding error for the message M j−1 in block
j = 2, . . . , b, averaged over the random codebooks and index
assignments. Let L2, j−1 and L3, j−1 be the random indices
chosen in block j−1 at relay nodes 2 and 3, respectively. The
decoder makes an error only if one or more of the following
events occur:

E1 =
{
(Y n

2 ( j − 1), Un
2 (l2)) 	∈ T (n)

ε′ for all l2
}
,

E2 =
{
(Y n

3 ( j − 1), Un
3 (l3)) 	∈ T (n)

ε′ for all l3
}
,

E3 =
{
(Xn

1 (M j−1), Un
2 (L2, j−1), Un

3 (L3, j−1), Y n
4 ( j)) 	∈ T (n)

ε

}
,

E4 =
{
(Xn

1 (m), Un
2 (L2, j−1), Un

3 (L3, j−1), Y n
4 ( j)) ∈ T (n)

ε

for some m 	= M j−1
}
,

E5 =
{
(Xn

1 (m), Un
2 (l2), Un

3 (L3, j−1), Y n
4 ( j)) ∈ T (n)

ε

for some l2 	= L2, j−1, m 	= M j−1
}
,

E6 =
{
(Xn

1 (m), Un
2 (L2, j−1), Un

3 (l3), Y n
4 ( j)) ∈ T (n)

ε

for some l3 	= L3, j−1, m 	= M j−1
}
,

E7 =
{
(Xn

1 (m), Un
2 (l2), Un

3 (l3), Y n
4 ( j)) ∈ T (n)

ε

for some l2 	= L2, j−1, l3 	= L3, j−1, m 	= M j−1
}
.

Then by the union of events bound, the probability of decoding
error is upper bounded as

P(M̂ j−1 	= M j−1) ≤ P(E1)+ P(E2)+ P(E3 ∩ Ec
1 ∩ Ec

2)

+P(E4)+ P(E5)+ P(E6)+ P(E7).

By the covering lemma, P(E1) and P(E2) tend to zero as
n→∞, if

R2 > I (U2; Y2)+ δ(ε′),
R3 > I (U3; Y3)+ δ(ε′),

respectively. By the Markov lemma, P(E3 ∩ Ec
1 ∩ Ec

2 ) tends to
zero as n → ∞. By the symmetry of the random codebook
generation and the random index assignment at the relays,
it suffices to consider the conditional probabilities of the
remaining error events conditioned on the event that

M = {M j−1 = 1, L2, j−1 = 1, L3, j−1 = 1}. (21)

Then, by the packing lemma, P(E4) tends to zero as
n→∞ if

R < I (X1;U2, U3, Y4)− δ(ε).

Next we bound P(E5). Let Ũn = (Un
2 (1), Y n

2 ( j − 1),
Y n

3 ( j − 1)) and ũn = (ũn
2, ỹn

2 , ỹn
3 ) in short. Then, by the law

of total probability, for l2 	= 1, l3 	= 1, and m 	= 1,

P
{

Xn
1 (m) = xn

1 , Un
2 (l2) = un

2, Un
3 (1) = un

3, Y n
4 ( j) = yn

4 |M
}

=
∑

ũn

P
{

Xn
1 (m) = xn

1 , Un
2 (l2) = un

2, Un
3 (1) = un

3,

Y n
4 ( j) = yn

4 , Ũn = ũn|M}

(a)=
∑

ũn

P
{
Un

2 (l2) = un
2 |M, Xn

1 (m) = xn
1 , Un

3 (1) = un
3,

Ũn = ũn}

×P
{
Ũn= ũn |M, Xn

1 (m)= xn
1 , Un

3 (1) = un
3, Y n

4 ( j) = yn
4

}

×P
{

Xn
1 (m) = xn

1 , Un
3 (1) = un

3, Y n
4 ( j) = yn

4 |M
}

(b)=
∑

ũn

P
{
Un

2 (l2) = un
2 |L2, j−1 = 1, Un

2 (1), Y n
2 ( j − 1)

}

×P
{
Ũn= ũn |M, Xn

1 (m)= xn
1 , Un

3 (1) = un
3, Y n

4 ( j) = yn
4

}

×P
{

Xn
1 (m) = xn

1 , Un
3 (1) = un

3, Y n
4 ( j) = yn

4 |M
}

(c)≤ (1+ ε)

( n∏

i=1

pU2(u2i )

)

×P
{

Xn
1 (m) = xn

1 , Un
3 (1) = un

3, Y n
4 ( j) = yn

4 |M
}

for n sufficiently large. Here, (a) follows since given M,

Un
2 (l2) →

(
Un

2 (L2, j−1), Un
3 (L3, j−1), Y n

2 ( j − 1), Y n
3 ( j − 1)

)

→ Y n
4 ( j)

form a Markov chain for all l2 	= 1, (b) follows from the
independence of the sequences and the encoding procedure,
and (c) follows by Lemma 1. Hence, for n sufficiently large,

P(E5) = P
{
(Xn

1 (m), Un
2 (l2), Un

3 (1), Y n
4 ( j)) ∈ T (n)

ε

for some l2 	= 1, m 	= 1|M}

≤
2nR∑

m=2

2nR2∑

l2=2

∑

(xn
1 ,un

2,un
3,yn

4 )∈T (n)
ε

P
{

Xn
1 (m) = xn

1 , Un
2 (l2) = un

2, Un
3 (1) = un

3,

Y n
4 ( j) = yn

4 |M
}

≤ (1+ ε)

2nR∑

m=2

2nR2∑

l2=2

∑

(xn
1 ,un

2,un
3,yn

4 )∈T (n)
ε

p(un
2)

×P
{

Xn
1 (m) = xn

1 , Un
3 (1) = un

3, Y n
4 ( j) = yn

4 |M
}

= (1+ ε)

2nR∑

m=2

2nR2∑

l2=2

∑

(xn
1 ,un

2,un
3,yn

4 )∈T (n)
ε

p(un
2)

× p(xn
1 ) P

{
Un

3 (1) = un
3, Y n

4 ( j) = yn
4 |M

}

= (1+ ε)2n(R+R2)

×
∑

(un
2,yn

4 )∈T (n)
ε

P
{
Un

3 (1) = un
3, Y n

4 ( j) = yn
4 |M

}

× 2−n(I (X1,U2;U3,Y4)+I (X1;U2)−δ(ε)),

which implies that P(E5) tends to zero as n→∞ if

R + R2 < I (X1, U2;U3, Y4)+ I (X1;U2)− δ(ε).
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We can bound P(E6) in a similar manner, provided that the
subscripts 2 and 3 are interchanged in the upper bound for
P(E5). Thus, P(E6) tends to zero as n→∞ if

R + R3 < I (X1, U3;U2, Y4)+ I (X1;U3)− δ(ε).

Next we bound P(E7). Let Ũn = (Un
2 (1), Un

3 (1),
Y n

2 ( j − 1), Y n
3 ( j − 1)) and ũn = (ũn

2, ũn
3, ỹn

2 , ỹn
3 ) in short.

Then, by the law of total probability, for l2 	= 1, l3 	= 1, and
m 	= 1,

P
{

Xn
1 (m) = xn

1 , Un
2 (l2) = un

2, Un
3 (l3) = un

3, Y n
4 ( j) = yn

4 |M
}

=
∑

ũn

P
{

Xn
1 (m) = xn

1 , Un
2 (l2) = un

2, Un
3 (l3) = un

3,

Y n
4 ( j) = yn

4 , Ũn = ũn|M}

(a)=
∑

ũn

P
{
Un

2 (l2) = un
2, Un

3 (l3) = un
3|M, Xn

1 (m) = xn
1 ,

Ũn = ũn}

×P
{
Ũn = ũn|M, Xn

1 (m) = xn
1 , Y n

4 ( j) = yn
4

}

×P
{

Xn
1 (m) = xn

1 , Y n
4 ( j) = yn

4 |M
}

(b)=
∑

ũn

P
{
Un

2 (l2) = un
2|L2, j−1 = 1, Un

2 (1), Y n
2 ( j − 1)

}

×P
{
Un

3 (l3) = un
3 |L3, j−1 = 1, Un

3 (1), Y n
3 ( j − 1)

}

×P
{
Ũn = ũn|M, Xn

1 (m) = xn
1 , Y n

4 ( j) = yn
4

}

×P
{

Xn
1 (m) = xn

1 , Y n
4 ( j) = yn

4 |M
}

(c)≤ (1+ ε)

( n∏

i=1

pU2(u2i )pU3(u3i )

)

×P
{

Xn
1 (m) = xn

1 , Y n
4 ( j) = yn

4 |M
}

for n sufficiently large. Here, step (a) follows since given M,(
Un

2 (l2), Un
2 (l3)

) → (
Un

2 (L2, j−1), Un
3 (L3, j−1), Y n

2 ( j − 1),
Y n

3 ( j − 1)
)→ Y n

4 ( j) form a Markov chain for all l2 	= 1 and
l3 	= 1, (b) follows from the independence of the sequences
and the encoding procedure, and (c) follows by applying
Lemma 1 twice. Thus, for n sufficiently large,

P(E7) = P
{
(Xn

1 (m), Un
2 (l2), Un

3 (l3), Y n
4 ( j)) ∈ T (n)

ε

for some l2 	= 1, l3 	= 1, m 	= 1|M}

≤
2nR∑

m=2

2nR2∑

l2=2

2nR3∑

l3=2

∑

(xn
1 ,un

2 ,un
3,yn

4 )∈T (n)
ε

P
{

Xn
1 (m) = xn

1 , Un
2 (l2) = un

2, Un
3 (l3) = un

3,

Y n
4 ( j) = yn

4 |M
}

≤ (1+ ε)

2nR∑

m=2

2nR2∑

l2=2

2nR3∑

l3=2

∑

(xn
1 ,un

2,un
3,yn

4 )∈T (n)
ε

p(un
2)

× p(un
3) · P

{
Xn

1 (m) = xn
1 , Y n

4 ( j) = yn
4 |M

}

= (1+ ε)

2nR∑

m=2

2nR2∑

l2=2

2nR3∑

l3=2

∑

(xn
1 ,un

2,un
3,yn

4 )∈T (n)
ε

p(un
2)

× p(un
3)p(xn

1 ) · P{
Y n

4 ( j) = yn
4 |M

}

= (1+ ε)2n(R+R2+R3)
∑

yn
4∈T (n)

ε

P
{
Y n

4 ( j) = yn
4 |M

}

× 2−n(I (X1,U2,U3;Y4)I (X1;U2,U3)+I (U2;U3)−δ(ε)),

which implies that P(E7) tends to zero as n→∞ if

R + R2 + R3 < I (X1, U2, U3; Y4)+ I (X1;U2, U3)

+ I (U2;U3)− δ(ε).

Finally, by eliminating R2 and R3, the probability of error
tends to zero as n → ∞ if the conditions in Theorem 3 are
satisfied.
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