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Partial Decode-Forward Relaying for the
Gaussian Two-Hop Relay Network

Jing Li and Young-Han Kim, Fellow, IEEE

Abstract— The multicast capacity of the Gaussian two-hop
relay network with one source, N relays, and L destinations
is studied. It is shown that a careful modification of the partial
decode-forward coding scheme, whereby the relays recover and
coherently transmit degraded sets of message parts, achieves
the cutset upper bound within (1/2) log N bits regardless of the
channel gains and power constraints. This scheme improves upon
a previous scheme by Chern and Özgür, which is also based on
partial decode-forward yet has an unbounded gap from the cutset
bound for L ≥ 2 destinations. When restricted to noncoherent
transmission among the relays, the proposed partial decode-
forward scheme achieves a slightly larger gap of log N bits from
the cutset bound. The computation of this relaxed achievable rate
involves evaluating mutual information across L(N + 1) cuts out
of the total L2N possible cuts, providing a very simple linear-
complexity algorithm to approximate the single-source multicast
capacity of the Gaussian two-hop relay network.

Index Terms— Capacity approximation, cutset bound, distrib-
uted decode-forward, noisy network coding, partial decode-
forward, relay network.

I. INTRODUCTION

CONSIDER the Gaussian two-hop relay network with
one source, N relays, and L destinations as depicted

in Fig. 1, which can be viewed as a cascade of a broadcast
channel (BC) from the source to the relays and multiple
multiple access channels (MACs) from the relays to the
destinations. The source node wishes to reliably communicate
a common message to the L destination nodes with help of
the N relays. The special case of L = 1, originally introduced
by Schein and Gallager [1], [2], is often referred to as the
diamond network. The capacity is not known in general except
for the trivial case of N = 1.

The best known capacity upper bound is the cutset
bound [3], which is the maximum of the minimum mutual
information across all possible cuts that separate the
source and the destinations. There are several capacity
lower bounds based on different coding schemes.
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Fig. 1. The Gaussian two-hop relay network.

The compress–forward scheme for the 3-node relay
channel by Cover and El Gamal [4] has been extended
to relay networks in several forms, such as quantize–map–
forward (QMF) by Avestimehr et al. [5], and noisy network
coding (NNC) [6], [7]. The standard analysis [6] shows that
when specialized to our two-hop network model in Fig. 1,
these coding schemes achieve the cutset bound within O(N)
bits for any channel parameters (recall that N is the number
of relays).

Recently, Chern and Özgür [8] provided a more refined
analysis on the performance of NNC and showed that it
achieves within (1/2) log(2N(N + 1)) bits from the cut-
set bound regardless of the number of destinations. In the
same paper [8], Chern and Özgür extended the partial
decode–forward (PDF) scheme for the relay channel by
Cover and El Gamal [4] to the Gaussian diamond network
(L = 1). In the PDF scheme by Chern and Özgür, the source
broadcasts independent parts of the message to the relays,
which in turn recover and forward their corresponding parts to
the destination over the MAC. Thus, the Chern–Özgür scheme
can achieve the rate characterized by the intersection of the BC
capacity region and the MAC capacity region, which can be
shown to be within log N bits from the cutset bound. When
there are more than one destination node, however, the gap
from the cutset bound becomes unbounded [8, Sec. VI].

In this paper, we develop an alternative extension of par-
tial decode–forward that achieves the cutset bound within
(1/2) log N bits for any number of destination nodes. In the
proposed scheme, the relays decode for multiple message
parts based on their respective decoding capabilities (as in
the BC with degraded message sets [9]) and forward these
parts cooperatively (as in the MAC with degraded message
sets [10], [11]). Thus, the proposed scheme achieves the rate
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characterized by the intersection of the capacity region of the
BC with degraded message sets and the capacity regions of the
group of multiple access channels with degraded message
sets.

Although this improvement may be viewed at first as an
unnatural complication (except for the obvious benefit for
achieving higher multicast rates with L ≥ 2 destinations),
it actually yields a simpler characterization of the achievable
rate when independent Gaussian random codebooks are used
at the relays, which yields a slightly looser but easier-to-
compute log N approximation of the capacity. Exact com-
putation of the cutset bound as well as of the achievable
rates for NNC and the Chern–Özgür PDF scheme requires
evaluating mutual information across L2N different cuts and
then taking the minimum, which takes exponential time. As
an alternative, approximate computation of the capacity (or
the cutset bound) of the single-source single-destination relay
network has been proposed by Parvaresh and Etkin [12]
based on properties of submodular function minimization,
which implies that the capacity of our two-hop network with
L = 1 can be approximated within 2N in polynomial time of
O(L N6) complexity (see also [13]). In this paper, we refine
and strengthen the Parvaresh–Etkin approximation result by
showing that the achievable rate of our PDF scheme under
independent codebooks involves evaluating only L(N +1) cut
rates. As a consequence, we develop an explicit algorithm to
approximate the capacity as well as the cutset bound within
log N with linear time complexity.

Finally, we evaluate the performance of yet another variant
of partial decode–forward for the two-hop relay network.
Recently, Lim, Kim, and Kim developed distributed decode–
forward, which generalizes partial decode–forward to general
noisy networks for multicast [14] and broadcast [15]. As in the
case of noisy network coding, a naive analysis of distributed
decode–forward results in an achievable rate within N/2 bits
from the cutset bound. In this paper, we provide a refined
analysis that establishes a gap of log N + 1/2 bits from the
cutset bound.

The rest of the paper is organized as follows. In the next
section, we review basic facts on polymatroids. In Section III,
we formally define the capacity of the Gaussian two-hop
relay network. In Section IV, we review the cutset upper
bound on the capacity, which will be benchmarked throughput.
In Section V, we review the Chern–Özgür partial decode–
forward scheme for the Gaussian diamond network (L = 1).
In Section VI, we present our coding scheme for the special
case of the diamond network and then extend this result to
the general L-destination case. In Section VII, we show the
computation of the achievable rate of the relaxed version of our
coding scheme involves linear complexity. In Section VIII, we
put forward the improved analysis of the performance of DDF.
Section IX concludes the paper.

Throughout the paper, we mostly follow the notation in [16].
In particular, we denote [1 : N] := {1, 2, · · · , N}. The maxi-
mum element of a finite set is denoted as Jmax := max(J ).
A tuple of random variables is denoted as X (J ) := (X j :
j ∈ J ). The Gaussian capacity function is defined as
C(x) := (1/2) log(1 + x).

II. MATHEMATICAL PRELIMINARIES

Let φ : 2[1:N] → [0,∞) be a set function satisfying

1) φ(∅) = 0,
2) φ(J ) ≤ φ(K) if J ⊆ K, and
3) φ(J ∩ K)+ φ(J ∪ K) ≤ φ(J )+ φ(K).

Then the polyhedron

P(φ) :=
{
(x1, · · · , xN ) ∈ [0,∞)N :
∑
j∈J

x j ≤ φ(J ), J ⊆ [1 : N]
}

is said to be a polymatroid (associated with φ); see, for
example, [17].

Example 1: For any random tuple (X1, . . . , X N ,Y ) such
that X1, . . . , X N are mutually independent, the set of rate
tuples (R1, . . . , RN ) satisfying∑

j∈J
R j ≤ I (X (J ); Y |X (J c))

is a polymatroid [11, Lemma 3.1]. In particular, if
X j ∼ N(0, Sj ), j ∈ [1 : N], and Y = ∑N

j=1 X j + Z , where
X1, . . . , X N and Z ∼ N(0, 1) are mutually independent, then
the set of rate tuples (R1, . . . , RN ) satisfying

∑
j∈J

R j ≤ C

⎛
⎝∑

j∈J
Sj

⎞
⎠

is a polymatroid.
Example 2: Let � : [1 : N] → [0,∞) be nondecreasing

and define φ : 2[1:N] → [0,∞) by

φ(J ) =
{

0, J = ∅,
�(Jmax), otherwise.

Then it can be readily shown that P(φ) is a polymatroid
characterized by active inequalities

k∑
j=1

x j ≤ φ([1 : k]) = �(k), k ∈ [1 : N].

In particular, for any random tuple (X1, . . . , X N ,Y ), the set
of rate tuples (R1, . . . , RN ) satisfying

k∑
j=1

R j ≤ I (Xk ; Y |X N
k+1)

is a polymatroid.
The following well-known result is pivotal in our discussion.
Lemma 1 (Edmonds’s polymatroid intersection

theorem [18]): If P(φ) and P(ψ) are two polymatroids,
then

max

{ N∑
j=1

x j : (x1, · · · , xN ) ∈ P(φ) ∩ P(ψ)

}

= min
J⊆[1:N]

[
φ(J )+ ψ(J c)

]
.
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III. FORMAL DEFINITION OF CAPACITY

Recall the Gaussian two-hop relay network model depicted
in Fig. 1. The received signals at the relays corresponding to
the signal X from the source node are

Y j = g j X + Z j , j ∈ [1 : N],
where g1, . . . , gN are the channel gains from the source to
relay nodes 1 through N , respectively, and Z1, . . . , Z N are
independent N(0, 1) noise components. We assume without
loss of generality that

|g1| ≥ |g2| ≥ · · · ≥ |gN |. (1)

Similarly, the received signals at the destinations correspond-
ing to the signals X̃1, . . . , X̃ N transmitted from the relays are

Ỹd =
N∑

j=1

g̃d j X̃ j + Z̃d , d ∈ [1 : L],

where g̃d j , j ∈ [1 : N], d ∈ [1 : L], denote the channel
gain from relay node j to destination node d , and Z̃1, . . . , Z̃ L

are independent N(0, 1) noise components. The first (source-
to-relays) hop of the network can be viewed as a Gaussian
broadcast channel, while the second (relays-to-destinations)
hop of the network can be viewed as multiple Gaussian
multiple access channels. All nodes are subject to (expected)
average power constraint P , and we denote by Sj = g2

j P and

S̃d j = g̃2
d j P the received signal-to-noise ratios (SNRs) at the

relays and the receivers, respectively.
We define a (2nR, n) code for a Gaussian two-hop relay

network by

• a message set [1 : 2nR],
• an source encoder that assigns a codeword xn(m) to each

message m ∈ [1 : 2nR],
• a set of relay encoders, where encoder j ∈ [1 : N] assigns

a symbol x̃ j i(y
i−1
j ) to each past received sequence yi−1

j
for each transmission time i ∈ [1 : n], and

• a set of decoders, where decoder d ∈ [1 : L] assigns
an estimate m̂d or an error message e to each received
sequence ỹn

d .

We assume that the message M is uniformly distributed over
the message set. The average probability of error is defined as
P(n)e = P{M̂d �= M for some d ∈ [1 : L]}. A rate R is said to
be achievable for the Gaussian two-hop relay network if there
exists a sequence of (2nR, n) codes such that limn→∞ P(n)e =0.
The capacity C is defined as the supremum of all achievable
rates.

When N = 1, the capacity is

C = min

{
C(S1), min

d
C(S̃d1)

}
.

For N ≥ 2, however, no computable characterization of
the capacity is known even when L = 1. In subsequent
sections, we present bounds on the capacity and establish their
closeness.

IV. THE CUTSET BOUND ON THE CAPACITY

Since the network consists of two noninteracting channel
layers, the cutset bound [3] on the capacity of a general noisy
network can be simplified as

C ≤ RCS

:= sup
F

min
d,J

[
I (X; Y (J c))+ I (X̃(J ); Ỹd |X̃(J c))

]
, (2)

where the supremum is over all joint distributions F(x)F(x̃ N )

satisfying E(X2) ≤ P and E(X̃2
j ) ≤ P , j ∈ [1 : N], the

minimum is over all d ∈ [1 : L] and J ⊆ [1 : N], and
J c denotes [1 : N] \J . By the maximum differential entropy
lemma (see, for example, [16, Sec. 2.2]), the supremum in (2)
is attained by Gaussian X and jointly Gaussian (X̃1, . . . , X̃ N ).
By switching the order of the supremum (over Gaussian
distributions) and the minimum, the cutset bound is further
upper bounded as

RCS ≤ sup
F(x̃ N )

min
d,J

sup
F(x)

[
I (X; Y (J c))+ I (X̃(J ); Ỹd |X̃(J c))

]

= sup
F(x̃ N )

min
d,J

[
C

( ∑
j∈J c

S j

)
+ I (X̃(J ); Ỹd |X̃(J c))

]
(3)

≤ min
d,J

sup
F(x̃ N )

[
C

( ∑
j∈J c

S j

)
+ I (X̃(J ); Ỹd |X̃(J c))

]

≤ min
d,J

[
C

( ∑
j∈J c

S j

)
+ C

((∑
j∈J

√
S̃d j

)2
)]
. (4)

Note that direct computation of the cutset bound in (3) for a
fixed distribution or its relaxation in (4) involves evaluation
of the minimum rate over the combination of 2N choices of
J and L choices of d , that is, the total L2N cuts that separate
the source and the destinations.

V. THE CHERN–ÖZGÜR PARTIAL DECODE–FORWARD

SCHEME FOR THE GAUSSIAN DIAMOND NETWORK

In the partial decode–forward scheme by Chern and
Özgür [8] (see also [19]), which was developed mainly for
the case L = 1, the source node divides the message
M into N independent parts M1, . . . ,MN (rate splitting), relay
j recovers M j and forwards it (decode–forward), and the
destination node forms the estimates of M1, . . . ,MN and thus
of M itself; see Fig. 2. This scheme is implemented over
two hops in a block Markov fashion, and the achievable rate
can be characterized as

RPDF = max

{ N∑
j=1

R j : (R1, . . . , RN ) ∈ RBC ∩ RMAC

}
. (5)

Here RBC is the capacity region of the standard N-receiver
Gaussian broadcast channel with SNRs S1, . . . , SN , that is, the
set of rate tuples (R1, . . . , RN ) such that

R j ≤ C
(

α j S j∑ j−1
k=1 αk S j + 1

)
, j ∈ [1 : N], (6)

for some (α1, . . . , αN ) satisfying α j ≥ 0, j ∈ [1 : N], and∑N
j=1 α j = 1, which, by the BC–MAC duality [20], can be
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Fig. 2. The Chern–Özgür partial decode–forward coding scheme for L = 1.

written as the set of rate pairs (R1, . . . , RN ) such that

∑
j∈J

R j ≤ C
(∑

j∈J
β j S j

)
, J ⊆ [1 : N], (7)

for some (β1, . . . , βN ) satisfying β j ≥ 0, j ∈ [1 : N],
and

∑N
j=1 β j = 1. In (5), RMAC is the capacity region of

the standard N-sender Gaussian multiple access channel with
SNRs S̃11, . . . , S̃1N , i.e., the set of rate tuples (R1, . . . , RN )
such that

∑
j∈J

R j ≤ C
(∑

j∈J
S̃1 j

)
, J ⊆ [1 : N].

Note that the region RMAC is a polymatroid (cf. Example 1),
but the region RBC is not in general. Consequently, the
maximum sum-rate of the intersection of the two regions,
characterized by (5), is rather cumbersome to calculate. Chern
and Özgür set β j ≡ 1/N in (7) to obtain a polymatroidal inner
bound on RBC characterized by

∑
j∈J

R j ≤ C
(

1

N

∑
j∈J

Sj

)
, J ⊆ [1 : N]. (8)

Now by (5) and Edmonds’s polymatroid intersection theorem
with

φ(J ) = C
(∑

j∈J
S̃1 j

)
,

ψ(J ) = C
(

1

N

∑
j∈J

Sj

)
,

the corresponding (lower bound on the) achievable rate is

RPDF ≥ min
J⊆[1:N]

[
φ(J )+ ψ(J c)

]

= min
J⊆[1:N]

[
C

(
1

N

∑
j∈J c

S j

)
+ C

(∑
j∈J

S̃1 j

)]
. (9)

By comparing this rate with the capacity upper bound in (4),
we observe that the gaps for the two terms, both due to the

lack of coherent cooperation, are bounded uniformly as

�BC = C
( ∑

j∈J c

S j

)
− C

(
1

N

∑
j∈J c

S j

)

≤ 1

2
log

(
1 +

∑
j∈J c

S j

)
− 1

2
log

(
1

N
+ 1

N

∑
j∈J c

S j

)

= 1

2
log N, (10)

�MAC = C
((∑

j∈J

√
S̃1 j

)2
)

− C
(∑

j∈J
S̃1 j

)

≤ 1

2
log

(
N + N

∑
j∈J

S̃1 j

)
− 1

2
log

(
1 +

∑
j∈J

S̃1 j

)

= 1

2
log N. (11)

In conclusion, the gap between the achievable rate of the
Chern–Özgür partial decode–forward scheme and the cutset
bound is upper bounded as

�PDF := RCS − RPDF ≤ log N, (12)

regardless of Sj and S̃1k , j, k ∈ [1 : N].

VI. THE PROPOSED PARTIAL DECODE–FORWARD SCHEME

We propose a modified version of the Chern–Özgür partial
decode–forward scheme as depicted in Fig. 3. Here, the
relays recover degraded sets of the message parts in the
natural order—recall the assumption on the channel gains
in (1)—say, relay 1 recovers (M1, . . . ,MN ), relay 2 recovers
(M2, . . . ,MN ), relay 3 recovers (M3, . . . ,MN ), and so on.
The relays then cooperatively communicate these message
parts to each destination as in the multiple access channel
with degraded message sets [10], [11].

A. The Diamond Network

For simplicity of exposition, we first consider the case
L = 1. The achievable rate of the proposed scheme can be
characterized as

R′
PDF = max

{ N∑
j=1

R j : (R1, . . . , RN ) ∈ R ′
BC ∩ R ′

MAC

}
,

where R ′
BC is the capacity region of the standard N-receiver

Gaussian broadcast channel (BC) with degraded message
sets and R ′

MAC is the capacity region of the N-sender
Gaussian multiple access channel (MAC) with degraded mes-
sage sets. Since the broadcast channel is degraded in the order
of 1 → 2 → · · · → N , R ′

BC = RBC as in (6). The capacity
region of the multiple access channel with degraded message
sets [10], [11] consists of all rate tuples (R1, . . . , RN ) such that

k∑
j=1

R j ≤ I (X̃ k ; Ỹ1|X̃ N
k+1), k ∈ [1 : N], (13)

for some F(x̃ N ) such that E(X̃2
j ) ≤ P , j ∈ [1 : N]. Again

by the maximum differential entropy lemma, there is no loss
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Fig. 3. The proposed partial decode–forward scheme for L = 1.

of generality in setting (X̃1, . . . , X̃ N ) to be jointly Gaussian
in (13).

In order to obtain a lower bound on R′
PDF, we follow

the same approach [8], [19] as reviewed in the previous
section and use the polymatroidal inner bound on R ′

BC in (8).
As for R ′

MAC, we note that the region in (13) is a polymatroid
for a fixed F(x̃ N ); cf. Example 2. Thus, by Edmonds’s
polymatroid intersection theorem with

φ(J ) = I (X̃Jmax ; Ỹ1|X̃ N
Jmax+1),

ψ(J ) = C
(

1

N

∑
j∈J

Sj

)
, (14)

the achievable rate of the proposed scheme is lower bounded as

R′
PDF ≥ supF minJ⊆[1:N]

[
ψ(J c)+ φ(J )], (15)

where the supremum is over all jointly Gaussian X̃ N satisfying
E(X̃2

j ) ≤ P , j ∈ [1 : N]. Since for each J ⊆ [1 : N] with
Jmax = k,

ψ(J c)+ φ(J ) ≥ ψ([1 : k]c)+ φ(J )
= ψ([k + 1 : N]) + φ([1 : k]),

the minimum in (15) is attained by J = ∅ or J = [1 : k] for
some k. Thus,

R′
PDF ≥ sup

F
min

k∈[0:N]

[
C

(
1

N

N∑
j=k+1

Sj

)
+ I (X̃ k ; Ỹ1|X̃ N

k+1)

]
.

(16)

In comparison, by restricting J to be of the form [1 : k] in (3),
the cutset upper bound can be relaxed as

RCS ≤ sup
F

min
k∈[0:N]

[
C

( N∑
j=k+1

Sj

)
+ I (X̃ k ; Ỹ1|X̃ N

k+1)

]
.

(17)

By comparing (16) and (17), we establish the following.
Proposition 1: The gap between the achievable rate of the

proposed partial decode–forward scheme and the cutset bound
is upper bounded as

�′
PDF := RCS − R′

PDF ≤ 1

2
log N,

regardless of Sj and S̃1k , j, k ∈ [1 : N].
When compared to the gap in (12), Proposition 1 reflects

only the gap of (10) in the first hop, thanks to coherent
cooperation among the relays in the second hop.

B. The General Two-Hop Network

The advantage of the modified partial decode–forward cod-
ing scheme is fully realized when there are multiple destina-
tions (L ≥ 2), in which case the Chern–Özgür scheme has
an unbounded gap from the capacity [8, Sec. VI]. Recall from
Fig. 3 that in the proposed partial decode–forward scheme, the
message parts are communicated over a cascade of a BC (with
degraded message sets) and multiple MACs with degraded
message sets. The achievable rate can be thus characterized as

R′
PDF = max

{ N∑
j=1

R j : (R1, . . . , RN ) ∈ R ′
BC ∩ R ′

MMAC

}
,

where R ′
MMAC is the set of rate tuples (R1, . . . , RN ) such that

k∑
j=1

R j ≤ min
d∈[1:L] I (X̃ k ; Ỹd |X̃ N

k+1), k ∈ [1 : N], (18)

for some jointly Gaussian X̃ N with E(X̃2
j ) ≤ P , j ∈ [1 : N],

which is identical to the capacity region of the N-sender
L-state Gaussian compound MAC with degraded message sets.

We can now proceed in the exactly same manner as in the
single-destination case, except that in place of (14) we have
another polymatroid

φ(J ) = min
d∈[1:L] I (X̃Jmax ; Ỹd |X̃ N

Jmax+1).

Consequently, we can lower bound the achievable rate of the
scheme as

R′
PDF ≥ sup

F
min

d∈[1:L] min
k∈[0:N]

[
C

(
1

N

N∑
j=k+1

Sj

)

+ I (X̃ k ; Ỹd |X̃ N
k+1)

]
. (19)

In comparison,

RCS ≤ sup
F

min
d∈[1:L] min

k∈[0:N]

[
C

( N∑
j=k+1

Sj

)

+ I (X̃ k ; Ỹd |X̃ N
k+1)

]
.

This establishes the following.
Theorem 1: The gap between the achievable rate of the

proposed partial decode–forward scheme and the cutset bound
is upper bounded as

�′
PDF = RCS − R′

PDF ≤ 1

2
log N,

regardless of the SNRs Sj and S̃dk , j, k ∈ [1 : N],
d ∈ [1 : L], and the number of destinations L = 1, 2, . . . .

A few remarks are in order.

1) When R ′
MMAC ⊆ R ′

BC (which is the case, for exam-

ple, if |gN | ≥ mind
∑N

j=1 |g̃d j |), the proposed coding
scheme actually achieves the capacity

C = min
d∈[1:L] C

(( N∑
j=1

√
S̃d j

)2
)
.
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Fig. 4. An example network.

In this case, the coding scheme simplifies to a simple
decode–forward scheme, whereby every relay recovers
the message M and coherently forwards it.

2) At the other extreme, when R ′
BC ⊆ R ′

MMAC (which is
the case, for example, if |g1| ≤ mind |g̃d1|), the maxi-
mum achievable rate of the proposed coding scheme is

R′
PDF = C(S1).

Note that this rate is achieved trivially by using only the
best relay (relay 1) and keeping the other relays idle, yet
the gap from the capacity is no more than (1/2) log N .

The performance difference between the Chern–Özgür PDF
scheme and the proposed PDF scheme is best illustrated by
the following example taken from [8, Sec. VI].

Example 3: Consider the Gaussian two-hop relay network
with 2 relays and 2 destinations as depicted in Fig. 4, where
the coefficients indicate the corresponding channel gains.

The cutset bound is bounded as

C(a2 P) ≤ RCS ≤ C((a2 + a)P),

where the lower bound follows by setting X, X̃1, X̃2 to be
independent N(0, P) in (2) and the upper bound follows by
considering only the broadcast cut. The achievable rate of the
PDF scheme by Chern and Özgür is

RPDF = C(a P),

which has an arbitrarily large gap from the cutset bound as
a → ∞. In comparison, the achievable rate of the proposed
PDF scheme is lower bounded as

R′
PDF ≥ C

(
(a2 + a)P

2

)
,

which is within 1 bit from the cutset bound.

VII. LINEAR-COMPLEXITY CAPACITY APPROXIMATION

Computation of the achievable rate in (19) requires max-
imization over all Gaussian input distributions F . We now
restrict the distribution to be independent and identically
distributed X̃ j ∼ N(0, P), j ∈ [1 : N]. This can be inter-
preted as a more practical coding scheme in which the relays
use independent Gaussian codebooks and transmit codewords
noncoherently. The achievable rate of the scheme is lower
bounded by

R′′
PDF ≥ min

d∈[1:L] min
k∈[0:N]

[
C

(
1

N

N∑
j=k+1

Sj

)
+ C

( k∑
j=1

S̃d j

)]
.

(20)

In comparison, starting with (4) and following the same
argument as before, we can relax the cutset upper bound as

RCS ≤ min
d∈[1:L] min

k∈[0:N]

[
C

( N∑
j=k+1

Sj

)
+ C

(( k∑
j=1

√
S̃d j

)2
)]
.

(21)

Thus, by (10) and (11), the capacity is approximated uniformly
by log N . Moreover, the computation of (20) or (21) involves
computing Gaussian capacity functions for L(N + 1) cuts,
which is a significant savings from the directed computation
of the cutset bound with all L2N possible cuts as in (2).

We summarize this result as follows.
Proposition 2: The capacity of the Gaussian two-hop

network is bounded as

C ≥ min
d∈[1:L] min

k∈[0:N]

[
C

(
1

N

N∑
j=k+1

Sj

)
+ C

( k∑
j=1

S̃d j

)]
,

C ≤ min
d∈[1:L] min

k∈[0:N]

[
C

( N∑
j=k+1

Sj

)
+ C

(( k∑
j=1

√
S̃d j

)2
)]
,

where the gap between the lower and upper bounds is no
greater than log N for any Sj and S̃dk, j, k ∈ [1 : N],
d ∈ [1 : L], and any L. Moreover, both bounds can be
computed in O(L N) complexity.

These bounds yield a simple approximate expression for the
capacity.

Proposition 3:

C = min
d∈[1:L] min

k∈[0:N]

[
C

( N∑
j=k+1

Sj

)
+C

( k∑
j=1

S̃d j

)]
± 1

2
log N.

When the channel gains are not sorted, the complex-
ity of the proposed capacity approximation is O(N log N)
including the complexity required for sorting. Interestingly,
Nazaroglu et al. [21] established another capacity approxima-
tion of the same O(N log N) complexity and O(log N) gap
for L = 1 via a different approach to simplifying the cutset
bound.

VIII. DISTRIBUTED DECODE–FORWARD

In this section, we consider the distributed decode–
forward (DDF) coding scheme in [14], which is an extension
of partial decode–forward to general multicast networks. In
particular, the rate achieved by DDF for our two-hop network
is characterized [14] as

RDDF = sup
F

min
d,J

[
I (X, X̃ (J ); U(J c), Ỹd |X̃(J c))

−
∑

k∈J c

I (Uk; X, X̃ N |Yk)
]
, (22)

where the supremum is over all distributions of the form
(
∏N

k=1 F(x̃k))F(x |x̃ N )F(uN |x, x̃ N ) satisfying E(X2) ≤ P

and E(X̃2
j ) ≤ P , j ∈ [1 : N]. By setting X and X̃ j to be

i.i.d. N(0, P) and

U j = Y j − Z j + Ẑ j , j ∈ [1 : N], (23)
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where Ẑ j ∼ N(0, 1), j ∈ [1 : N], are independent of each
other and of (X̃ N ,Y N ), it can be shown [14] that the gap
between the achievable rate in (22) and the cutset bound in (4)
is no greater than N/2.

We now exploit the layered structure of the network to
improve this O(N) gap to O(log N). Following a similar (and
in some sense dual) development for noisy network coding
in [8], we set Ẑ j ∼ N(0, N) in (23). Then, the first term
of (22) becomes

I (X, X̃(J ); U(J c), Ỹd |X̃(J c))
(a)= I (X; U(J c))+ I (X̃ (J ); Ỹd |X̃(J c))

= C
(

1

N

∑
j∈J c

S j

)
+ C

(∑
j∈J

S̃d j

)
,

where (a) follows by the independence of (X,U N ) and X̃ N

and the layered structure of the network. For k ∈ [1 : N], each
summand in the second term of (22) becomes

I (Uk; X, X̃ N |Yk) = 1

2
log

(
1 + (

1 + 1
N

)
Sk

1 + Sk

)

≤ 1

2
log

(
1 + 1

N

)

≤ 1

2N
.

Hence,

RDDF ≥ min
d,J

[
C

(
1

N

∑
j∈J c

S j

)
+ C

(∑
j∈J

S̃d j

)
−|J c|

2N

]
.

(24)

Comparing this achievable rate in (24) and the cutset bound
in (4) establishes the following.

Proposition 4: The gap between the achievable rate of the
distributed decode–forward scheme and the cutset bound is
upper bounded as

�DDF = RCS − RDDF ≤ log N + 1

2
,

regardless of the SNRs Sj and S̃dk , j, k ∈ [1 : N],
d ∈ [1 : L], and the number of destinations L = 1, 2, . . . .

IX. CONCLUDING REMARKS

Multiple coding schemes achieve the multicast capacity of
the two-hop Gaussian network with one source, N relays,
and L destinations within O(log N), including:

1) Noisy network coding (see [19, Th. 3.1])
2) Distributed decode–forward (Prop. 4 in the current

paper)
3) Partial decode–forward (see [19, Th. 3.3] for L = 1)
4) Partial decode–forward with degraded message sets

(Th. 1 in the current paper).

Among these, the fourth scheme, which is the main contri-
bution of the paper, achieves the tightest gap of (1/2) log N
from the cutset bound. Moreover, a simple lower bound on its
achievable rate can be expressed as the minimum of L(N +1)
cut rates, providing a sharp approximation of the capacity

that can be computed in O(L N) complexity. While it remains
to be seen whether this linear-complexity approximation can
be alternatively established via algebraic or combinatorial
techniques, it is refreshing to note that the best computational
result is obtained by a purely information-theoretic argument,
based directly on a simple coding scheme.
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